Software in the Loop (SIL)

Embention

Jan 30, 2023

CONTENTS

Introduction
1.1 RequUiSites v o ot e e e e e e e e e e e e 1
Basic Package 3
Dealing with PDI files 5
3.1 Before Pipe v.6.6 L e e e e e e e 5
3.2 After Pipe v.6.6 (Included) - PDI builder 7
Autopilot Simulation 9
Sensors simulation 15
5.1 Environment L e e e e e e e e e e e e e e 15
5.2 Static Pressure e e e 17
52.1 Constantvalue e e e e e 18
522 Step . .o e e e 18
523 Variable pressure L. L e e 19
5.3 Dynamic Pressure e 20
5.4 Inertial Measurement Unit L e 20
5.5 Magnetometer vt e 24
5.6 GNSS . . 25
5.7 Analogto Digital Converter Port 28
5.8 Serial communications L. oL Lo e e e e e e e e 30
5.8.1 EXAMPLE: Sending a rs-232 MeSSaZe . . « « . .t v v et e e e e e e e e e e e 30
Monitoring Telemetry 33
Connecting SIL & Veronte Pipe 37
7.1 Pipev6.6and higher L e e 39
Simulation 41
8.1 Complete Simulation L e e e e e e e e e e 41
8.2 Quadcopter Example L e 42

CHAPTER
ONE

INTRODUCTION

A software in the loop simulation consists of a Simulink model that simulates the behaviour of the system formed
by the autopilot and a vehicle, without having the physical devices connected to the computer, in contrast to the HIL
which has both the autopilot and (optionally) vehicle connected to the PC. This option has several advantages when it
is compared with a HIL setup:

1.1

Complete simulations without any hardware.

Possibility of using your own vehicle model: user can define the dynamics of his vehicule (with the desired
complexity) without using external programs, like Plane Maker.

Possibility of simulating differents kinds of sensors even if they are not fitted in Veronte. All you need is the raw
sensor reading.

All results can be exported/visualized to MATLAB workspace simultaneously.

Veronte Block runs faster than real time, allowing the user to execute a series of simulations in a short time.
This feature depends on the complexity of the model and the capability of the computer where the simulation is
running.

Light computational load.

Requisites

In order to run a SIL simulation with veronte autopilot the followings programs and toolbox are required:

MATLAB + Simulink (basic package).
Simulink Real-Time : this blockset contains useful blocks to be used with buses: UDP/RS232/CAN.

Microsoft Visual Studio 2015 (or later) as your MEX compiler. Despite .mex file is already compiled and it
works as a black box, some libraries are necessary.

Moreover, the user can be helped by other toolboxes when implementing their model, such as Aerospace toolbox:
contains sensor blocks, flight instruments and environment blocks.

Software in the Loop (SIL)

2 Chapter 1. Introduction

CHAPTER
TWO

BASIC PACKAGE

Current Folder

Mame
£ gps_time.m
) import_post_flight.m
ﬂ launch_5IL_ex.m
MA400_sensors.cev
ﬂ Mlex.m
& mex_function_example.sh
ﬂ Mex_release.m
ﬂ reset_SIL.m
|Z] Veronte_SD_lmage.img
m Veronte_50_Image_5IL_v4.0.7z
m Veronte_50_Image_5IL_v4.5.7z
ﬂ Veronte_SIL.mexowtd

Basic package files

The basic SIL package consists of the followings files:

L]

gps_time.m: a matlab function which calculates the GPS/GNSS number of weeks.

import_post_flight: a matlab script for loading an external source of inertial data (IMU). It reads this
information from a csv file.

mex_function_example.slx: simulink file. It includes a little example about how using veronte autopilot
with sensor readings.

Mex.m: matlab script for compiling veronte code.
reset_SIL: script which must be executed before running a simulation.
Veronte_SD_image.img: contains the autopilot configuration information.

Veronte_SIL.mexw64 : mex file. It consists of all the embedded veronte code compiled. It works as a
black box. Like Veronte, each mex file has a version. In order to ask for a newer version, contact with sales
team at sales @embention.com.

mailto:sales@embention.com

Software in the Loop (SIL)

4 Chapter 2. Basic Package

CHAPTER
THREE

DEALING WITH PDI FILES

3.1 Before Pipe v.6.6

Veronte_SD_image.img contains all the configuration information. PDI are uploaded exactly the same way that would
be uploaded to a physical autopilot. Once connected to Veronte Pipe, a virtual autopilot will be detected in safe mode.
So the steps to upload/change the PDI configuration are:

1. Run Simulink model: to be able to upload new PDI files the virtual autopilot must appear in pipe. So the SIL
simulation must start in order to send the proper information.

2. Enter autopilot in maintenance mode: then stop the simulation and press run again.

Software in the Loop (SIL)

Veronte Pipe V6.4.57
h I

g OLD CONFIGUR... ¥y +es

Setup
Operation
Export PD
Change config
About
Refresh communications
HIL
Restart Veronte

i pe Termina

Eriter PO Mode
Update

S0 Caird

Enter Maintenance mode

3. Upload a new PDI file: Once the virtual autopilot appears in maintenance mode, press on change configuration.
Select your PDI files and exit from maintenance mode. Stop Simulink.

Maintenance Mode

Maintenance Mode

The Veronte failed to initialize and booted in maintenance mode, this may be due
to a configuration problem or disconnect the Veronte during startup

Select an option to exit compatibility mode

Exit maintenance mode | = | Change setup Update Retry

Change setup

4. Run Simulink with the correct configuration.

6 Chapter 3. Dealing with PDI files

Software in the Loop (SIL)

3.2 After Pipe v.6.6 (Included) - PDI builder

1. Open VeronteLink and create an Ethernet connection (Connecting to Pipe).

2. Run Simulink Model to simulate the autopilot information. Check autopilot information appears in
VeronteLink.

™ veronte Link (v.6.6.11) — O »
= Devices £ Connections
Qe

WVeronte w0 1000 (v.6.6.5)

Veronte Link

3. Open PDI Builder and select your autopilot. Then click on link button (5). PDI Builder Interface allows the
user the following actions : Create or modify PDI files offline (1), upload PDI configuration to the autopilot (2),
open the autopilot configuration to modify it (3), change between maintenance and normal mode (4).

3.2. After Pipe v.6.6 (Included) - PDI builder 7

Software in the Loop (SIL)

(% Verante - O X

1X POI Builder | ¥

B Veronte PDI Builder

Buld PDI to configure your Veronte

@

% Upload PDI ¥ Open Veronte
Upload PDI to the Veronte, this option can't be Open PDI online and work with it
undone

® ®
% Veronte v4.0 1000 (66.5) ~ @ v6.6.3

PDI builder
4. If you want to modify a SD image click on (3).

5. If you want to upload your PDI files, change to Maintenance mode (4). Stop the Simulation and press run again.
Now the autopilot selected has an orange color. Press Upload PDI (2) and select the new configuration. Exit
maintenance mode (4).

8 Chapter 3. Dealing with PDI files

CHAPTER
FOUR

AUTOPILOT SIMULATION

The autopilot is implemented in Simulink with an S-Function. This kind of block takes a C, C++, Fortran or even Matlab
code, and implements it in a block containing a certain number of inputs and outputs. A typical Veronte s-function is
shown below.

Software in the Loop (SIL)

Cantrol Outpuis

Sitatic Pressure 1
Fosman

Static Pressure 2

Static Pressure 3

Velkcies
Dynaenic Pressare.

105 TAS GE
[LLI0})

Uz

[
Angle of Altack | Sideslip

Magnetomatar 1 o indinity

Magresometar 2
Magresometar 3

‘Tangential Acomieraton
Magnetometar 4

Bady Velocilies
GNSS1

Aingular Veiooy
GHNEEZ

Fedative Postion 1 Aingular dcoweration

Rslativw Postion 2 Acosleration NED

GFE Time
Velocies NED

Lidar 1

Lidar 2

Ca-Angies
Lidar 3

A ic Angle
— radyramic Angles

YT Azceieraton Bady

10 BE vars Load factor

D Uvarrs acia_daia
1D Real vars
seia_lenglh

ADCs
ucib,_data

scia_data
scib_langth

scia_length
soic_daka
scity_data

scity_length scic_lengh

N scid_dala
scic_data -

scic_lengh seid_langlh

scid_dala

scid_length
ush_|ength
usb_dala

uvar_values

usk_length

bvar_values

rvar_vakies

10 Chapter 4.

Autopilot Simulation

Software in the Loop (SIL)

Inputs are described in the next table:

S-Function containing the autopilot embedded code

PIN Signal Type Description Form Size Units
1 Input Static Pressure 1 | [pressure_measureriadt;sensor Pa/K
temperature]
2 Input Static Pressure 2 | [pressure_measureraidt;sensor Pa/K
temperature]
3 Input Static Pressure 3 | [pressure_measureradt;sensor Pa/K
temperature]
4 Input Dynamic [pressure_measurer@adt;sensor Pa/K
Pressure temperature]
5 Input IMU 1 [acc_x;acc_y;acc |zdiIr_x;gyr_y;gyr_|zsemidr/ m/s / K
temperature]
6 Input IMU 2 [acc_x;acc_y;acc |zdir_x;gyr_y;gyr_|zsenidr/ m/s / K
temperature]
7 Input IMU 3 [acc_x;acc_y;acc |zdyIr x;gyr_y;gyr_|zseidr m/s / K
temperature]
8 Input Magnetometer 1 | [mag_x;mag_y;maglwlsensor T
temperature]
9 Input Magnetometer 2 | [mag_x;mag_y;maglwlsensor T
temperature]
10 Input Magnetometer 3 | [mag_x;mag_y;magixlsensor T
temperature]
11 Input Magnetometer 4 | [mag_x;mag_y;maglwlsensor T
temperature]
12 Input GNSS 1 [1;3;lon;lat;alt;hr jaddwbt_accu;v_n;v_dpg dO A 7aéenin /
mm/s
13 Input GNSS 2 [1;3;lon;lat;alt;hr jaddwbt_accu;v_n;v_dpg dO A 7acenin /
mm/s
14 Input Relative [1;x_rel;y_rel;z_reljd)xtd_y;d_z;x_ac¢curmy/aouiz]@¢ei]
Position 1
15 Input Relative [1;x_rel;y_rel;z_relid)xtd_y;d_z;x_ac¢cury/aeou;z1@¢el]
Position 2
16 Input GPS Time [week_number;secdtwdk_of_week]
° /s
17 Input Lidar 1 [lidar_measurementlx 1 cm
18 Input Lidar 2 [lidar_measurement]x 1 cm
19 Input Lidar 3 [lidar_measurement]x 1 cm
20 Input Lidar 4 [lidar_measurement]x 1 cm
21 Input Lidar 5 [lidar_measurement]x 1 cm
22 Input ID Bit Var [Var_IDs] 50x1 m
23 Input ID Unsigned | [Var_IDs] 50x1 m
Var
24 Input ID Real Var [Var_IDs] 50x1 m
25 Input ADCs [adc(1-17)] 17x1

continues on next page

11

Software in the Loop (SIL)

Table 1 - continued from previous page

PIN Signal Type Description Form Size Units
26 Input SCIA Data [serial_data] 1024x1
27 Input SCIA Length [serial_length] 1x1
28 Input SCIB Data [serial_data] 1024x1
29 Input SCIB Length [serial_length] Ix1
30 Input SCIC Data [serial_data] 1024x1
31 Input SCIC Length [serial_length] 1x1
32 Input SCID Data [serial_data] 1024x1
33 Input SCID Length [serial_length] 1x1
34 Input USB Data [serial_data] 1024x1
35 Input USB Length [serial_length] 1x1
Outputs are the following:
PIN Signal Type Description Form | Size
1 Output Control Outputs | [control_outputs(1-20)] | 20x1
2 Output Servo Values [servos(1-32)] 32x1
3 Output Position [1at;lon;alt] 3x1 rad / m
4 Output Heights [msl,agl] 2x1 m
5 Output Velocities [longitudinal_v;lateBadl v;velocity(modume3]
6 Output IAS TAS GS [ias,tas,gs] 3x1 m/s
7 Output MSL [ms]_from_gnh;msR2fdom_ISA] m
8 Output Angle of Attack | [angle_of attack;sidbslip] rad
/ Sideslip
9 Output Q_Infinty [dynamic_pressure]lx1 Pa
10 Output TAS RAW [ias_raw] 1x1 m/s
continues on next page
12 Chapter 4. Autopilot Simulation

Software in the Loop (SIL)

Table 2 - continued from previous page

PIN Signal Type Description Form | Size
11 Output Tangential [tangential_accelgration] m/s"2
Acceleration
12 Input Body Velocities | [lon_v;lat_v;verticaBxv] m/s
13 Output Angular [roll_rate;pitch_rate3xdw_rate] rad/s
Velocities
14 Output Angular [acc_z_axis;acc_y_3xik;acc_x_axis] | rad/A2
Acceleration
15 Output Acceleration [acc_north;acc_edst3adc_down] m/s"2
NED
16 Output Velocity NED [v_north;v_east;v| dosin] m/s
)
17 Output Angles [Yaw;Pitch;Roll] | 3x1 rad
)
18 Output Co-Angles [co-Yaw;co- 3x1 rad
Pitch;co-Roll]
19 Output Aerodynamic [heading,flight_patlkank_angle] rad
Angles
20 Output Acceleration [acc_x,acc_y;acc_|zBx1 m/s™2
Body
21 Output Load factor [nx;ny;nz] 3x1
22 Output SCIA Data [serial_data] 1024x1
23 Output SCIA Length [serial_length] Ix1
24 Output SCIB Data [serial_data] 1024x1
25 Output SCIB Length [serial_length] Ix1
26 Output SCIC Data [serial_data] 1024x1
27 Output SCIC Length [serial_length] 1x1
28 Output SCID Data [serial_data] 1024x1
29 Output SCID Length [serial_length] 1x1
30 Output USB Data [serial_data] 1024x1

continues on next page

13

Software in the Loop (SIL)

Table 2 - continued from previous page

PIN Signal Type Description Form | Size

31 Output USB Length [serial_length]) | 1x1

32 Output Unsigned [selected 50x1

Variables variables(1- .

50)]

33 Output Bit Variables [selected 50x1
variables(1- o
50)]

34 Output Real Variables [selected 50x1
variables(1- .
50)]

14 Chapter 4. Autopilot Simulation

CHAPTER
FIVE

SENSORS SIMULATION

5.1 Environment

To simulate properly a model is necessary to take in account that the environment variables changes depending on the
uav position. User can choose between a simple and constant model or modify in each step the environment variables
according to a complex model.

This model should group the atmospherical properties (temperature, pressure, etc.) which change with the altitude (also
you can add an offset), the gravity vector as well as the magnetic field which change according to certain coordinates
on earth. All this information is required by the S-function or is necessary for a good characterization of the sensors
measurements. A basic example is shown below. It is divided into 3 different models (ISA atmosphere model, WGS84
model for gravity vector, and the World Magnetic Model). Each model is included in a user Matlab function whose
arguments are the inputs of the block.

I—blat

StatesLog J T

lon

] 'i <LLA> 'I 4 ‘\ e Pl I Gravity ned
States h fen

Gravity Model (WGS84)

T

air_temp (K),

speed_sound

a
—»h > »{ 1
‘ P AtmosphereBus O
fen pressure Environment
rho
air_density

ISA Model

lat

lon 4 nT
q MagneticField_ned d
»ih fen -

——
.

Magnetic Model

[2.677 0.0148 3.5153]* 14 |- |
MagneticField_ned
Magnetic Field

Environment block
Instead of creating their own functions, user can employ those that are included in Aerospace Toolbox:
1. World Magnetic Model 2015
2. ISA Atmosphere Model
3. WGS84 Gravity Model

15

Software in the Loop (SIL)

h {m) Magnetic Field (nT)

Horizontal Intensity (nT)

H (deg)
Ii nation (deg) @
| (deg)

Inclination (deqg)

Wl W W W

Decimal Year Total Intensity (nT)

WMM2020 (2020-2025)

~ T(K)
at aim/s)
A) 5 P (Pa)
ISA o (kgim®)
WGS584
1 g
Auth(m) g (mis®) p
(Taylor Saries)

Aerospace blockset functions

The input of this block is the state (in the previous step) of your vehicule. You have to compute this state from a
dynamic model whose inputs are the values of the actuators (outputs of the autopilot). These variables (position,
velocity, acceleration, etc.) can be group in a vector or a bus. If a vector is chosen then you have to pick the desired
variables with a demux block or a selector block. In the case of a bus, the information is separated with a bus selector
block.

Bus selector block

16 Chapter 5. Sensors simulation

Software in the Loop (SIL)

For the environment block the only variables required are these shown in the picture below:

Block Parameters: Bus Selector x
BusSelector

This block accepts a bus as input which can be created from a Bus Creator, Bus Selector or a block that defines its output
using a bus object. The left listbox shows the signals in the input bus. Use the Select button to select the output signals.
The right listbox shows the selections. Use the Up, Down, or Remove button to recrder the selections. Check 'Output as
virtual bus' to output a single bus signal.

Parameters

Filter by name |) Find Selected signals Up

S
Signals in the bus "" > Select>> | JLLA Down

V_body v
Omega_body
Euler
Accel_body
dOmega_body
V_ned
¥ _ned

J
DCM_be

Refresh Remove

(] output as virtual bus

?] Cancel Help Apply

Environment input

5.2 Static Pressure

Static Pressure inputs in S-function simulate the real ones in Veronte. The information required consists of raw
measurements and the sensor device temperature. The S-function contains 3 ports as the autopilot hardware. Then
this information should be used according to the static pressure sensor selected in the configuration.

Normally the same information should feed the 3 ports, althougth you can simulate that one of them is not working
properly.

Some examples of how implement the static pressure are shown below:

5.2. Static Pressure 17

Software in the Loop (SIL)

5.2.1 Constant value

Only a block constant for raw pressure and another for temperature. Also it is possible to add some white noise.

Pressure Area

+ »
+

White Noise stp0
20 20 stp1
Static Pressure Temperature
stp2
Constant pressure
5.2.2 Step

If you want to simulate a leap in pressure measurements you can add a step to the previous configuration. In the example
below a difference in 100 meters is represented.

Block Parameters: Step x
Step &
Output a step.

Pressure Area
Main Signal Attributes

Step time:
[1
Initial value: 1|'1-|-r'1.[. Stpo

[101325]

White Noise stp1

Final value:
| 1.001294386910694e+05

Sample time: 20 stp 2
[0

—
Interpret vector parameters as 1-D Step Temperature qinf

Enable zero-crossing detection

£ >
imuQ

0| OK || Cancel || Help || Apply |

imu1

Step input in pressure

18 Chapter 5. Sensors simulation

Software in the Loop (SIL)

5.2.3 Variable pressure

If you want a more accurate model which modify this value according to vehicle position you need to enter pressure
information from the environment block. This block is necessary when user is simulating movement because pressure
is an input to the fusion algortihms (Ex.:Kalman filter). You had to select the raw measurement and the temperature

from the bus that cointains all the atmosphere properties.

Block Parameters: Bus Selector x
BusSelector

This block accepts a bus as input which can be created from a Bus Creator, Bus Selector or a block that defines its output
using a bus object. The left listbox shows the signals in the input bus. Use the Select button to select the output signals.
The right listbox shows the selections. Use the Up, Down, or Remove button to reorder the selections. Check 'Output as

virtual bus' to output a single bus signal.

Parameters
|F'I'_c" hy name |) Find Selected signals Up
Signals in the bus Select>x> AtmosphereBus.pressure Down
; - ; AtmosphereBus.air_temp
‘Gravity_ned Refresh P—
v AtmosphereBus
air_temp
speed_sound
pressure
air_density
MagneticField_ned
[] Output as virtual bus

.‘}- Cancel Help Apply

Selecting environment variables

Finally, the complete group results as the image below. The temperature is compute as the ambient temperature plus

I

an offset.

<pressure>

Environment
Press_temp

<air_temp>

60 | Temperature Offset

Variable pressure

5.2. Static Pressure 19

Software in the Loop (SIL)

5.3 Dynamic Pressure

The dynamic or velocity pressure input needs the static pressure raw measurement and the flow velocity. In our example
the autopilot is supposed to be mounted in the X-axis in body frame. Therefore, from velocity in NED frames we apply
a rotation to obtain velocity in body frames and then we pick the first component of the vector. The value of density is
taken from the environment model.

Matrix g

<DCM_be> :
Multiply | v body

States <V _ned>

oo

x /
r

=

(%]

glnfinity

<air_density>

<air_temp> \r

60 | Temperature Offset

h 4
D
A4

Environment

Dynamic Pressure subsystem

5.4 Inertial Measurement Unit

This device measures and informs about velocity, attitude and forces combining readings of accelerometers and
gyroscopes. Veronte needs to receive 7 measurements: accelerometer in 3 axes, gyroscopes in 3 axes and device
temperature. In the S-function there are 3 inputs for IMUs. The first one is the main unit and the second one the
secondary unit. These units are mounted differently in the autopilot (is not aliganed with autopilot), so user has to
keep in mind the rotation matrix which autopilot is using. This matrix is pre-configurated in each PDI and cannot be
changed.

01 0
Rmm’n =110 0
00 -1

0 0 -1
Rr:.:'wmiﬂry =11 0 0
0 -1 0

Veronte IMU rotation matrices

There are some ways to implement a suitable group of readings for a IMU. You can create a vector with constant values.
Another option could be to store some data (i.e. from a previous flight), load in the matlab workspace, and then send
this values to Simulink using the block name as From workspace.

20 Chapter 5. Sensors simulation

Software in the Loop (SIL)

qinf
simin_IMUD
imud
simin_IkLI1
imu

simin_IMUQ |— | 3

IMU data from workspace

This blocks allows the user to read from an array of values (and interpolate when there are no information in this step).
Moreover, user can choose between several options in case data vector is over. For example, it is possible to extrapolate

the information or restart the list of values.

5.4. Inertial Measurement Unit

21

Software in the Loop (SIL)

Block Parameters: From Workspace .

From Workspace

Read data values specified in timeseries, matrix, or structure format from the
MATLAB workspace, model workspace, or mask workspace.

MATLAB timeseries format may be used for any data type, complexity, or fixed
dimensions. To load data for a bus signal, use a MATLAB structure that
matches the bus hierarchy and specify timeseries for each leaf signal.

For matrix formats, each row of the matrix has a time stamp in the first
column and a vector containing the corresponding data sample in the
subsequent column(s).

For structure format, use the following kind of structure:
var.time=[TimeValues]
var.signals.values=[DataValues]
var.signals.dimensions=[DimValues]

Parameters

Data:
simin_IMUO

Output data type: | Inherit: auto w| >>

Sample time (-1 for inherited):
|0.001

Interpolate data
Enable zero-crossing detection

Form output after final data value by: |Holding final value

Setting to zero
‘} Holding final value
Cyclic repetition

Methods applied when the final data value is reached

Another method is reading this values from Environment (gravity vector in NED, and air temperature), and from states
(acceleration in body axes, angular velocity, angurlar acceleration, and the rotation matrix from NED to body). This
values are entered to a Matlab function where IMU behaviour is simulated and the measurements are computed).
Finally, user have to cross the measurements or apply a rotation matrix according to IMU sensor orientation. In the
example below, this data is feeding the first port (in the PDI configuration this IMU is selected). Therefore, user has to
cross the signals to fit the rotation matrix.

22 Chapter 5. Sensors simulation

Software in the Loop (SIL)

iFi::-::r:-:J Wing UAY x @

0 - Integer var sensor 1

* Communications Accelerometer

1 - Integer var sensor 2

* Payload Range 16g -
2 - Decimal var sensor 1
¥ Sensors
3 - Decimal var sensor 2 MNormal || Pro
¥ Accelerometer
Configuration L) Antialiasing filter bandwith | 50 Hz -
5-5 dary Accel t
Altimeter Sconcary Scceleromes v | Enable digital filter sensor
rcawrguny ¥ @ = Q o @M o Q &
o A 0 - Integer var sensor 1
P Communications Gyroscope
1 - Integer var sensor 2
P Payload
2 - Decimal var sensor 1 Range 300°/s =
¥ Sensors
3 - Decimal var sensor 2
¥ Accelerometer
® 4 - Main G Pro
Cenfiguration ain Lyroscope]
. 5 - Secondary Gyroscope Enable low pass filter
Altimeter .
Low pass filter
» GHSS

¥ Gyroscope
Configuration

12C Devices

Digital Filter

PDI configuration for main IMU

The complete subgroup results as follows:

IMU crossed due to
internal rotation
<Accel_body> e
ceel_body »lw Acc_meas:
<Omega_body> Mdw_dt <
fen
States <dOmega_body> GG Gyr_meas
ocation
3 (1)
<DCM_be> MU imuraw
Matrix
- Multiply
<Gravity _ned>
Environment
<air_femp=>
»()
ﬁ Internal Temp Offset
IMU subgroup

Instead of use a user function, Aerospace blockset include some functions for IMU simulation:

5.4. Inertial Measurement Unit 23

Software in the Loop (SIL)

ﬂ A_b

b V.4
IE
o
=4

wW_meas D

Three-axis Inertial
Measurement Unit

IMU block from Aerospace Toolbox

5.5 Magnetometer

The magnetometer block is simply a rotated environment magnetic field where the temperature of sensor has been
added (same as before OAT + 60). S-function has 4 port for magnetometer readings (the internal one and 3 external -
HMR2300, LIS3MDL, HSCDTDO08A-). Also you can simulate another magnetometer and send the information by a
serial port. Just as IMUs, user must have in mind how the magnetometer is mounted (rotation matrix). Therefore, the
signal could be crossed as in the example below. You can use a Matrix multiplication block, or if it is simple, you can
change directly the orientation with a selector crossing block.

24 Chapter 5. Sensors simulation

Software in the Loop (SIL)

z § <DCM_be> Matrix
States Multiply
1) ,! <MagneticField_ned>
Environment

!—>
= o
’—> C—=J MagneticField
— .

<air_temp>

5.6 GNSS

+
AN

Temperature Offset

Magnetometer

GNSS receiver ports (there are 2 ports -GNSS1 and GNSS2-) expect to receive an array with the following information:

1.
2.

10.
11.

o ® N kW

Fix status
Fix type
e 0: no fix
* 1: dead reckoning only
e 2: 2D-fix
e 3: 3D-fix
4: GNSS + dead reckoning fix

Latitude

Longitude

Altitude

Horizontal accuracy
Vertical accuracy
North Velocity

East velocity

Down Velocity

Speed Accuracy

5.6. GNSS

25

Software in the Loop (SIL)

fix_type

<LLA>

States H

<V_ned>

(1
‘GN8SSolution

m/s to mm/s (Il1)

sace

GNSS array

The angle inputs are in degrees* 1077, and the distance inputs in millimeters. The accuracy values are equivalent to the
square root of the square error. These values are supposed to be computed by the GPS device and are used in the EFK
for GNSS solution. However, in the configuration files user can choose between these ones or values set by user.

26 Chapter 5. Sensors simulation

Software in the Loop (SIL)

OB A

GNS5S Compass
GPS External

Use receiver value
NTRIP Square error

» Communications 3 Configuration | SBAS | Message rate | EKF Navigation | Advanced
» Payload ' | Enable GMS5 in EKF Navigation
¥ Sansars Use position measures in the attitude calculation
b Accelerometer Use speed measures in attitude calculation
Altimeter
v GNSS Square error on strong acceleration for position | 20.0 m?® |
GNSS 1 Configuratior Square error on strong acceleration for speed | 200 {m/ -.'-::'-I
GIN5S 2 Configuratior Acceleration | 0.0 u _'|

Duration of effect (disappears linearly with time) | 2.5 5

if present
P Gyroscope -
12C Devices GNSS Morth Position | | |
¥ Magnetometer GNSS East Positian | | Accuracy
]) Values values
Configuration GNSS Down Position by | | v as input
. L
P Ohbstacle detection GNSS North Velocity USET | I v|| of the 5-
[function
s GNSS East Velocity | | v
» RPM
V GNSS Down Velocity | I v)
% b -
Add device - ek | 0.0 E
GNSS variances

RTK Example Block (Relative Position)

To enable RTK feature user has to modify the configuration (more information can be found in Veronte Autopilot
Manual), and include more inputs by S-function. This input is named as Relative Position, and it requires an array of
10 elements.

1. Status : 0 is Data invalid and 1 is Data valid

RelPosN : North component of relative position vector (cm)
RelPosE : East component of relative position vector (cm)
relPosD : Down component of relative position vector (cm)
relPosHPN : High precision North component (mm)
relPosHPE : High precision East component (mm)

relPosHPD : High precision Down component (mm)

® Nk wN

accN : Accuracy of relative position North component (mm)
9. accE : Accuracy of relative position East component (mm)
10. aceD : Accuracy of relative position DOwn component (mm)

High precision components must be in range -99 to 99 millimeters. The full component of the relative position vector
(in cm) is given by the addition of the 2 components. An example of this subgroup is shown below:

5.6. GNSS 27

Software in the Loop (SIL)

1

rel_valid

30

A 4

rned_x

40

cm

A 4

rned_y

50

cm

A 4

med_z

20

cm

A 4

rned_dmm_x

10

0.1mm

A 4

rned_dmm_y

0.1mm

A 4

rned_dmm_z

2500

0.1mm

A 4

®@ Q0 @060 6 6

acc_x

1500

0.1mm

A 4

©)

acc_y

3500

0.1mm

A 4

@

acc_z

0.1mm

A4

RTK inputs

5.7 Analog to Digital Converter Port

Veronte is equipped with 5 external ADC channel (linked to 5 pins) and 12 internal channels. Therefore, in total, user
has to create an array of 17 elements. This values are stored as internal variables in Veronte, and you can use them in
certain user programs. The order of this array is :Internal ADC Channel 1, External ADC Channel 1-5, Internal ADC

2-12.

In the picture below an example is shown (with the first external ADC pin).

28

Chapter 5. Sensors simulation

Software in the Loop (SIL)

o] Int. Ch. 1 N
[+] Ext. Ch. 1 i
[+] Ext. Ch. 2 A
[=] Ext. Ch. 3 A
[+] Ext. Ch. 4 A
[+] Ext. Ch. 5 A
[+] Int. Ch. 2 A
[+] Int. Ch. 3 i
[=] Int. Ch. 4 A
[+] Int. Ch. 5 A
[+] Int. Ch. 6 A
e Int. Ch. 7 A
= Int. Ch. 8 i
o] Int. Ch. 9 A
Int. Ch. 10
w2 N
g Int. Ch. 11 A
= Int. Ch. 12

D

+
B
m)}
s
>

8

ADC 1 H Integer to Real

ry @ Programs

~xr
2
-

] * Pitching

. rustin
|7 e 2.4414062E-4

N
L/

% * Rolling

<

3D Table

N

| User Variable 02 (Real - 32
 bits)

ADC readings

5.7. Analog to Digital Converter Port

29

Software in the Loop (SIL)

5.8 Serial communications

Veronte can manage input and output serial ports (more information in Veronte Autopilot Manuals), and we can simulate
these as inputs and outputs on the S-function. An easy way to create serial frames (data in length wires) is by using the
simulink UDP block. Therefore, the data coming in to veronte should be sent though UDP (if this approach is taken):

I hl

Receive UDP packets
Using host-target connection
From: 127.0.0.1

L £l

UDP Block
The ports that Veronte includes and that are represented in the S-function are the following:
* USB : USB port
SCIA : 4G connection
SCIB : Radio
SCIC : Serial Port 485
e SCID : Serial Port 232

5.8.1 EXAMPLE: Sending a rs-232 message

Datap——

Length ——

In the example below we have sent a constant value as a rs-232 message. Firstly, you have to create the message as a bit
array with Byte Pack Block. Then, it is neccesary to receive this information as UDP Packets to corresponding port
(in this case 16003). Width block is used to compute data length. Then this UDP packet is send to S-function.

Using host-target connection
From: 127.0.0.1

scib_data
»Data gongupp packels scib_length
Using host-target connection -
8 To: 127.0.0.1:16003
35 > p Length)
scic_data
Byte Pack

scic_length
Data »
Receive UDP packets scid_data "

Length

Sending a rs-232 message in Simulink

Finally, we have to configure a custom message to store this value in a user variable as follows:

scid_length "

30 Chapter 5. Sensors simulation

Software in the Loop (SIL)

umer] RS custom message 1

Checksum Matcher Skip Variable ASCIl Position Ocoupancy
|::1,;I @ Little endian Time out | 1.0 | Delay | 0.0 =|| BitID:0 0 0 0 1 0 0
|EE"I @ 0*0 User Variable 10 (Real - 32 bits)
Variabl - _ Decimal Encode/Decod Encode Decode
anaple Lomprassicn ‘ecimals ncoce/Uecods Min Max Min Max
User Variabl... Uncompress - 64 bits - | | | 1 | | | | | | || |

Custom message

Sensors measurements are the inputs of the mex blocks (embedded code). To perform a correct simulation user have
to set the inputs with the same scheme as Veronte reads them. Each sensor have a certain vector/array which usually
includes raw data in one or more coordinates, the sensor temperatures, variances or square errors. User can set constant
values for this variables or compute a complex environment model depending on the state of the plaform (position,
velocity, etc.). This section aims to ilustrate how to implement the inputs described in the previous section. The
structures that are shown here are orientative and, of course, can be adapted by the user:

Static Pressure Sensor 1

Dynamic Pressure

T
States
o g
Environment MU 1
1
Sensors

I_Tif__j

Magnetometer 1

GNSS1

Sensors inputs

In the previous example the same type readings (static pressure, magnetic field, etc.) field all the port of each kind of
sensor (Then the user can select the correct one in the configuration).

5.8. Serial communications 31

Software in the Loop (SIL)

32 Chapter 5. Sensors simulation

CHAPTER
SIX

MONITORING TELEMETRY

In the S-function there are three inputs specially dedicated to select custom temeletry (pin 22 for Bit variables, pin 23
for integers and pin 24 for reals). Each of this variables have an ID. The input structure of those is fixed and must be
of size 50. User have to enter the corresponding Ids of the variables he is aiming to monitor. In the following example
some BIT variables are requested:

7]

system_ok

[70]

freq_ok

7]

pbit1

[50]

sensors_ok

»(1D
Bvar_IDs

17
power a

100
gps_fix

B

12c_devs

Telemetry ID Mux

The ID of each variable in Veronte can be easily found in Veronte Pipe by adding a new workspace widget or in the
Program window by adding a specific block (Read Bit, Read Integer or Read Real). The ID is labelled right before

33

Software in the Loop (SIL)

variable name.

Select variable

Select var Filter =

0 - 1AS (Indicated Airspeed)
O Unit m/s

1 - TAS (True Airspeed)
& Unit: m/s

2 - G5 (Ground Speed)
O Unit: m/s

R
R
R
R
R
R
R

3 - Heading

@ Unit: rad [-m,m]

4 - Flight Path Angle
O Unit: rad [-n,m]

5 - Bank

O Unit: rad [-m,m]

b - Yaw

@ Unit: rad [-m,m]

7 - Pitch

O Unit: rad [-n,m]

Cancel Accept

ID Indicator

Finally, to monitor or see their values, you can add a scope connected to the matching output (pin 32, 33 or 34), or use
a demux block to separate the array in single values and connect them with a Display block.

]

Bwvars

P

Lvars

Rwvars

34

Chapter 6. Monitoring Telemetry

Software in the Loop (SIL)

Display variables

35

Software in the Loop (SIL)

36 Chapter 6. Monitoring Telemetry

CHAPTER
SEVEN

1. Add a UDP serial communication block and connect it to USB data and length.

CONNECTING SIL & VERONTE PIPE

2. Add a second UDP serial communication block and connect it to the USB output of veronte.

Data
Receive UDP packets A usb data
Using host-target connection -
From: 127.0.0.1
Length
usb_length

3. Configure your destination port.

UDP Blocks

usb_data

usb_length

Data
Send UDP packets
Using host-target connection
To: 127.0.0.1:56778
Length

37

Software in the Loop (SIL)

Block Parameters: UDP Send 4
UDP Send

Send data over UDP network to a remote device. Send to
255.255.255.255 for broadcast.

'Local IP address' applies only when the block executes on a target
computer.

Parameters
Local IP address:
Use host-target connection -

Local port: |56777 [E

To IP address: |127.0.0.1 |

To port: |56778 IE

Sample time (-1 for inherited): |-1 ‘ :

Cancel Help Apply

Destination UDP Port

4. Set an ethernet network in Preferences as shown using the destination port selected before. Check that Local IP
Address and Local Subnet Mask have non-zero values.

38 Chapter 7. Connecting SIL & Veronte Pipe

Software in the Loop (SIL)

i.F‘r-:—f-:-rr:ru:-:--_: 'a' . U y “

TCP Server Send telemetry
Enable Enable
Part 3000 Host | 127.0.0.1 Port | 3000 | Frequency [100 Hz|
Autodiscover COMs
Ethemet
Multicast IP
Serial COM
127.0.0.1
Port
56775

Metwork Interface

Realtek PCle GbE Family Controller -

Local IP Address 192.168.0.124

Local Subnet Mask 255.255.252.0

Add -

Destination UDP Port (Pipe)

7.1 Pipe v6.6 and higher

In case of using VeronteLink (comunication with Pipe v6.6 or higher) you have to configure the connections tab
selecting UPD as connection type and set the configuration as in fourth step.

7.1. Pipe v6.6 and higher 39

Software in the Loop (SIL)

Veronte Link (v.B.8.71

= Devices & Connections

+ M £ =% Autodiscover
= 230.001

Connection

Configuration

Connection type: | UDP

UDP Configuration
Address 239.0.0.1

Port 12345

TTL
Advanced

v | Reconnect time:]

w | Disconnect time: G

Destination UDP Port (Veronte Link)

40 Chapter 7. Connecting SIL & Veronte Pipe

CHAPTER
EIGHT

8.1

SIMULATION

Complete Simulation

After setting the main blocks, the result should look like this:

P Actuators

Visualization

Sensors (Dynamics) ‘ 5
States A 4
Sensors UERONTE
E | Semos | LyutoriLoTs States
Sensors
EMEENTION Airframe

Veronte Autopilot

Environment (Variable)

Environment

i States

Environment

Complete Setup Example

The main systems are:

Veronte Autopilot: It contains our flight control software. It basically consists of the S-function and their link
with the rest of the blocks (sensors, outputs, etc.)

Airframe: a model of the flight dynamics.The inputs of this systems are the output of the Veronte autopilot
(nominal value for servos). For example, for a quacopter, the input of this block consists of the values of the
PWM signal (one for each motor). Then with this value the airframe system updates the platform’s state. The
state vector is used for predict the new environment conditions and the sensors readings.

Environment: a model of the atmosphere, magnetic field, WGS84...
Sensors: it contains individual blocks or subgroup of all the sensors that veronte needs as input.

Visualization: It contains Display blocks, scopes, flight instruments. . .

41

Software in the Loop (SIL)

The time step should be set to 0.0002 as shown in the next figure in order to guarantee a good GNC/Adquisition
frequency:

& Configuration Parameters: /Configuration [Active) - m} X
Solver Simulation time ~

Data Import/Export

Math and Data Types
Diagnostics

Hardware Implementation

Start time: |0 Stop time: | TFinal

v

Solver selection

Model Referencing Type: |Variable-step - | Solver: |auto (Automatic solver selection) -
Simulation Target
¥ Code Generation ¥ Solver details
» Coverage
*» HDL Code Generation Max step size: (0.0002 Relative tolerance: |1e-3
Min step size: |auto Absolute tolerance: |auto
Initial step size: |auto Auto scale absolute tolerance
Shape preservation: Disable All A

Number of consecutive min steps: |1

Zero-crossing opfions
Zero-crossing control: |Use local settings ~ | Algorithm: Nonadaptive -
Time tolerance 10*128%eps Signal threshold: aut

Number of consecutive zero crossings: | 1000

Tasking and sample time options

Automatically handle rate transition for data transfer

Higher priority value indicates higher task priority

OK Cancel Help Apply

Time step settings

8.2 Quadcopter Example

In this section a basic example about how make an airframe model is shown.

In the picture below this is represented. Once Veronte receives all the sensor information, the autopilot computes the
guidance and control algorithms. As a result, the autopilot computes the necessary value for servos. The inputs of the
system are the values of the PWM, it means, servos output (pin 2). User also can use the control output value directly.
These values have to be entered in a user function that computes the airframe model. However, these values are the
current ones. To perform a properly simulation the input values must be those from the previous step. It can be solved
with the memory block (stored previous step input).

42 Chapter 8. Simulation

Software in the Loop (SIL)

Position on Earth

States

PWhs

A

dOmega_b

»{ Accel b

Multi-rotor rigid body model Bus setup

Complete Setup Example

In this example, the value of PWM is transformed to RPM. For this, it is necessary to implement an engine/rotor model,
for example, by using a Transfer function (power unit model).

1
z+ 05

Transfer Fcn Discrete
Transfer Fcn

Transfer function

Once the RPM are calculated, the aerodynamic forces and moments can be computed with a properly model. Then this
forces are entered to the Rigid Body model to integrate the vehicule state.

8.2. Quadcopter Example 43

Software in the Loop (SIL)

Input: PWM signal{value:0~1)

b double ™ DesiredRPM PropellerRPM
inPWMs ‘
Gain Cast To Double

Power unit model

i»{ MotorRPM xe
—» RPM
Product ve
Mb tao Ve
. > par ———»(6)

X » mg AngRateB
-C- J vb »(5)
4 moment of inertia Vb
g fen - p DCM ()
» DCM DCM _be
JRP Euler >3)
Fb f AngEuler
Ab »{ 8)
» Vb Ab
Ly mass Al NGB
AnghccB
Propeller Model Rigid body model

Airframe model

A complete simulation is composed by many systems or blocks. In this manual the sensor the environment and the
autopilot subsystem have been already introduced. All theses blocks must be combined with others such as Airframe
block (a brief example will be included in this manual).

e

D LHERONTE D
INPUTS EOToELILETHE OUTPUTS

a

EMBENTIQOMN

Embedded Code

¥

Veronte autopilot

This manual contains the information required for the user to run a Software in the loop simulation using Matlab and
Simulink. This document includes a basic description of how our autopilot works with Simulink, and some examples
to allow the user to create a complete model from scratch.

44 Chapter 8. Simulation

Software in the Loop (SIL)

Version UM.306.6.2.38
Date 2023-01-30

8.2. Quadcopter Example

45

	Introduction
	Requisites

	Basic Package
	Dealing with PDI files
	Before Pipe v.6.6
	After Pipe v.6.6 (Included) - PDI builder

	Autopilot Simulation
	Sensors simulation
	Environment
	Static Pressure
	Constant value
	Step
	Variable pressure

	Dynamic Pressure
	Inertial Measurement Unit
	Magnetometer
	GNSS
	Analog to Digital Converter Port
	Serial communications
	EXAMPLE: Sending a rs-232 message

	Monitoring Telemetry
	Connecting SIL & Veronte Pipe
	Pipe v6.6 and higher

	Simulation
	Complete Simulation
	Quadcopter Example

