
VCP

Embention

Jan 30, 2023

CONTENTS

1 1. What is VCP? 3

2 2. Requirements 5

3 3. Getting Started 7

4 4. Veronte Communication Protocol 9

5 5. Examples 11
5.1 5.1. Common Code . 11
5.2 5.2. File Configuration . 12
5.3 5.3. Telemetry . 14

i

ii

VCP

CONTENTS 1

VCP

2 CONTENTS

CHAPTER

ONE

1. WHAT IS VCP?

VCP is the abbreviation for Veronte Communication Protocol. This Protocol allows the user to “understand” Veronte
messages and, in the same way, send messages which Veronte will interpret correctly. In other words, this protocol is
essential if we want to talk with any Veronte-based device.

This protocol is used in Veronte Pipe, but it can be used in an own developed application as we can see in the following
image:

3

VCP

4 Chapter 1. 1. What is VCP?

CHAPTER

TWO

2. REQUIREMENTS

To test the VCP library, Embention team have prepare some easy examples to understand how use it. But, first, we need
some requirements:

1. VCP library

2. A device running Windows 10

3. Visual Studio 2015 installed

4. A Veronte-based system

5. An Autopilot Harness

5

VCP

6 Chapter 2. 2. Requirements

CHAPTER

THREE

3. GETTING STARTED

Firstly, we will connect Veronte to our PC running Windows across the USB port. For electronic specifications, go to
Veronte Autopilot.

In the following image we can see an example of connection:

Where:

1. Veronte Autopilot

2. Veronte Harness

3. USB connected to PC

4. Vcc

Our PC will assign a COM port to Veronte, which we can check on Device Manager as follow:

7

https://manuals.embention.com/Veronte_Autopilot/en/latest/index.html

VCP

Make sure veronte is not in maintenance mode

Now, we are ready to launch the examples.

8 Chapter 3. 3. Getting Started

CHAPTER

FOUR

4. VERONTE COMMUNICATION PROTOCOL

Firstly, it is important do a little overview about VCP. For example, which is the shape of VCP messages? The structure
of the messages between different elements within a Veronte-based system is as follows:

Field: 0xBA UAV Org UAV Dest Ener Flag IRX Arg Len CRC Data CRC
Bytes: 1 2 2 1-bit 7-bit 1 1 1 0-255 2

The first byte is the header of the message, used to identify an incoming communication as a Veronte message. The
following four bytes are the ID addresses, origin and destination respectively.

One of the most important fields for the user is IRX, plus its Argument, where the IRX refers to the command type and
the Argument depends on the action to perform. IRX field could be:

• 0x00: Telemetry messages

• 0x0F: Stick interface

• 0x22: Communication Statistics

• 0x29: Configuration Commands

• 0x2C: Simulated Navigation

• 0x2E: Simulated Sensor

• 0x05: Configuration Files

This message structure is all we need to send and receive information from Veronte.

9

VCP

10 Chapter 4. 4. Veronte Communication Protocol

CHAPTER

FIVE

5. EXAMPLES

5.1 5.1. Common Code

5.1.1 5.1.1. Serial Port

Get the serial COM port used by Veronte and asigned by our PC as below, and its initialisation (Specify your assigned
COM port as project argument: Project -> Properties -> Debugging -> Command Arguments):

Serial& serial = Serial::get_instance(); //Serial port instance
const char* port = Serial::get_default_port(); //Get default port
if (argc == 2) //Checks if the user has specified a COM␣
→˓port
{

port = argv[1]; //Get port as argument
}
serial.init(port); //Inits serial port

5.1.2 5.1.2. Discovery step

In this step we add the discovery IRX in the command manager to discover the address ID of Veronte connected to our
PC.

Base::Commgr commgr(myaddr); //Command manager instance
Media::Discovery discovery(commgr); //Discovery instance
commgr.add_irx(Base::discovery_id, discovery); //IRX addition to Command Manager

After this, it is possible to discover our Veronte and its ID:

discovery.discover(); //Discover action
while (!discovery.get_status().received) //Wait until the veronte has been␣
→˓discovered
{

discovery.discover();
VCP::send_receive(serial, commgr); //Updating serial bus

}
Uint16 ver_addr = discovery.get_status().addr.id; //ver_addr is the Veronte Address ID.

This ver_addr will be used by many examples as destination address.

11

VCP

5.2 5.2. File Configuration

With the veronte ID, it is possible to change its configuration, for example, in this case we will update the route which
the UAV will follow. (This example only shows one point update, go to main_cfg.cpp file to check all code)

Feature references creation:

Geo::Ftropf fop; //Operation features instance
Base::Feature f0; //Feature reference instance
Rv3_64 v0; //3D array

v0[0] = -0.01001664582567; //longitude
v0[1] = 0.66831910249822; //latitude
v0[2] = 150; //height

f0.set_abs(v0); //Sets the coordinates of a waypoint from its absolute␣
→˓coordinates
fop.opg[0] = f0; //Initialize the list of operation generic features

fop.opg.set_enabled(0, true); //Enables the abstract array

Route creation:

Base::Patchset_route route;
route.route.set(static_cast<Troute::Pnt_index>(0), Fid::opg_000);
route.route.set_enabled(static_cast<Troute::Pnt_index>(0), true);
route.route.set(static_cast<Troute::Pch_index>(0),

static_cast<Troute::Pnt_index>(0),
static_cast<Troute::Pch_index>(-1));

route.route.set_enabled(static_cast<Troute::Pch_index>(0), true);

File Configuration IRX and Config Manager IRX instances, and their addition to the Command Manager:

Media::Filecom filecom(commgr, myaddr, discovery.get_status().addr, 5.0F); //File␣
→˓Configuration instance
Base::Cfgmgr cfgmgr(commgr, myaddr, discovery.get_status().addr, 5.0F); //
→˓Configuration manager instance

commgr.add_irx(Base::filecom_id, filecom); //IRX␣
→˓addition to Command Manager
commgr.add_irx(Base::config_id, cfgmgr);

Updating route configuration:

//Random identification number of the file transaction
Uint64 uuid_file = rand();
//67 will be interpreted by Veronte as a route change request
if (filecom.send(route, 67, uuid_file)

&& cfgmgr.save(uuid_file, 67)) //File configuration sending and saving␣
→˓configuration
{
bool sending_file = true;
while (sending_file)
{

(continues on next page)

12 Chapter 5. 5. Examples

VCP

(continued from previous page)

VCP::send_receive(serial, commgr); //Serial bus refresh

if (!filecom.step()
&& filecom.is_successful())

{
sending_file = cfgmgr.step(); //True when the whole file messages␣

→˓transactions have finished
}

}
}

Feature references manager update:

//79 will be interpreted by Veronte as a feature references change request
if (filecom.send(fop, 79, uuid_file) && cfgmgr.save(uuid_file, 79))
{
bool sending_file = true;
while (sending_file)
{

VCP::send_receive(serial, commgr);

if (!filecom.step() && filecom.is_successful())
{

sending_file = cfgmgr.step();
}

}
}

Finally, we change to phase 0 to test this command using the command manager instanced in Discovery step code.

build_phasecmd(cfgmgr, 0); //Builds change phase command
bool sending_cmd = true;
while (sending_cmd)
{

VCP::send_receive(serial, commgr);
sending_cmd = cfgmgr.step();

}

5.2.1 5.2.1. Command Prompt

File configuration output:

5.2. 5.2. File Configuration 13

VCP

5.3 5.3. Telemetry

Telemetry is sent by default by Veronte, this means it is not necessary create a particular packet to send to Veronte.
Of course, it is essential add the IRX to command manager as in filecom example, but in this case we will add the
telemetry IRX:

Base::Commgr commgr(source_address); //Command manager instance
Telemetryrx irx1(0, source_address); //Telemetry IRX instance
commgr.add_irx(Base::telemetry_id, irx1); //IRX addition
Uint8 data; //Variable to send/receive
while(true)
{
if(serial.read(data)) //Read from serial port
{

commgr.ports.eports.get_port8().write(data); //Write in port for byte producer/
→˓consumer side

}
}

Launching this example we will see in the command prompt:

Packet received from UAV XX to UAV XX - Hash: XX - Timestamp: XX

or

Packet ignored from UAV XX to UAV XX - Hash: XX - Timestamp: XX

depending on the correct or incorrect telemetry reception.

14 Chapter 5. 5. Examples

VCP

5.3.1 5.3.1. Command Prompt

Telemetry output:

Version UM.307.5.42.28

Date 2023-01-30

5.3. 5.3. Telemetry 15

	1. What is VCP?
	2. Requirements
	3. Getting Started
	4. Veronte Communication Protocol
	5. Examples
	5.1. Common Code
	5.1.1. Serial Port
	5.1.2. Discovery step

	5.2. File Configuration
	5.2.1. Command Prompt

	5.3. Telemetry
	5.3.1. Command Prompt

