
Software in the Loop (SIL)
Release 6.4.68

Embention

2023-05-29

CONTENTS

1 Introduction 1
1.1 Requisites . 1

2 Basic Package 3

3 Dealing with PDI files 5
3.1 Before Pipe v.6.6 . 5
3.2 After Pipe v.6.6 (Included) - PDI builder . 7

4 Autopilot Simulation 9

5 Sensors simulation 15
5.1 Environment . 15
5.2 Static Pressure . 17

5.2.1 Constant value . 18
5.2.2 Step . 18
5.2.3 Variable pressure . 19

5.3 Dynamic Pressure . 20
5.4 Inertial Measurement Unit . 20
5.5 Magnetometer . 24
5.6 GNSS . 25
5.7 Analog to Digital Converter Port . 28
5.8 Serial communications . 30

5.8.1 EXAMPLE: Sending a rs-232 message . 30

6 Monitoring Telemetry 33

7 Connecting SIL & Veronte Pipe 37
7.1 Pipe v6.6 and higher . 39

8 Simulation 41
8.1 Complete Simulation . 41
8.2 Quadcopter Example . 42

i

ii

CHAPTER

ONE

INTRODUCTION

A software in the loop simulation consists of a Simulink model that simulates the behaviour of the system formed
by the autopilot and a vehicle, without having the physical devices connected to the computer, in contrast to the HIL
which has both the autopilot and (optionally) vehicle connected to the PC. This option has several advantages when it
is compared with a HIL setup:

• Complete simulations without any hardware.

• Possibility of using your own vehicle model: user can define the dynamics of his vehicule (with the desired
complexity) without using external programs, like Plane Maker.

• Possibility of simulating differents kinds of sensors even if they are not fitted in Veronte. All you need is the raw
sensor reading.

• All results can be exported/visualized to MATLAB workspace simultaneously.

• Veronte Block runs faster than real time, allowing the user to execute a series of simulations in a short time.
This feature depends on the complexity of the model and the capability of the computer where the simulation is
running.

• Light computational load.

1.1 Requisites

In order to run a SIL simulation with veronte autopilot the followings programs and toolbox are required:

• MATLAB + Simulink (basic package).

• Simulink Real-Time : this blockset contains useful blocks to be used with buses: UDP/RS232/CAN.

• Microsoft Visual Studio 2015 (or later) as your MEX compiler. Despite .mex file is already compiled and it
works as a black box, some libraries are necessary.

Moreover, the user can be helped by other toolboxes when implementing their model, such as Aerospace toolbox:
contains sensor blocks, flight instruments and environment blocks.

1

Software in the Loop (SIL), Release 6.4.68

2 Chapter 1. Introduction

CHAPTER

TWO

BASIC PACKAGE

Basic package files

The basic SIL package consists of the followings files:

• gps_time.m: a matlab function which calculates the GPS/GNSS number of weeks.

• import_post_flight: a matlab script for loading an external source of inertial data (IMU). It reads this
information from a csv file.

• mex_function_example.slx: simulink file. It includes a little example about how using veronte autopilot
with sensor readings.

• Mex.m: matlab script for compiling veronte code.

• reset_SIL: script which must be executed before running a simulation.

• Veronte_SD_image.img: contains the autopilot configuration information.

• Veronte_SIL.mexw64 : mex file. It consists of all the embedded veronte code compiled. It works as a
black box. Like Veronte, each mex file has a version. In order to ask for a newer version, contact with sales
team at sales@embention.com.

3

mailto:sales@embention.com

Software in the Loop (SIL), Release 6.4.68

4 Chapter 2. Basic Package

CHAPTER

THREE

DEALING WITH PDI FILES

3.1 Before Pipe v.6.6

Veronte_SD_image.img contains all the configuration information. PDI are uploaded exactly the same way that would
be uploaded to a physical autopilot. Once connected to Veronte Pipe, a virtual autopilot will be detected in safe mode.
So the steps to upload/change the PDI configuration are:

1. Run Simulink model: to be able to upload new PDI files the virtual autopilot must appear in pipe. So the SIL
simulation must start in order to send the proper information.

2. Enter autopilot in maintenance mode: then stop the simulation and press run again.

5

Software in the Loop (SIL), Release 6.4.68

Enter Maintenance mode

3. Upload a new PDI file: Once the virtual autopilot appears in maintenance mode, press on change configuration.
Select your PDI files and exit from maintenance mode. Stop Simulink.

Change setup

4. Run Simulink with the correct configuration.

6 Chapter 3. Dealing with PDI files

Software in the Loop (SIL), Release 6.4.68

3.2 After Pipe v.6.6 (Included) - PDI builder

1. Open VeronteLink and create an Ethernet connection (Connecting to Pipe).

2. Run Simulink Model to simulate the autopilot information. Check autopilot information appears in
VeronteLink.

Veronte Link

3. Open PDI Builder and select your autopilot. Then click on link button (5). PDI Builder Interface allows the
user the following actions : Create or modify PDI files offline (1), upload PDI configuration to the autopilot (2),
open the autopilot configuration to modify it (3), change between maintenance and normal mode (4).

3.2. After Pipe v.6.6 (Included) - PDI builder 7

Software in the Loop (SIL), Release 6.4.68

PDI builder

4. If you want to modify a SD image click on (3).

5. If you want to upload your PDI files, change to Maintenance mode (4). Stop the Simulation and press run again.
Now the autopilot selected has an orange color. Press Upload PDI (2) and select the new configuration. Exit
maintenance mode (4).

8 Chapter 3. Dealing with PDI files

CHAPTER

FOUR

AUTOPILOT SIMULATION

The autopilot is implemented in Simulink with an S-Function. This kind of block takes a C, C++, Fortran or even Matlab
code, and implements it in a block containing a certain number of inputs and outputs. A typical Veronte s-function is
shown below.

9

Software in the Loop (SIL), Release 6.4.68

10 Chapter 4. Autopilot Simulation

Software in the Loop (SIL), Release 6.4.68

S-Function containing the autopilot embedded code

Inputs are described in the next table:

PIN Signal Type Description Form Size Units
1 Input Static Pressure 1 [pressure_measurement;sensor

temperature]
2x1 Pa / K

2 Input Static Pressure 2 [pressure_measurement;sensor
temperature]

2x1 Pa / K

3 Input Static Pressure 3 [pressure_measurement;sensor
temperature]

2x1 Pa / K

4 Input Dynamic
Pressure

[pressure_measurement;sensor
temperature]

2x1 Pa / K

5 Input IMU 1 [acc_x;acc_y;acc_z;gyr_x;gyr_y;gyr_z;sensor
temperature]

7x1 m/s^2 / m/s / K

6 Input IMU 2 [acc_x;acc_y;acc_z;gyr_x;gyr_y;gyr_z;sensor
temperature]

7x1 m/s^2 / m/s / K

7 Input IMU 3 [acc_x;acc_y;acc_z;gyr_x;gyr_y;gyr_z;sensor
temperature]

7x1 m/s^2 / m/s / K

8 Input Magnetometer 1 [mag_x;mag_y;mag_z;sensor
temperature]

4x1 T

9 Input Magnetometer 2 [mag_x;mag_y;mag_z;sensor
temperature]

4x1 T

10 Input Magnetometer 3 [mag_x;mag_y;mag_z;sensor
temperature]

4x1 T

11 Input Magnetometer 4 [mag_x;mag_y;mag_z;sensor
temperature]

4x1 T

12 Input GNSS 1 [1;3;lon;lat;alt;hr_accu;vt_accu;v_n;v_e;v_d;v_accu]11x1 deg 10^7 / mm /
mm/s

13 Input GNSS 2 [1;3;lon;lat;alt;hr_accu;vt_accu;v_n;v_e;v_d;v_accu]11x1 deg 10^7 / mm /
mm/s

14 Input Relative
Position 1

[1;x_rel;y_rel;z_rel;d_x;d_y;d_z;x_accu;y_accu;z_accu]10x1 cm / mm * 10^-1

15 Input Relative
Position 2

[1;x_rel;y_rel;z_rel;d_x;d_y;d_z;x_accu;y_accu;z_accu]10x1 cm / mm * 10^-1

16 Input GPS Time [week_number;seconds_of_week]2x1
• / s

17 Input Lidar 1 [lidar_measurement]1x1 cm
18 Input Lidar 2 [lidar_measurement]1x1 cm
19 Input Lidar 3 [lidar_measurement]1x1 cm
20 Input Lidar 4 [lidar_measurement]1x1 cm
21 Input Lidar 5 [lidar_measurement]1x1 cm
22 Input ID Bit Var [Var_IDs] 50x1 m
23 Input ID Unsigned

Var
[Var_IDs] 50x1 m

24 Input ID Real Var [Var_IDs] 50x1 m
25 Input ADCs [adc(1-17)] 17x1

•

continues on next page

11

Software in the Loop (SIL), Release 6.4.68

Table 1 – continued from previous page
PIN Signal Type Description Form Size Units
26 Input SCIA Data [serial_data] 1024x1

•

27 Input SCIA Length [serial_length] 1x1
•

28 Input SCIB Data [serial_data] 1024x1
•

29 Input SCIB Length [serial_length] 1x1
•

30 Input SCIC Data [serial_data] 1024x1
•

31 Input SCIC Length [serial_length] 1x1
•

32 Input SCID Data [serial_data] 1024x1
•

33 Input SCID Length [serial_length] 1x1
•

34 Input USB Data [serial_data] 1024x1
•

35 Input USB Length [serial_length] 1x1
•

Outputs are the following:

PIN Signal Type Description Form | Size
1 Output Control Outputs [control_outputs(1-20)] | 20x1

•

2 Output Servo Values [servos(1-32)] 32x1
•

3 Output Position [lat;lon;alt] 3x1 rad / m
4 Output Heights [msl,agl] 2x1 m
5 Output Velocities [longitudinal_v;lateral_v;velocity(module)]3x1 m/s
6 Output IAS TAS GS [ias,tas,gs] 3x1 m/s
7 Output MSL [msl_from_qnh;msl_from_ISA]2x1 m
8 Output Angle of Attack

/ Sideslip
[angle_of_attack;sideslip]2x1 rad

9 Output Q_Infinty [dynamic_pressure]1x1 Pa
10 Output IAS RAW [ias_raw] 1x1 m/s

continues on next page

12 Chapter 4. Autopilot Simulation

Software in the Loop (SIL), Release 6.4.68

Table 2 – continued from previous page
PIN Signal Type Description Form | Size
11 Output Tangential

Acceleration
[tangential_acceleration]1x1 m/s^2

12 Input Body Velocities [lon_v;lat_v;vertical_v]3x1 m/s
13 Output Angular

Velocities
[roll_rate;pitch_rate;yaw_rate]3x1 rad/s

14 Output Angular
Acceleration

[acc_z_axis;acc_y_axis;acc_x_axis]3x1 rad/^2

15 Output Acceleration
NED

[acc_north;acc_east;acc_down]3x1 m/s^2

16 Output Velocity NED [v_north;v_east;v_down]
)

3x1 m/s

17 Output Angles [Yaw;Pitch;Roll]
)

3x1 rad

18 Output Co-Angles [co-Yaw;co-
Pitch;co-Roll]

3x1 rad

19 Output Aerodynamic
Angles

[heading,flight_path;bank_angle]3x1 rad

20 Output Acceleration
Body

[acc_x,acc_y;acc_z]3x1 m/s^2

21 Output Load factor [nx;ny;nz] 3x1
•

22 Output SCIA Data [serial_data] 1024x1
•

23 Output SCIA Length [serial_length] 1x1
•

24 Output SCIB Data [serial_data] 1024x1
•

25 Output SCIB Length [serial_length] 1x1
•

26 Output SCIC Data [serial_data] 1024x1
•

27 Output SCIC Length [serial_length] 1x1
•

28 Output SCID Data [serial_data] 1024x1
•

29 Output SCID Length [serial_length] 1x1
•

30 Output USB Data [serial_data] 1024x1
•

continues on next page

13

Software in the Loop (SIL), Release 6.4.68

Table 2 – continued from previous page
PIN Signal Type Description Form | Size
31 Output USB Length [serial_length]) 1x1

•

32 Output Unsigned
Variables

[selected
variables(1-
50)]

50x1
•

33 Output Bit Variables [selected
variables(1-
50)]

50x1
•

34 Output Real Variables [selected
variables(1-
50)]

50x1
•

14 Chapter 4. Autopilot Simulation

CHAPTER

FIVE

SENSORS SIMULATION

5.1 Environment

To simulate properly a model is necessary to take in account that the environment variables changes depending on the
uav position. User can choose between a simple and constant model or modify in each step the environment variables
according to a complex model.

This model should group the atmospherical properties (temperature, pressure, etc.) which change with the altitude (also
you can add an offset), the gravity vector as well as the magnetic field which change according to certain coordinates
on earth. All this information is required by the S-function or is necessary for a good characterization of the sensors
measurements. A basic example is shown below. It is divided into 3 different models (ISA atmosphere model, WGS84
model for gravity vector, and the World Magnetic Model). Each model is included in a user Matlab function whose
arguments are the inputs of the block.

Environment block

Instead of creating their own functions, user can employ those that are included in Aerospace Toolbox:

1. World Magnetic Model 2015

2. ISA Atmosphere Model

3. WGS84 Gravity Model

15

Software in the Loop (SIL), Release 6.4.68

Aerospace blockset functions

The input of this block is the state (in the previous step) of your vehicule. You have to compute this state from a
dynamic model whose inputs are the values of the actuators (outputs of the autopilot). These variables (position,
velocity, acceleration, etc.) can be group in a vector or a bus. If a vector is chosen then you have to pick the desired
variables with a demux block or a selector block. In the case of a bus, the information is separated with a bus selector
block.

Bus selector block

16 Chapter 5. Sensors simulation

Software in the Loop (SIL), Release 6.4.68

For the environment block the only variables required are these shown in the picture below:

Environment input

5.2 Static Pressure

Static Pressure inputs in S-function simulate the real ones in Veronte. The information required consists of raw
measurements and the sensor device temperature. The S-function contains 3 ports as the autopilot hardware. Then
this information should be used according to the static pressure sensor selected in the configuration.

Normally the same information should feed the 3 ports, althougth you can simulate that one of them is not working
properly.

Some examples of how implement the static pressure are shown below:

5.2. Static Pressure 17

Software in the Loop (SIL), Release 6.4.68

5.2.1 Constant value

Only a block constant for raw pressure and another for temperature. Also it is possible to add some white noise.

Constant pressure

5.2.2 Step

If you want to simulate a leap in pressure measurements you can add a step to the previous configuration. In the example
below a difference in 100 meters is represented.

Step input in pressure

18 Chapter 5. Sensors simulation

Software in the Loop (SIL), Release 6.4.68

5.2.3 Variable pressure

If you want a more accurate model which modify this value according to vehicle position you need to enter pressure
information from the environment block. This block is necessary when user is simulating movement because pressure
is an input to the fusion algortihms (Ex.:Kalman filter). You had to select the raw measurement and the temperature
from the bus that cointains all the atmosphere properties.

Selecting environment variables

Finally, the complete group results as the image below. The temperature is compute as the ambient temperature plus
an offset.

Variable pressure

5.2. Static Pressure 19

Software in the Loop (SIL), Release 6.4.68

5.3 Dynamic Pressure

The dynamic or velocity pressure input needs the static pressure raw measurement and the flow velocity. In our example
the autopilot is supposed to be mounted in the X-axis in body frame. Therefore, from velocity in NED frames we apply
a rotation to obtain velocity in body frames and then we pick the first component of the vector. The value of density is
taken from the environment model.

Dynamic Pressure subsystem

5.4 Inertial Measurement Unit

This device measures and informs about velocity, attitude and forces combining readings of accelerometers and
gyroscopes. Veronte needs to receive 7 measurements: accelerometer in 3 axes, gyroscopes in 3 axes and device
temperature. In the S-function there are 3 inputs for IMUs. The first one is the main unit and the second one the
secondary unit. These units are mounted differently in the autopilot (is not aliganed with autopilot), so user has to
keep in mind the rotation matrix which autopilot is using. This matrix is pre-configurated in each PDI and cannot be
changed.

Veronte IMU rotation matrices

There are some ways to implement a suitable group of readings for a IMU. You can create a vector with constant values.
Another option could be to store some data (i.e. from a previous flight), load in the matlab workspace, and then send
this values to Simulink using the block name as From workspace.

20 Chapter 5. Sensors simulation

Software in the Loop (SIL), Release 6.4.68

IMU data from workspace

This blocks allows the user to read from an array of values (and interpolate when there are no information in this step).
Moreover, user can choose between several options in case data vector is over. For example, it is possible to extrapolate
the information or restart the list of values.

5.4. Inertial Measurement Unit 21

Software in the Loop (SIL), Release 6.4.68

Methods applied when the final data value is reached

Another method is reading this values from Environment (gravity vector in NED, and air temperature), and from states
(acceleration in body axes, angular velocity, angurlar acceleration, and the rotation matrix from NED to body). This
values are entered to a Matlab function where IMU behaviour is simulated and the measurements are computed).
Finally, user have to cross the measurements or apply a rotation matrix according to IMU sensor orientation. In the
example below, this data is feeding the first port (in the PDI configuration this IMU is selected). Therefore, user has to
cross the signals to fit the rotation matrix.

22 Chapter 5. Sensors simulation

Software in the Loop (SIL), Release 6.4.68

PDI configuration for main IMU

The complete subgroup results as follows:

IMU subgroup

Instead of use a user function, Aerospace blockset include some functions for IMU simulation:

5.4. Inertial Measurement Unit 23

Software in the Loop (SIL), Release 6.4.68

IMU block from Aerospace Toolbox

5.5 Magnetometer

The magnetometer block is simply a rotated environment magnetic field where the temperature of sensor has been
added (same as before OAT + 60). S-function has 4 port for magnetometer readings (the internal one and 3 external -
HMR2300, LIS3MDL, HSCDTD008A-). Also you can simulate another magnetometer and send the information by a
serial port. Just as IMUs, user must have in mind how the magnetometer is mounted (rotation matrix). Therefore, the
signal could be crossed as in the example below. You can use a Matrix multiplication block, or if it is simple, you can
change directly the orientation with a selector crossing block.

24 Chapter 5. Sensors simulation

Software in the Loop (SIL), Release 6.4.68

Magnetometer

5.6 GNSS

GNSS receiver ports (there are 2 ports -GNSS1 and GNSS2-) expect to receive an array with the following information:

1. Fix status

2. Fix type

• 0: no fix

• 1: dead reckoning only

• 2: 2D-fix

• 3: 3D-fix

• 4: GNSS + dead reckoning fix

3. Latitude

4. Longitude

5. Altitude

6. Horizontal accuracy

7. Vertical accuracy

8. North Velocity

9. East velocity

10. Down Velocity

11. Speed Accuracy

5.6. GNSS 25

Software in the Loop (SIL), Release 6.4.68

GNSS array

The angle inputs are in degrees*10^7, and the distance inputs in millimeters. The accuracy values are equivalent to the
square root of the square error. These values are supposed to be computed by the GPS device and are used in the EFK
for GNSS solution. However, in the configuration files user can choose between these ones or values set by user.

26 Chapter 5. Sensors simulation

Software in the Loop (SIL), Release 6.4.68

GNSS variances

RTK Example Block (Relative Position)

To enable RTK feature user has to modify the configuration (more information can be found in Veronte Autopilot
Manual), and include more inputs by S-function. This input is named as Relative Position, and it requires an array of
10 elements.

1. Status : 0 is Data invalid and 1 is Data valid

2. RelPosN : North component of relative position vector (cm)

3. RelPosE : East component of relative position vector (cm)

4. relPosD : Down component of relative position vector (cm)

5. relPosHPN : High precision North component (mm)

6. relPosHPE : High precision East component (mm)

7. relPosHPD : High precision Down component (mm)

8. accN : Accuracy of relative position North component (mm)

9. accE : Accuracy of relative position East component (mm)

10. accD : Accuracy of relative position DOwn component (mm)

High precision components must be in range -99 to 99 millimeters. The full component of the relative position vector
(in cm) is given by the addition of the 2 components. An example of this subgroup is shown below:

5.6. GNSS 27

Software in the Loop (SIL), Release 6.4.68

RTK inputs

5.7 Analog to Digital Converter Port

Veronte is equipped with 5 external ADC channel (linked to 5 pins) and 12 internal channels. Therefore, in total, user
has to create an array of 17 elements. This values are stored as internal variables in Veronte, and you can use them in
certain user programs. The order of this array is :Internal ADC Channel 1, External ADC Channel 1-5, Internal ADC
2-12.

In the picture below an example is shown (with the first external ADC pin).

28 Chapter 5. Sensors simulation

Software in the Loop (SIL), Release 6.4.68

ADC readings

5.7. Analog to Digital Converter Port 29

Software in the Loop (SIL), Release 6.4.68

5.8 Serial communications

Veronte can manage input and output serial ports (more information in Veronte Autopilot Manuals), and we can simulate
these as inputs and outputs on the S-function. An easy way to create serial frames (data in length wires) is by using the
simulink UDP block. Therefore, the data coming in to veronte should be sent though UDP (if this approach is taken):

UDP Block

The ports that Veronte includes and that are represented in the S-function are the following:

• USB : USB port

• SCIA : 4G connection

• SCIB : Radio

• SCIC : Serial Port 485

• SCID : Serial Port 232

5.8.1 EXAMPLE: Sending a rs-232 message

In the example below we have sent a constant value as a rs-232 message. Firstly, you have to create the message as a bit
array with Byte Pack Block. Then, it is neccesary to receive this information as UDP Packets to corresponding port
(in this case 16003). Width block is used to compute data length. Then this UDP packet is send to S-function.

Sending a rs-232 message in Simulink

Finally, we have to configure a custom message to store this value in a user variable as follows:

30 Chapter 5. Sensors simulation

Software in the Loop (SIL), Release 6.4.68

Custom message

Sensors measurements are the inputs of the mex blocks (embedded code). To perform a correct simulation user have
to set the inputs with the same scheme as Veronte reads them. Each sensor have a certain vector/array which usually
includes raw data in one or more coordinates, the sensor temperatures, variances or square errors. User can set constant
values for this variables or compute a complex environment model depending on the state of the plaform (position,
velocity, etc.). This section aims to ilustrate how to implement the inputs described in the previous section. The
structures that are shown here are orientative and, of course, can be adapted by the user:

Sensors inputs

In the previous example the same type readings (static pressure, magnetic field, etc.) field all the port of each kind of
sensor (Then the user can select the correct one in the configuration).

5.8. Serial communications 31

Software in the Loop (SIL), Release 6.4.68

32 Chapter 5. Sensors simulation

CHAPTER

SIX

MONITORING TELEMETRY

In the S-function there are three inputs specially dedicated to select custom temeletry (pin 22 for Bit variables, pin 23
for integers and pin 24 for reals). Each of this variables have an ID. The input structure of those is fixed and must be
of size 50. User have to enter the corresponding Ids of the variables he is aiming to monitor. In the following example
some BIT variables are requested:

Telemetry ID Mux

The ID of each variable in Veronte can be easily found in Veronte Pipe by adding a new workspace widget or in the
Program window by adding a specific block (Read Bit, Read Integer or Read Real). The ID is labelled right before

33

Software in the Loop (SIL), Release 6.4.68

variable name.

ID Indicator

Finally, to monitor or see their values, you can add a scope connected to the matching output (pin 32, 33 or 34), or use
a demux block to separate the array in single values and connect them with a Display block.

34 Chapter 6. Monitoring Telemetry

Software in the Loop (SIL), Release 6.4.68

Display variables

35

Software in the Loop (SIL), Release 6.4.68

36 Chapter 6. Monitoring Telemetry

CHAPTER

SEVEN

CONNECTING SIL & VERONTE PIPE

1. Add a UDP serial communication block and connect it to USB data and length.

2. Add a second UDP serial communication block and connect it to the USB output of veronte.

UDP Blocks

3. Configure your destination port.

37

Software in the Loop (SIL), Release 6.4.68

Destination UDP Port

4. Set an ethernet network in Preferences as shown using the destination port selected before. Check that Local IP
Address and Local Subnet Mask have non-zero values.

38 Chapter 7. Connecting SIL & Veronte Pipe

Software in the Loop (SIL), Release 6.4.68

Destination UDP Port (Pipe)

7.1 Pipe v6.6 and higher

In case of using VeronteLink (comunication with Pipe v6.6 or higher) you have to configure the connections tab
selecting UPD as connection type and set the configuration as in fourth step.

7.1. Pipe v6.6 and higher 39

Software in the Loop (SIL), Release 6.4.68

Destination UDP Port (Veronte Link)

40 Chapter 7. Connecting SIL & Veronte Pipe

CHAPTER

EIGHT

SIMULATION

8.1 Complete Simulation

After setting the main blocks, the result should look like this:

Complete Setup Example

The main systems are:

• Veronte Autopilot: It contains our flight control software. It basically consists of the S-function and their link
with the rest of the blocks (sensors, outputs, etc.)

• Airframe: a model of the flight dynamics.The inputs of this systems are the output of the Veronte autopilot
(nominal value for servos). For example, for a quacopter, the input of this block consists of the values of the
PWM signal (one for each motor). Then with this value the airframe system updates the platform’s state. The
state vector is used for predict the new environment conditions and the sensors readings.

• Environment: a model of the atmosphere, magnetic field, WGS84. . .

• Sensors: it contains individual blocks or subgroup of all the sensors that veronte needs as input.

• Visualization: It contains Display blocks, scopes, flight instruments. . .

41

Software in the Loop (SIL), Release 6.4.68

The time step should be set to 0.0002 as shown in the next figure in order to guarantee a good GNC/Adquisition
frequency:

Time step settings

8.2 Quadcopter Example

In this section a basic example about how make an airframe model is shown.

In the picture below this is represented. Once Veronte receives all the sensor information, the autopilot computes the
guidance and control algorithms. As a result, the autopilot computes the necessary value for servos. The inputs of the
system are the values of the PWM, it means, servos output (pin 2). User also can use the control output value directly.
These values have to be entered in a user function that computes the airframe model. However, these values are the
current ones. To perform a properly simulation the input values must be those from the previous step. It can be solved
with the memory block (stored previous step input).

42 Chapter 8. Simulation

Software in the Loop (SIL), Release 6.4.68

Complete Setup Example

In this example, the value of PWM is transformed to RPM. For this, it is necessary to implement an engine/rotor model,
for example, by using a Transfer function (power unit model).

Transfer function

Once the RPM are calculated, the aerodynamic forces and moments can be computed with a properly model. Then this
forces are entered to the Rigid Body model to integrate the vehicule state.

8.2. Quadcopter Example 43

Software in the Loop (SIL), Release 6.4.68

Airframe model

A complete simulation is composed by many systems or blocks. In this manual the sensor the environment and the
autopilot subsystem have been already introduced. All theses blocks must be combined with others such as Airframe
block (a brief example will be included in this manual).

Veronte autopilot

This manual contains the information required for the user to run a Software in the loop simulation using Matlab and
Simulink. This document includes a basic description of how our autopilot works with Simulink, and some examples
to allow the user to create a complete model from scratch.

44 Chapter 8. Simulation

	Introduction
	Requisites

	Basic Package
	Dealing with PDI files
	Before Pipe v.6.6
	After Pipe v.6.6 (Included) - PDI builder

	Autopilot Simulation
	Sensors simulation
	Environment
	Static Pressure
	Constant value
	Step
	Variable pressure

	Dynamic Pressure
	Inertial Measurement Unit
	Magnetometer
	GNSS
	Analog to Digital Converter Port
	Serial communications
	EXAMPLE: Sending a rs-232 message

	Monitoring Telemetry
	Connecting SIL & Veronte Pipe
	Pipe v6.6 and higher

	Simulation
	Complete Simulation
	Quadcopter Example

