SIL Simulator
Release 6.12.92

Embention

2024-04-09

CONTENTS

Introduction 3
1.1 Veronte Console e e e e e e e e 4
1.2 Veronte S-function e e e e e e 4
Quick Start 5
2.1 Download oL e e e e 5
2.2 Requirements e e e e e 6
Configuration 9
3.1 dll_config.vefgfile L e 9
3.2 Step by step - Veronte S-Functiono e 10
33 Stepbystep-Veronte Console e e 14
Simulink workspace 17
4.1 Inputs e 19
42 OUIPULS & . v o o e 20
43 SENSOTS . o v v vt e e e e e e e e e e e e 21
43.1 Environment e e e e e e e e e e e e e 22

432 Pressure SENSOTS . . v v v v v v v v e 24
4.3.2.1 StaticPressure e e e e 24

43.22 DynamicPressure L e 25

433 IMU . . . 27

434 Magnetometer v v it e 34

4.3.5 GNSS .« e 35

43.6 ADC e 39

4.3.7 Serial Communications e e e e e e e e e e e e e 40

4.4 TelemMetrY . . . v v o e 41
4.5 Simulation L. e e e e e e 43
Troubleshooting 45
5.1 dll_config.vefg file not working L e e e e e 45
5.2 LOZS v e e e e e e e 45
5.3 License ID warning in Veronte Ops e 45
5.4 Loaded with errors in Veronte Link 46
5.5 Running Veronte Console e e e e 47
Acronyms and Definitions 49

SIL Simulator, Release 6.12.92

LUERONTE
Sl

SIL Simulator, or Software-in-the-Loop Simulator, is an advanced simulation system designed to replicate the
functionality of an autopilot in a virtual environment.

Warning: Select your version before reading any user manual for software. The following image shows where to
select a version from any Embention user manual.

& veroote Link x4+ v - o X%
€ C @& manualsembention.cam/veronte link/en/6.12 9jindex himi oo
EMBENTION

MANDALS

@ Home Version-6129 + languages-EN + Download » (!

Docs » Veronte Link Quick Start

Quick Start
Operation Veronte Link

Integration examples

Troubleshooting

o, | HERONTE
@D uIn<

Veronte Link intsiconnects multiple control stations and autopilot units, so they can operate simultaneously.

CONTENTS

SIL Simulator, Release 6.12.92

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

SIL Simulator software acts as a ‘virtual Autopilot 1x’, providing a realistic simulation experience for testing and
development purposes.

The essence of SIL Simulator lies in its capacity to replicate Autopilot 1x behavior through the utilization of a dynamic-
link library (DLL) embedded with Veronte Autopilot 1x code, Veronte DLL.

This code can simulate the physical autopilot firmware through two primary interfaces, Veronte Console or Simulink
workspace (by means of the Veronte S-function block). To suit customer preferences, Veronte DLL could also be run
with other languages, such as Python. However, this integration must be undertaken independently by clients.

- A =]

Veronte Console Veronte S-function

OR

Veronte DLL Veronte DLL

Fig. 1: SIL Simulator interfaces

Error: Running Veronte DLL with Veronte Console and Simulink workspace simuntaneaously will interfere
with the functioning of the system, causing the simulation not to work.

SIL Simulator, Release 6.12.92

1.1 Veronte Console

Veronte Console is a Windows executable that allows to simulate the ‘virtual Autopilot 1x’ (VeronteDLL).

Through this simulation option, users can employ Veronte applications with the simulated autopilot. However, at
present, the main difference with Veronte S-function is that inputs cannot be emulated in this simulation option.

1.2 Veronte S-function

Veronte S-function consists of a Simulink block which can be integrated in a Simulink model to virtually simulate
the behavior of Veronte Autopilot 1x in a customized environment.

In the workspace of Simulink, users can design the dynamic model of their own aircraft, the desired input signals of
the system, and therefore, analyse the response of the provided virtual autopilot in a emulated environment.

Note: Signal conditioning and calculation depend on the aircraft to simulate and the purpose of the simulation. Users
must program their own Simulink workspace accordingly to these considerations.

SIL has several advantages when compared to a HIL Simulator setup:
* Complete simulations without any hardware.

* Possibility to use the user’s vehicle model: users can define the dynamics of their vehicle (with the desired
complexity) without the need to use external programs, such as Plane Maker.

* Possibility to simulate different types of sensors even if they are not installed in Veronte Autopilot 1x. All that
is needed is the raw sensor reading.

 All results can be exported/visualized to MATLAB workspace simultaneously.

* Veronte Autopilot 1x blocks run faster than real-time, allowing the user to execute a series of simulations in a
short time. This feature depends on the complexity of the model and the capability of the computer where the
simulation is running.

4 Chapter 1. Introduction

https://manuals.embention.com/hil-simulator/en/6.12.20/index.html

CHAPTER
TWO

QUICK START

This section sums up the basic requirements to start using SIL Simulator, both with Veronte Console and with
Simulink blocks.

Note: For further details about SIL Simulator configuration, please proceed to the subsequent section Configuration.

2.1 Download

Once SIL package has been purchased, a GitHub release should be created for the customer with the application.
* Download the SIL zip file from its corresponding release and decompress it in the desired location.

e Download Veronte Autopilot 1x SD image downloadable from the Drive folder linked in the
Veronte_SD_Image_SIL.zip.gdrive file and decompress it in the desired location.

SIL Simulator, Release 6.12.92

I = | Matlab — O b
Home Share WView o

T | g Cut = x @ %New item = \i-l & open ~ BaSelect all
L‘—-I —-J w.| Copy path « ! -TJ Easy access = Edit Select none
Pin to Quick Copy Paste Move Copy Delete Rename Mew Properties
access #| Paste shortcut to- tow - folder - & History EF‘Imrert selection
Clipboard Organize MNew Open Select
« v 5 SIL s Matlab trJ) Search Matlab o
. ~
~ [ThisPC ~ Name Date modified
B 3D Objects code
[Desktop %64
|=| Documents | | DataDictionaryVeronte.sldd
; Downloads gps_time.m
J" Music import_post_flight.m
= Pictures launch_SIL_ex.m

M400_sensors.csv

B Videos
. Local Disk ()
o Google Drive (Z:)

Mex.m
|| mex_function_example.shx

|| mex_function_example.shcc

= Network Mex_release.m
#| readme.md
reset SiL.m
.. Veronte SD_Image_SIL.zip.gdrive 10/01/2024 19:27
|| Veronte_SIL.mexwd 10/01/2024 19:37
v < >

15items 1item selected 23 bytes -

Fig. 1: SIL folder - Drive file

Note: For further information about how to access to the release and download the software, read the Releases section
of the Joint Collaboration Framework manual.

2.2 Requirements

* Veronte Software Package:
— Veronte Link (v6.12.X): Used to connect Autopilot 1x to the other tools.
— 1x PDI Builder (v6.12.X): To build and load PDIs.

— Veronte Ops (v6.12): Operations interface.

* SIL with Simulink: To perform a SIL simulation using Simulink with the Veronte Autopilot 1x, the following
programs and toolboxes are required in addition to the requirements described above:

— MATLAB + Simulink (basic package).
— The user can be helped by other simulink toolboxes when implementing their model:
+ Simulink Real-Time: This blockset contains useful blocks to be used with buses: UDP/RS232/CAN.

% Aerospace toolbox: Contains sensor blocks, flight instruments and environment blocks.

6 Chapter 2. Quick Start

https://manuals.embention.com/joint-collaboration-framework/en/0.1/releases/index.html

SIL Simulator, Release 6.12.92

— Microsoft Visual Studio 2015 (or later) as your MEX compiler. Despite .mex file is already compiled and
it works as a black box, some libraries are necessary.

1. First, get Microsoft Visual Studio from here.

2. Follow the onscreen steps, please make sure that C++ tools are selected (they may appear as an optional
item).

3. When finished, select it as your default MEX compiler by typing in MATLAB console mex -setup
C++.

2.2. Requirements 7

https://visualstudio.microsoft.com/

SIL Simulator, Release 6.12.92

8 Chapter 2. Quick Start

CHAPTER
THREE

CONFIGURATION

This section details a step by step explanation of how to configure SIL Simulator.

3.1 dll_config.vcfg file

This file sets the simulation configuration, and it is common for both simulation options: Veronte Console and
Veronte S-Function for Simulink.

dl1_config.vcfgfile indicates the location of the Veronte DLL and Veronte image and establishes some parameters
of the simulation, as the hardware version to simulate or the ID of the virtual autopilot.

This is an example of dll_config:

Path to DLL
\dll .\x64\VeronteDLL.dll

Path to image file (absolute or relative to dll)
\image .\..\Veronte_SD_Image.img

Hardware version
\hwversion 4.8

Autopilot ID
\idversion 2

Before configuring SIL Simulator, these are aspects of the d11_config.vcfg file to consider for a proper functioning
of the simulation:

* Location of dll_config.vcfg file: It must be placed in the same path as the executable code to run. Depending
on the simulation option to use, it must be placed in:

— VeronteConsole. exe path if using Veronte Console

— .slx path if using Veronte S-function for Simulink

Note: .slx files store Simulink model information in a reduced size. As previously explained, users must
program their own Simulink workspace according to their aircraft and simulation goal, but an example is
provided in the SIL folder (mex_function_example.slx).

* DLL and image files paths: It is crucial to precisely indicate the paths of DLL and image files.

SIL Simulator, Release 6.12.92

Hardware version parameter

\hwversion version

Users can decide which hardware version to simulate:

4.0 | hwversion 4.0
4.5 | hwversion 4.5
4.8 | hwversion 4.8

ID version parameter

\idversion index

Available Autopilot IDs vary depending on the selected hardware version. The index to be entered will be indicated
by the following table:

idversion | O 1 2 3 4 5

hw v4.0 1008 | 1025 | 1128 | 1373 | 1559 | 1654
hw v4.5 1805 | 1862 | 1871 | 2375 | 2680 | 2821
hw v4.8 4041 | 4064 | 4065 | 4144 | 4146 | 4213

3.2 Step by step - Veronte S-Function

1. Once decompressed, open the SIL folder.

i

Fig. 1: SIL folder

2. Ensure that the d11_config.vcfg file is in the same path as the .s1x file.

Note: .slx files store Simulink model information in a reduced size. As previously explained, users must program
their own Simulink workspace according to their aircraft and simulation goal, but an example is provided in the
SIL folder (mex_function_example.slx).

3. Configure the d11_config.vcfg file in the following cases:
¢ If the hardware version to simulate differs from v4.0.

 If the DLL and image files are not located in the paths specified in d11_config.vcfg.

10 Chapter 3. Configuration

SIL Simulator, Release 6.12.92

Parameters to configure:

¢ Path to DLL file VeronteDLL.

d11 (absolute or relative to the .slx file)

* Path to image file Veronte_SD_Image.img (absolute or relative to DLL file)

¢ (Optional) Hardware version to simulate

* (Optional and dependent on hardware version) Autopilot ID to simulate

Warning: Autopilot ID parameter only can be chosen if hardware version is also specified. For more
information about setting the ID parameter, consult d//_config.vcfg file section of the present manual.

4. Open Simulink and configure the blocks explained below:

* Add a S-function block, and point to Veronte_SIL.mexw64 code by editing the S-function name:

variables t, x, u, and flag are automatically passed to the S-function
by Simulink. You can specify additional parameters in the 'S-function
parameters’ field. If the S-function block requires additional source
files for building generated code, specify the filenames in the "S-
function modules' field. Enter the filenames only; do not use
extensions or full pathnames, e.g., enter "src srcl’, not "src.c srcl.c'

Parameters

[:ij Block Parameters: S-Function x | 4[] = | Matlab
S-Function Home Share View

= 4 Cut = P
User-definable block. Blocks can be written in C, MATLAB (Level-1), = L f c:pypm & = x EII E
and Fortran and must conform to S-function standards. The

Pinto Quick Copy Paste

S-function name: |VerontefSIL

\I Edit I

S-function parameters: | |

S-function modules:

Cancel Help Apply

T |3] Open = Select all
] -
Edit

select none
Move Copy Delete Rename New Properties
e [7] Paste shortcut g9~ to- folder S @ History 2 Invert selection
Clipbeard Organize New Open Select
« v A > SIL > Matlsb v|® | Search Matlab o
A Name
st Quick access
code
x64
[DataDictionaryVeronte slcd
dil_config.vefg
gps_time.m
import_post_flight.m
launch_SIL_ex.m
W400_sensors.csv
[This PC Mexm
-3 3D Objects [7] mex_function_example.she
[Desktop [] mex_function_example.shec
2 Documents Mex_release.m
B Downloads ¥ readme.md
et SIL.
D Music resetstm
L. Veronte_SD_Image_SIL_2022_v6.12.zip.gdrive
Pict
= Fietures | 7 Veronte_SIL.mexws4 1
B Videos
e Local Disk (C)
- - v _—) < 1
T6items 1 item selected 1,83 MB =

Fig. 2: S-Function block parameters

¢ Add a UDP serial communication block and connect it to USB data and length inputs of Veronte S-function.

* Add a second UDP serial communication block and connect it to the USB outputs of Veronte S-function.

3.2. Step by step - Veronte S-Function

11

SIL Simulator, Release 6.12.92

Data

usb_data Send UDP packets
Using host-target connection

To: 127.0.0.1:56778

Length

Data usb_length
Receive UDP packets
Using host-target connection usb_data
From: 127.0.0.1
Length
usb_length
Fig. 3: UDP Blocks
» Configure the desired destination port.
Block Parameters: UDP Send *

UDP Send

Send data over UDP network to a remote device. Send to
255.255.255.255 for broadcast.

'Local IP address' applies only when the block executes on a target
computer.

Parameters

Local IP address:

Use host-target connection -

Local port: |56777 I

To IP address: |127.0.0.1 |

To port: |56778 1]

sample time (-1 for inherited): |-1 I
[ok] cancel || Help | Apply

Fig. 4: Destination UDP Port

e For extra information about Simulink configuration, consult the Simulink workspace section of this
manual.

5. In Veronte Link application, configure a UDP connection with the following parameters:

Note: For more information about configurating connections, please consult Connection section of the Veronte
Link user manual.

12 Chapter 3. Configuration

https://manuals.embention.com/veronte-link/en/latest/operation/index.html#connection

SIL Simulator, Release 6.12.92

¢ Type of connection: UDP
* IP: IP previously configured in Simulink workspace

 Port: Port previously configured in Simulink workspace

6. Run the simulation by running the Simulink model.

7. Check that the Autopilot 1x appears in Veronte Link as Connected and Ready:

VeronteLink
@ Veronte Link o Launch @ localhost & Login
g
& Connection %% Sesslons < Q =
e & X
1x - 4041 R &
v.6.12.92 -|Port: /127.0.0.1:56777|
L3 -
£ © Embention ¢B Terms and Conditions s C
g - 4

Fig. 5: Veronte Link

Note: The autopilot may appear as Loaded with errors in Veronte Link for reasons not related to the simulation
configuration. Refer to Loaded with errors in Veronte Link - Troubleshooting section of this manual.

8. Once the simulation starts, user can proceed as with a physical autopilot:

¢ 1x PDI Builder for configuration.

» Veronte Ops for operation and mission.

e HIL Simulator for simulating the virtual autopilot with external simulators.

9. Important events or messages occuring within the simulation are registered on SIL.1log.

13

3.2. Step by step - Veronte S-Function

https://manuals.embention.com/1x-pdi-builder/en/6.12.latest/index.html
https://manuals.embention.com/veronte-ops/en/6.12/index.html
https://manuals.embention.com/hil-simulator/en/6.12.20/index.html

SIL Simulator, Release 6.12.92

3.3 Step by step - Veronte Console

1. Once decompressed, open the SIL folder.

A

Fig. 6: SIL folder

2. Ensure that the d11_config.vcfg file is in the same path as VeronteConsole. exe.
3. Configure the d11_config.vcfg file in the following cases:
e If the hardware version to simulate differs from v4.0.

 If the DLL and image files are not located in the paths specified in d11_config.vcfg.

Parameters to configure:
e Path to DLL file VeronteDLL.d11 (absolute or relative to VeronteConsole. exe)
* Path to image file Veronte_SD_Image.img (absolute or relative to DLL file)
* (Optional) Hardware version to simulate

¢ (Optional and dependent on hardware version) Autopilot ID to simulate

Warning: Autopilot ID parameter only can be chosen if hardware version is also specified. For more
information about setting the ID parameter, consult dll_config.vcfg file section of the present manual.

4. In Veronte Link application, configure a UDP connection with the following parameters:

Note: For more information about configurating connections, please consult Connection section of the Veronte
Link user manual.

¢ Type of connection: UDP
e IP: 127.0.0.1
e Port: 12345

14 Chapter 3. Configuration

https://manuals.embention.com/veronte-link/en/latest/operation/index.html#connection

SIL Simulator, Release 6.12.92

VeronteLink

New connection

Type*

uppP

UDP configuration

r Address

127.0.01

r Port

12345

Fig. 7: Veronte Link - UDP Connection for Veronte Console

5. Run the simulation by executing Veronte Console.exe.

6. Check that the Autopilot 1x appears

in Veronte Link as Connected and Ready:

3.3. Step by step - Veronte Console

15

SIL Simulator, Release 6.12.92

VeronteLink
& Veronte Link o Launch ¢ localhost & Login
£ Connectlon 4 Sessions e Q =
= 5 5
1x - 4041 = @
v.6.12.92 -|Port: /127.0.0.1:56777]
L 3 -
& © Embention ¢§ Terms and Conditions 82 C
. i %

Fig. 8: Veronte Link

Note: The autopilot may appear as Loaded with errors in Veronte Link for reasons not related to the simulation
configuration. Refer to Loaded with errors in Veronte Link - Troubleshooting section of this manual.

7. Once the simulation starts, user can proceed as with a physical autopilot:

* 1x PDI Builder for configuration.

* Veronte Ops for operation and mission.

e HIL Simulator for simulating the virtual autopilot with external simulators.

16 Chapter 3. Configuration

https://manuals.embention.com/1x-pdi-builder/en/6.12.latest/index.html
https://manuals.embention.com/veronte-ops/en/6.12/index.html
https://manuals.embention.com/hil-simulator/en/6.12.20/index.html

CHAPTER
FOUR

SIMULINK WORKSPACE

SIL Simulator can be run with Simulink software, by means of the S-function block.

This kind of block takes a C, C++, Fortran or even Matlab code, and implements it in a block containing a certain
number of inputs and outputs. As explained in Step by step section, in order to simulate Autopilot 1x the S-function
block must be configured to point to Veronte code (Veronte_SIL.mexw64).

In the following subsections, Veronte S-function parameters are listed and general aspects of Simulink workspace are
explained.

17

SIL Simulator, Release 6.12.92

h ml 1 ralih n
rig. 1 9=rur

18

Static Pressure 1 @xt)

Static Pressure 2 @)

Static Pressure 3 @)

amic Pressure @x1)

IMU 1 (7x1)

L (1)

IMU 3 x1)

Magnetometer 1 (xt)

Magnetometer 2 (xt)

Magnetometer 3 (ax1)

Magnetometer 4 (ax1)

S (11x1)

S (11x1)

Relative Position 1

(10x1)

Relative Position 2

(10x1)

GNSS Time @x1)

Lidar 1 (ix1)

Lidar 2 (1x1)

Lidar 3 (1x1)

Lidar 4 (1x1)

Lidar 5 (1x1)

IDs Bit Var O

[Dynamic{2200 max.)x1)

IDs Integer Var

IDs Real Var Out.

(Dynamic(4021 max.jx1)

ADCs (7xt)

SCI-A (4G) Data
SCHA(46) Length .
SCI-B (Radio) Data

SCI-B (Radio) Length

SCI-C (RS-485) Data

SCI-C (RS-485) Length

SCI-D (RS-232) Data

(1024x1)

(1024x1)
HEER SCI-C (RS-485) Data

(1024x1)

SCI-D (RS-232) Data

Control Outputs 20x1)

Servo Outputs @2x1)

Position @)

Heights @)

Velocities @)

[1AS.TAS,GS] , .

MSL @)

[AoA,Sideslip] (1)

Dynamic Pressure @)

Raw IAS (1x1)

Tangential Acceleration (1)

Body Velocities @)

Angular Velocities @x)

Angular Accelerations @)

NED Accelerations _
(3x1)

NED Velocities @)

Attitude @x)

Co-Angles @t

Aerodynamic Angles @x)

Body Accelerations @xt)

Dynamic(2002 max.)x1)

Load Factor @x)

SCI-A (4G) Data

(1024x1)

SCI-A(4G) Length .

SCI-B (Radio) Data (1024x1)

SCI-B (Radio) Length (ix1)

(1024x1)

SCI-C (RS-485) Length

(1024x1)

(1024x1)

SCI-D (RS-232) Length (1x1)

USB Data

USB Data (1024x1)

(1024x1)

USB Length | USB Length

) (1x1)

Bit Var In. i
(160x1) Bit Var Out. o 2200 mexxt)

Integer Var In.
(160x1)
Integer Var Out. (Dynamic(2002 max 1)

Real Var In.
(180x1)
ReallVar (It P netyxi)

Chapter 4. Simulink workspace

SIL Simulator, Release 6.12.92

4.1 Inputs

Inputs are described in the next table:

PIN | Description Form Size Units

1 Static Pressure 1 [pressure_measurement;sensor temperature] 2x1 Pa; K
2 Static Pressure 2 [pressure_measurement;sensor temperature] 2x1 Pa; K
3 Static Pressure 3 [pressure_measurement;sensor temperature] 2x1 Pa; K
4 Dynamic Pressure [pressure_measurement;sensor temperature] 2x1 Pa; K
5 IMU 1 [acc_x;acc_ysacc_z;gyr_x;gyr_y;gyr_z;sensor temperature] | 7x1 =5 “:d ;
6 IMU 2 [acc_x;acc_y;acc_z;gyr_x;gyr_y;gyr_z;sensor temperature] | 7x1 = “;d ;
7 MU 3 [acc_x;acc_y;acc_z;gyr_X;gyr_y;gyr_z;sensor temperature] | 7x1 = % ;
8 Magnetometer 1 [mag_x;mag_y;mag_z;sensor temperature] 4x1 T, K

9 Magnetometer 2 [mag_x;mag_y;mag_z;sensor temperature] 4x1 T, K

10 Magnetometer 3 [mag_x;mag_y;mag_z;sensor temperature] 4x1 T, K

11 Magnetometer 4 [mag_x;mag_y;mag_z;sensor temperature] 4x1 T, K

12 GNSS 1 [1;3;lon;lat;alt;hr_accu;vt_accu;v_n;v_e;v_d;v_accu] 11x1 deg - 107
13 GNSS 2 [1;3;lon;lat;alt;hr_accu;vt_accu;v_n;v_e;v_d;v_accu] 11x1 deg - 107
14 Relative Position 1 [1;x_rel;y_rel;z_rel;d_x;d_y;d_z;x_accu;y_accu;z_accu] 10x1 cm ;mm
15 Relative Position 2 [1;x_rel;y_rel;z_rel;d_x;d_y;d_z;x_accu;y_accu;z_accu] 10x1 cm ; mm
16 GNSS Time [week_number;milliseconds_of week] 2x1 -, ms

17 Lidar 1 [lidar_measurement] 1x1 cm

18 Lidar 2 [lidar_measurement] 1x1 cm

19 Lidar 3 [lidar_measurement] 1x1 cm

20 Lidar 4 [lidar_measurement] 1x1 cm

21 Lidar 5 [lidar_measurement] 1x1 cm

22 IDs Bit Var Out. [Var_IDs] Dynamic(2200 max.)x1 | -

23 IDs Unsigned Var Out. [Var_IDs] Dynamic(2002 max.)x1 | -

24 IDs Real Var Out. [Var_IDs] Dynamic(4021 max.)x1 | -

25 ADCs [adc(1-17)] 17x1 -

26 SCI-A (4G) Data [serial_data] 1024x1 -

27 SCI-A (4G) Length [serial_length] 1x1 -

28 SCI-B (Radio) Data [serial_data] 1024x1 -

29 SCI-B (Radio) Length [serial_length] 1x1 -

30 SCI-C (RS-485) Data [serial_data] 1024x1 -

31 SCI-C (RS-485) Length | [serial_length] 1x1 -

32 SCI-D (RS-232) Data [serial_data] 1024x1 -

33 SCI-D (RS-232) Length | [serial_length] 1x1 -

34 USB Data [serial_data] 1024x1 -

35 USB Length [serial_length] 1x1 -

36 Bit Var In. [VarO_ID;Var(O_value;. . .;Var80_ID;Var80_value] 160x1 -

37 Unsigned Var In. [VarO_ID;Var(O_value;. VarSO_ID;VarSO_value] 160x1 -

38 Real Var In. [VarO_ID;Var(O_value;...;Var80_ID;Var80_value] 160x1 -

Note: In the table above, the size of the inputs “IDs Bit/Unsigned/Real Var Out.” (pins 22, 23 and 24 respectively)
have been described as Dynamic because they don’t need to have a fixed size. However, the size has to be continuous

throughout the simulation.

4.1. Inputs

19

SIL Simulator, Release 6.12.92

4.2 Outputs

Outputs are the following:

PIN | Description Form Size Units

1 Control Outputs [control_outputs(1-20)] 20x1 -

2 Servo Outputs [servos(1-32)] 32x1 -

3 Position [lon;lat;alt] 3x1 rad ; m

4 Heights [msl,agl] 2x1 m

5 Velocities [longitudinal_v;lateral_v;velocity(module)] | 3x1 %

6 IAS, TAS, GS [ias,tas,gs] 3x1 %

7 MSL [ms]_from_qgnh;msl_from_ISA] 2x1 m

8 Angle of Attack, Sideslip | [angle_of_attack;sideslip] 2x1 rad

9 Dynamic Pressure [dynamic_pressure] 3x1 Pa

10 Raw IAS [ias_raw] 1x1 m

11 Tangential Acceleration [tangential_acceleration] 1x1 =

12 Body Velocities [longitudinal_v;lateral_v;vertical_v] 3x1 %

13 Angular Velocities [roll_rate;pitch_rate;yaw_rate] 3x1 %

14 Angular Acceleration [acc_z_axis;acc_y_axis;acc_x_axis] 3x1 rad

15 NED Acceleration [acc_north;acc_east;acc_down] 3x1 S%

16 NED Velocities [v_north;v_east;v_down] 3x1 %

17 Attitude [Yaw;Pitch;Roll] 3x1 rad

18 Co-Angles [co-Yaw;co-Pitch;co-Roll] 3x1 rad

19 Aerodynamic Angles [heading,flight_path;bank_angle] 3x1 rad

20 Body Accelerations [acc_x,acc_y;acc_z] 3x1 q%

21 Load factor [nx;ny;nz] 3x1 -

22 SCI-A (4G) Data [serial_data] 1024x1 -

23 SCI-A (4G) Length [serial_length] 1x1 -

24 SCI-B (Radio) Data [serial_data] 1024x1 -

25 SCI-B (Radio) Length [serial_length] Ix1 -

26 SCI-C (RS-485) Data [serial_data] 1024x1 -

27 SCI-C (RS-485) Length [serial_length] 1x1 -

28 SCI-D (RS-232) Data [serial_data] 1024x1 -

29 SCI-D (RS-232) Length [serial_length] 1x1 -

30 USB Data [serial_data] 1024x1 -

31 USB Length [serial_length] Ix1 -

32 Bit Var Out. [Var_values] Dynamic(2200 max.)x1 | -

33 Unsigned Var Out. [Var_values] Dynamic(2002 max.)x1 | -

34 Real Var Out. [Var_values] Dynamic(4021 max.)x1 | -
Note: The outputs “Bit/Unsigned/Real Var Out.” (pins 32, 33 and 34 respectively) correspond to the inputs “IDs

Bit/Unsigned/Real Var Out.” (pins 22, 23 and 24 respectively), so they will have the same size as defined in the inputs.

In the following sections, the user can have a look at how to implement the sensors and felemetry blocks, as well as
general visualisation of a complete simulation.

20

Chapter 4. Simulink workspace

SIL Simulator, Release 6.12.92

4.3 Sensors

Sensors measurements are the inputs of the mex block (embedded code).

To perform a correct simulation, the user has to configure the inputs with the same scheme as Veronte Autopilot 1x
reads them. Each sensor has a certain vector/array which usually includes raw data in one or more coordinates, sensor
temperatures, variances or squared errors.

Warning: Users cannot set constant values for these variables as this may be interpreted by Veronte Autopilot 1x
as sensor failure.

For this reason, if the simulated signal is constant, it is recommended to add some white noise to it.

This section aims to ilustrate how to implement the inputs described in the previous section. The structures shown
here are indicative and can of course be adapted by the user:

Static Pressure Sensor

Dynamic Pressure

D
States
Environment MU
1D
Sensors

Magnetometer

GNSS

Fig. 2: Sensors inputs

Next, the user will find some examples of how to implement the following sensors:

e Environment

4.3. Sensors 21

SIL Simulator, Release 6.12.92

* Pressure sensors
« IMU

* Magnetometer

* GNSS

* ADC

e Serial Communications

4.3.1 Environment

To simulate a model correctly, it is necessary to take into account that the environmental variables change depending
on the position of the UAV. The user can choose between using a simple and constant model or modifying at each step
the environmental variables according to a complex model.

This model should group the atmospheric properties (temperature, pressure, etc.) which change with altitude (an offset
can also be added), the gravity vector, as well as the magnetic field which changes according the UAV coordinates. All
this information can be used for a better characterisation of the sensor measurements.

A basic example is shown below. It is divided into 3 different models (ISA atmosphere model, WGS84 model for
gravity vector, and the World Magnetic Model). Each model is included in a user Matlab function whose arguments
are the inputs of the block.

lat
StatesLog I T
lon
J 'i <LLA> 'I d 4\ g Pl I Gravity ned
States h fen

Gravity Model (WGS84)

T air_temp (K),

a
»lh ¢ speed_sound > » 1)
P AtmosphereBus "
fen pressure Environment
rho
air_density

ISA Model

lat

——
N

lon ¢ nT
q MagneticField_ned d
P h fen -

Magnetic Model

Magnetic Field

Fig. 3: Environment block

Instead of creating their own functions, users can use those included in the Aerospace Toolbox:

1. World Magnetic Model 2020:

22 Chapter 4. Simulink workspace

SIL Simulator, Release 6.12.92

h (m) Magnetic Field (nT)

Horizontal Intensity (nT)
M (deg)

>
>

Declination (deq)
) ' (deg) Inclination (deg)
>

Decimal Year Total Intensity (nT)

WMM2020 (2020-2025)

W OV VOV

Fig. 4: Aerospace blockset function - WMM2020

2. ISA Atmosphere Model:

T(K)

&
N a (m/s)
2 (m) £ P (Pa)

ISA b (kg/m?)

Fig. 5: Aerospace blockset function - ISA Atmosphere Model

3. WGS84 Gravity Model:

WGS84

g
Ny 1h(m) l g (m/s)pP

(Taylor Series)

Fig. 6: Aerospace blockset function - WGS84 Gravity Model

4.3. Sensors 23

SIL Simulator, Release 6.12.92

4.3.2 Pressure sensors

4.3.2.1 Static Pressure
Static Pressure inputs in the S-function simulate the internal ones in Veronte Autopilot 1x. The required information
consists of raw measurements and the sensor device temperature.

The S-function contains 3 ports representing the 3 static pressure sensors that are included in Autopilot 1x. Then
this information should be used according to the static pressure sensor selected in the configuration (in the 1x PDI
Builder software).

In the following table, the user can consult the static pressure sensors available for each hardware version:

Hardware version | Static Pressure

4.0 Static Pressure sensor 0
Static Pressure sensor 1
4.5 Static Pressure sensor O

Static Pressure sensor 1
Static Pressure sensor 2
4.8 Static Pressure sensor 1
Static Pressure sensor 2

Important: Please note that, the number of inputs (ports) correspond to the maximum number of inputs available on
all hardware versions, as can be seen in the aforementioned table.

Below are some examples of how to implement the static pressure:
* Constant value

Only one block constant for raw pressure and one for temperature.

Pressure Area

]I"IJ_L"L[+
+ I
White Noise stp0

20 -C- stp1

Static Pressure Temperature

stp2

Fig. 7: Static pressure - Constant

o Step

If users wish to simulate a leap in pressure measurements, it is possible to add a step to the previous configuration.
In the example below a difference in 100 meters is represented.

24 Chapter 4. Simulink workspace

SIL Simulator, Release 6.12.92

Block Parameters: Step
Step

Qutput a step.

Main Signal Attributes
Step time:

l1

Initial value:

[101325]

Final value:

| 1.001294386910694e+05

Sample time:

[o

Interpret vector parameters as 1-D
Enable zero-crossing detection

<

>

Pressure Area

L1
White Noise
C
Step Temperature

J| oK || Cancel ||

Help

Apply

Fig. 8: Static pressure - Step input

stp0

stp1

stp2

qinf

imuQ

imu1

Important: Note that in both examples a White Noise block has been added.

4.3.2.2 Dynamic Pressure

The dynamic or velocity pressure input requires the raw measurement of dynamic pressure and sensor device

temperature.

Some examples of how to implement dynamic pressure are shown below:

¢ Constant value

As the raw measurement of dynamic pressure has been added as a constant, a white noise block is also added:

4.3. Sensors

25

SIL Simulator, Release 6.12.92

Dynamic Pressure (Pa)

327

Sensor Temperature (K)

il

White Noise

Fig. 9: Dynamic pressure - Constant

¢ Complex model

In this example, Autopilot 1x is assumed to be mounted on the X-axis in Body rame. Therefore, from the velocity
in NED frames, a rotation is applied to obtain the velocity in Body frames, and then the first component of the
vector is taken.

In addition, the density value is taken from the environment model.

<DCM be> Matrix
- Multiply
States <V_ned>
E 1 2
/, pV .1
<air_density> Pp ? a qlInfinity

Environment <air_tempp

-C- | Temperature Offset

Fig. 10: Dynamic Pressure - Subsystem

26 Chapter 4. Simulink workspace

SIL Simulator, Release 6.12.92

4.3.3 IMU

IMU measures and informs about velocity, attitude and forces by combining the accelerometer and gyroscope readings.

Veronte Autopilot 1x needs to receive 7 measurements: 3-axis accelerometer, 3-axis gyroscope and sensor device
temperature.

In the S-function there are 3 inputs for IMUs. These IMUs are mounted differently on the Autopilot 1x (they may not
be aligned with the autopilot), so the user has to keep in mind the rotation matrix that the Autopilot 1x is using.

Important:

» The rotation matrices listed in the following table are the required rotations between each sensor and the Autopilot
1x board coordinates (for more information on the Veronte Autopilot 1x coordinates, please check the Orientation
- Hardware Installation section of the 1x Hardware Manual).

* Please note that, the number of inputs (ports) correspond to the maximum number of inputs available on all
hardware versions, as can be seen in the following table.

¢ As detailed in the table below, if users wish to enter measurements into the IMU 3 with hardware version 4. 8,
they must enter them into the IMUO input.

This is because the block input values belonging to IMUO also go internally to this IMU. Therefore, the same
S-Function can be used for both hardware version 4.0 and 4. 8.

4.3. Sensors 27

https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#orientation
https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#orientation

SIL Simulator, Release 6.12.92

HardwaiU Rotatign
versian Matrix
4.0 IMUO R =
0 1 0
1 0/ O
0 0 -1
IMU1 R =
0 -1
1 0
0 41 O
4.5 IMUO R =
0 11 0
1 0] O
0 0 -1
IMU1 R =
0 -1
1 0
0 41 0
IMU2 R =
0 |-1 0
-1 1|0 0
0 0 -1
4.8 IMU3 R =
1 0
Note: IMUS3 corresponds to IMUO input as explained in the previous note 8) (1)
IMU1 R =
-1 10 O
0 1
0 |11 0
IMU2 R =
-1 10 O
0 |01
0 |1 0

Within the S-Function, the introduced data is transformed to match the coordinates of the Veronte Autopilot 1x. So, in
order to be correctly transformed inside the S-Function, the data must have been previously “prepared” to be introduced
into it in the following way:

data(inpury = (Sensor rotation matriz)’ - data(yoard)

In the example provided by Embention with the SIL package, the simin_IMUQ block already has this transformation
implemented, so it can be entered directly into the S-Function without prior “preparation”.
There are several ways to implement a suitable read group for an IMU:

¢ Constant value

The user can create a vector with constant values.

* From Workspace block

28 Chapter 4. Simulink workspace

SIL Simulator, Release 6.12.92

Another option could be to store some data (i.e. from a previous flight), load it into the matlab workspace, and
then send these values to Simulink using the block name as From Workspace.

ainif
simin_IRMLUID

amud
simin_IkLU1

imu
simin_IRML2 2

Fig. 11: IMU - From workspace blocks

This block allows the user to read from an array of values (and interpolate when there is no information in this
step). Moreover, users can choose between several options in case data vector is over. For example, it is possible
to extrapolate the information or reset the list of values.

4.3. Sensors 29

SIL Simulator, Release 6.12.92

Block Parameters: From Workspace b4
p
Frorr Wurkﬁpace

Read data values specified in timeseries, matrix, or structure format from the
MATLAB workspace, model workspace, or mask workspace.

MATLAB timeseries format may be used for any data type, complexity, or fixed
dimensions. To load data for a bus signal, use a MATLAB structure that
matches the bus hierarchy and specify timeseries for each leaf signal.

For matrix formats, each row of the matrix has a time stamp in the first
column and a vector containing the corresponding data sample in the
subsequent column(s).

For structure format, use the following kind of structure:
var.time=[TimeValues]
var.signals.values=[DataValues]
var.signals.dimensions=[DimValues)]

Parameters

Data:

| simin_IMUO

Output data type: | Inherit: auto w >

Sample time (-1 for inherited):
|0.001

[] Interpolate data
Enable zero-crossing detection

Form output after final data value by: | Holding final value

Setiing to zero

\)‘ Holding final value
| Cyclic repetition

Fig. 12: From workspace block configuration

¢ Complex model

Another method is to read these values from Environment (gravity vector in NED frame and air temperature)

and from States (acceleration in body axes, angular velocity, angular acceleration and the rotation matrix from
NED to Body).

These values are fed into a Matlab function in which the IMU behaviour is simulated and the measurements are
computed. In addition, users have to cross-reference the measurements or apply a rotation matrix depending on
the orientation of the IMU sensor.

In the example below, this data feeds the first port (this IMU is selected in the 1x PDI Builder configuration).

30

Chapter 4. Simulink workspace

SIL Simulator, Release 6.12.92

Therefore, the user has to cross the signals to adjust the rotation matrix.

The complete subsystem results as follows:

IMU crossed due to
internal rotation
Accel_bod |-
<, =
ceel_body »lw Acc_meas
<Omega_body> paw_dt 4
fen
States <dOmega_body> CG Gyr_meas
CG location 5 =5
<DCM_be> IMU imuraw
Matrix
Multipl
<Gravity_ned> Py
Environment -
<air_femp>
AR

-| Internal Temp Offset

Fig. 13: IMU - Subsystem

Veronte PDI Builder

Ix45. ~ R\ Sensors i o = (1]
Accel et . 5

celerometer Def. sensor: | 0 - Main Accelerometer i Initial variance | 10 - |
Gyroscope —_— . .
M Time constant for mean: | 2.0 s ||| Minimum variznce |1-UE“4 |

agnetometer e——

Dynamic Pressure Time constant for variance: | 200 s | Range | 169 =
Static pressure
RPM I 0 - Main Accelerometer I Normal | Pro
Lidar Antialising filter bandwidth 400 Hz -
Intermnest

| Enable digital filter sensor

DG A

Cutoff frequency 133.2Hz ~
Notch filter
Mode Disabled -
Main Frequency Constant value: 100.0
% Bandwidth [20,0 Hz|
@ Notch gain | 6.0206 dB |

Sensor filter

gea

Fig. 14: IMU - Accelerometer selected in 1x PDI Builder

4.3. Sensors 31

SIL Simulator, Release 6.12.92

1xVeronte PDI Builder

1x45 -

Accelerometer

C]

Gyroscope

Magnetometer

Dynamic Pressure
Static pressure
RPM

Lidar

Internest

&3
o
a
B
Q

N Sensors

Def. sensor: | 0 - Main Gyroscope

Time constant for mean: | 2.0

Time constant for variance: | 20.0

0 - Main Gyroscope

Initial variance | 1

0 -]

Minimum variance | 1

Gyroscope

Range

PRO

OE-4 ._|

Low Pass Filter
Low Pass Filter

Notch filter

Mode

Main Frequency

Bandwidth

Netch gain

Sensor filter

2000 °/s -

Disabled -

Constant value: 100.0

|20.0 bz

| 6.0206 dE|

Fig. 15: IMU - Gyroscope selected in 1x PDI Builder

However, instead of using a user function, Aerospace blockset includes some functions for IMU simulation that

can be employed:

A, (m/s%)
w (rad/s)
dw/dt
CG (m)

g (m/s?)

w

meas

meas

(m/s?) P

(rad/s) [»

Fig. 16: IMU - Aerospace Toolbox block

* Specific example from the example provided by Embention

The data in the example provided is already prepared for being introduced into the S-Function as the IMU 0 data,

32

Chapter 4. Simulink workspace

SIL Simulator, Release 6.12.92

that is the IMUO sensor in hardware version 4. 0.

Therefore, if users want to use the data provided by Embention (simin_IMUOQ) and in their configuration with a
4.8 hwy they have the IMU 3 selected, the following transformations are necessary for correct operation:

1. Transform from IMU 0 to board coordinates

Undo the “preparation for input” (this “preparation” has been described at the beginning of the section) to
obtain the data provided by the sensor in body coordinates:

0
0 : data(ea:ample)
-1

o O =

0
data(board) =11
0

— data(ezampie) is the data inside the simin_IMUO block
2. Transform from board to IMU 3 coordinates

Prepare the data for conversion to IMU 3 coordinates by multiplying the sensor body data by the IMU 3
rotation matrix transpose:

1 0 0
data(mput) =(0 0 -1 -data(board)
0 1 O

Finally, the whole transformation should look like this:

Transform from board to MU 3 coordinates
Transform from IMUO to board coordinates (Transpose of rotation matrix IMU 2 to board)

Dala in IMUO coordinates

simin_IMUOQ

Al

|
JINN

TDDD

Fig. 17: IMU - Example

4.3.

Sensors 33

SIL Simulator, Release 6.12.92

4.3.4 Magnetometer
The magnetometer inputs expect to receive magnetic field measurements in 3 axes, as well as the sensor device
temperature.

The S-function has 4 ports for magnetometer reading. In addition, as with IMUs, the user must take into account how
the magnetometer is mounted (rotation matrix).

Hardware version | Magnetometer | Rotation Matrix
-1 0 0
4.0 MAGO R=10 1 0
0 0 -1
-1 0 0
4.5 MAGO R=10 1 0
0 0 -1
0 -1 0
MAG1 R=(-1 0 0
0o 0 1
0 0 -1
4.8 MAGO0 R=(0 1 0
1 0 0
0 0 1
MAG1 R=|-1 0 0
0 1 0
0 0 1
MAG2 R=(1 0 0
0 10

Important: Please note that the number of inputs (ports) corresponds to the maximum number of inputs available on
all hardware and SIL Simulator versions, as can be seen in the aforementioned table.

F <DCM_be> Matrix

Multiply

| <MagneticField_ned>

I

MagneticField

Environment

<air_temp>

-C- |Temperature Offset

Fig. 18: Magnetometer - Subsystem

The user can also simulate another magnetometer (external magnetometer) and send the information through a serial
port. For more information on serial communication, refer to Serial communications section of this manual.

34 Chapter 4. Simulink workspace

SIL Simulator, Release 6.12.92

4.3.5 GNSS

GNSS receiver ports (there are 2 ports, GNSS1 and GNSS2) expect to receive an array with the following
information:

1. Fix status
2. Fix type
* 0: no fix
¢ 1: dead reckoning only
e 2: 2D-fix
» 3: 3D-fix
e 4: GNSS + dead reckoning fix
Longitude
Latitude
Altitude
Horizontal accuracy
Vertical accuracy

North Velocity

o ® N AW

East velocity
10. Down Velocity
11. Speed Accuracy

4.3. Sensors 35

SIL Simulator, Release 6.12.92

fix_type

<LLA>

aD)

GNSSSolution

States

<V_ned>

mis to mmi's (I}

sacc

Fig. 19: GNSS array

Note:
+ The angle inputs are in degrees - 107 units.
¢ The distance inputs are in millimetres units.

* The speed inputs are in millimetres per second units.

The accuracy values are equal to the square root of the ‘“‘Square error’” parameter. These values are supposed to
be computed by the GPS device and are used in the EKF for GNSS solution. However, in the configuration files user
can choose between these ones or values set by user.

36 Chapter 4. Simulink workspace

SIL Simulator, Release 6.12.92

Select sensor | GNSS 1 = | Ublox preset: | Custom - RTK Wizard
Configuration | SBAS | Message Rate Constellations = Jamming | Advanced | Sensor Variance
Use receiver value
Square error i pr t
Horizontal Position v
Vertical Position 100000.0
Haorizontal Veloaty v
Vertical Velocity 1000000
Relative Position 40
\ J \ J
Values Accuracy
by the user values as
input of the
S-Function
Antenna position | 0.0 m | | 0.0 m | |0.D m Delay
Accept | | Cancel

Fig. 20: GNSS variances - 1x PDI Builder

RTK Example Block

To enable the RTK feature, the user has to modify the configuration (for more information on this, see GNSS sensor
block - Block Programs section of the 1x PDI Builder user manual), and include more inputs via the S-function.

This input is called Relative Position, and requires an array of 10 elements:
1. Status: 0 is Data invalid and 1 is Data valid.
2. RelPosN: North component of relative position vector (cm)
3. RelPosE: East component of relative position vector (cm)

4. relPosD: Down component of relative position vector (cm)

4.3. Sensors 37

https://manuals.embention.com/1x-pdi-builder/en/6.12.latest/1x%20configuration/block%20programs/sensors/index.html#gnss-sensor
https://manuals.embention.com/1x-pdi-builder/en/6.12.latest/1x%20configuration/block%20programs/sensors/index.html#gnss-sensor

SIL Simulator, Release 6.12.92

o ® =2 aow

relPosHPN: High precision North component (mm)
relPosHPE: High precision East component (mm)
relPosHPD: High precision Down component (mm)

accN: Accuracy of relative position North component (mm)

accE: Accuracy of relative position East component (mm)

10. aceD: Accuracy of relative position DOwn component (mm)

High precision components must be in range -99 to 99 millimetres. The full component of the relative position vector
(in cm) is given by the addition of the 2 components.

An example of this subgroup is shown below:

1

rel_valid

30

A 4

rned_x

40

cm

A J

rned_y

50

cm

¥

med_z

cm

A 4

20

rned_dmm_x

10

0.1mm

A 4

rned_dmm_y

0.1mm

A 4

rned_dmm_z

0.1mm

A 4

2500

® Q0 ©@ O 6 0 0

acc_x

1500

0.1mm

h A

©

acc_y

3500

0.1mm

A 4

®

acc_z

0.1mm

A 4

Fig. 21: RTK inputs

38

Chapter 4. Simulink workspace

SIL Simulator, Release 6.12.92

4.3.6 ADC

Veronte Autopilot 1x is equipped with 5§ external ADC channels (linked to 5 pins) and 12 internal channels.
Therefore, in total, user has to create an array of 17 elements. These values are stored as internal variables in Veronte
Autopilot 1x, and it is possible to use them in certain user programs.

The order of this array is: Internal ADC Channel 0, External ADC Channel 0-4, Internal ADC 1-11.

The following image shows an example (with the first external ADC pin):

103

=

M
=

=

=

=

0

=

4

o] Int. Ch. 0 N

[+] Ext. Ch.0 A
[+] Ext. Ch. 1 A
[+] Ext. Ch. 2 A
[+] Ext. Ch. 3 A
[+] Ext. Ch. 4 A
[+] Int. Ch. 1 A
[+] Int. Ch. 2 A
[+] Int. Ch. 3 A
[=] Int. Ch. 4 A
[+] Int. Ch. 5 A
o] Int. Ch. 6 A
o] Int. Ch. 7 A
o] Int. Ch. 8 A
Fore] Int. Ch. 9 .
= Int. Ch. 10 A
= Int. Ch. 11

g &

Ade -1
Stick

?
*
“
Y

Thrusting

Rolling

heduler B Library B Programs

4
ra

ADC 1 H Integer to Real

N

2.4414062E-4

b
L/

Y

3D Table

N

7 User Variable 02 (Real - 32
 bits)

Fig. 22: ADC readings

4.3. Sensors

39

SIL Simulator, Release 6.12.92

4.3.7 Serial Communications

Veronte Autopilot 1x can manage input and output serial ports (for more information on this, see the I/O Setup -
Input/Output section of the 1x PDI Builder user manual).

A simply way to create serial frames (data in length wires) is by using the simulink UDP block. Therefore, the data
entering Veronte Autopilot 1x should be sent via UDP (if this approach is adopted):

=

Receive UDP packets

Using host-target connection

From: 127.0.0.1

gl

Dataj——

Length |—

Fig. 23: UDP Block

|

The ports included in Autopilot 1x and represented in the S-function are as follows:

USB: USB port
SCI-A: 4G connection
SCI-B: Radio

SCI-C: Serial Port 485
SCI-D: Serial Port 232

Example: Sending a RS-232 message

In the following example, a constant value is sent as a RS-232 message.

First, the message is created as a bit array with Byte Pack block.

Next, it is neccesary to receive this information as UDP packets on the corresponding port (in this case 16003).
Width block is used to compute data length. This UDP packet is then sent to the S-function:

40

Chapter 4. Simulink workspace

https://manuals.embention.com/1x-pdi-builder/en/6.12.latest/1x%20configuration/input_output/io%20setup/index.html
https://manuals.embention.com/1x-pdi-builder/en/6.12.latest/1x%20configuration/input_output/io%20setup/index.html

SIL Simulator, Release 6.12.92

scib_data
MData gong uDP packets scib_length
Using host-target connection -
8 To: 127.0.0.1:16003
35 P » Length)
scic_data
Byte Pack
scic_length
Dat »
Receive UDP packets aa scid_data i
Using host-target connection
From: 127.0.0.1
Length »
scid_length

Fig. 24: Sending a RS-232 message in Simulink

Finally, the Autopilot 1x configuration should be able to parse this information using Serial Custom Messages
consumers. For more information on this, refer to Serial Custom Messages - Input/Output section of the 1x PDI
Builder user manual.

[Consumer] RS custom message 1

Time out Time to idle Checksum Matcher Skip Wariable ASCIl Position Ocoupancy
01 |EE"- @ Little endian | 1.0 s || 0.005 s Bit ID: 1 0 0 0 1 0 0
0(0) -32 |EE’;I @ ‘}. User Variable 30 (Real - 32 Bits)
p— ~ . o e Encode Decode
ariable Compressicn ecimals ncode/Decode - — - o
User Variabl... Uncompress - 64 bits v | | | 1.0 | | || | | || |

Fig. 25: Custom message - 1x PDI Builder

Warning: The variable type parsed by Veronte Autopilot 1x has to match the variable type generated in the Byte
Pack block.

4.4 Telemetry

In the S-function there are 3 inputs specially dedicated to select custom temeletry (pin 22 for Bit variables, pin 23 for
Unsigned variables and pin 24 for Real variables). The size of each of these inputs is not fixed, although it has to be
continuous throughout the simulation.

Users must enter the corresponding Ids of the variables that is aiming to monitor. The ID of each variable can be easily
found in the List of variables section of the 1x Software Manual.

In the following example, a block function has been configured for each type of variables:

4.4. Telemetry 41

https://manuals.embention.com/1x-pdi-builder/en/6.12.latest/1x%20configuration/input_output/io%20setup/index.html#serial-custom-messages
https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html

SIL Simulator, Release 6.12.92

‘ Bvarlds

BvarGet Bvarlds

‘ Uvarlds

UvarGet Uvarlds

‘ Rvarlds

RvarGet Rvarlds

Fig. 26: Telemetry blocks

The example function for real variables is given below. In it, the desired real variables are configured to be displayed.

| Requested VYariables/MATLAB FunctionZ* | + .|
1 function Rvarlds = RvarGet ()
2 % BRequested Ids (row vector)
3 - requestedIds = [...
4 330:336, % IMU 0 Raw Measurements
5 337:343, % IMO 1 Raw Measurements
& 36l:367, % IMO 2 Raw Measurements
7 386:392, % IMO 3 Raw Measurements
g 348:349, % Static Pressure 0 (H5C) Raw Measurements
G 344:345, % Static Pressure 1 (M556) Baw Measurements
10 3658:3659, % Static Pressure 2 (DP5310) Baw Measurements
11 322:325, % Internal Magnetometer LIS3MDL. Raw Measurements
12 3T70:373, % Internal Magnetometer MMCSE833MA Raw Measurements
13 353:3%¢6, % Internal Magnetometer RM3100 Raw Measurements
14 346:347, % Dynamic Pressure Raw Measurement
15 1504:15086, % GNS5 1 LLA
1& le04:1e06, % GNS5 2 LLA
17 1:
18 — Evarlds = [reguestedIds]:

Fig. 27: Telemetry block - Real variables function

Finally, the last 3 outputs of the S-function are vectors containing the Bit, Unsigned and Real variables information
respectively. The user can postprocess them as desired (Scope block, To Workspace block, etc.).

42 Chapter 4. Simulink workspace

SIL Simulator, Release 6.12.92

Bvars

Uvars

Rwvars

Fig. 28: Display variables - Scope block example

4.5 Simulation

A complete simulation is composed of many systems or blocks.

In this manual the sensors, the environment and the Veronte Autopilot 1x subsystem have been already introduced.
All theses blocks must be combined with others, such as Airframe block to simulate the vehicle behavior.

Once the main blocks are configured, the complete simulation result should look like this:

Visualization

~

UERONTE

AUTGFILOTS

Sensors a

EMBENTICN

Sensors (Dynamics)
P States

Veronte Autopilot 1x

Environment (Variable)

Environment |

Environment

Fig. 29: Complete Setup Example

Important:
* Please note that this is only an example.

e Users will not receive this example with SIL Simulator package.

4.5. Simulation 43

SIL Simulator, Release 6.12.92

The main systems are:

* Veronte Autopilot 1x: Consists basically of the S-function and its link with the rest of the blocks (sensors,

outputs, etc.)

* Airframe: A model of the flight dynamics. The inputs of this system are the outputs of the Veronte Autopilot
1x system (nominal value for servos).

For example, for a quadcopter, the input to this block consists of the PWM signal values (one for each motor).
Then, with this value, the airframe system updates the status of the platform. The state vector is used to predict
new environmental conditions and sensor readings.

* Environment: A model of the atmosphere, magnetic field, WGS84, etc.

 Sensors: It contains individual blocks or subgroups of all sensors that Veronte Autopilot 1x needs as input.

* Visualization: Contains display blocks, scopes, flight instruments, etc.

To ensure that everything works correctly, users must choose the simulation time step according to GNC frequency and
core 1 frequency. Core 1 frequency is 1000 Hz fixed while GNC frequency is configurable. The simulation time step

must be a common divisor of both time steps.

For example: if GNC has a time step of 0.0025 s (frequency = 400 Hz) and core 1 has a time step of 0.001 s (1000 Hz),
the simulation can be set to 0.0005 s (2000 Hz), so the S-function will execute core 1, GNC or both everytime they are

required.

@ Configuration Parameters:

Q
Solver
Data Import/Export
Math and Data Types

» Diagnostics
Hardware Implementation
Model Referencing
Simulation Target

¥ Code Generation

» Coverage

» HDL Code Generation

fConfiguration (Active)

Simulation time

Start time: |0

Solver selection

Type: |Variable-step

¥ Solver details

Max step size: |0.0002
Min step size: |auto
Initial step size: |auto
Shape preservation:

Number of consecutive min steps

Zero-crossing options

Zero-crossing control: |Use local settings

Time tolerance:

Number of consecutive zero crossings: | 1000

Tasking and sample time options

| Automatically handle rate transition for data transfer

Higher priority value indicates higher task priority

10*128*eps

- O X
~
Stop time: | TFinal
~ | Solver: |auto (Automatic solver selection) -
Relative tolerance: |1e-3
Absolute tolerance: |auto
Auto scale absolute tolerance
Disable All hd
1
= | Algorithm: Nonadaptive x
Signal threshold:
¥
OK Cancel Help Apply

Fig. 30: Time step settings

44

Chapter 4. Simulink workspace

CHAPTER
FIVE

TROUBLESHOOTING

5.1 dll_config.vcfqg file not working

A usual mistake while configuring d11_config.vcfg is defining paths using quoting marks. Note that paths must be
defined as explained in dll_config.vcfg file section of this manual.

e Not valid configuration:

Path to DLL
\dll ".\x64\VeronteDLL.dll"

@ Valid configuration:

Path to DLL
\dll .\x64\VeronteDLL.dll

5.2 Logs

SIL.log provides a record of any issues that have arisen during the execution process, please take a look at it if anything
fails and do not hesitate to contact the support team using the Joint Collaboration Framework; for more information,
please consult the JCF user manual.

In case the log shows a PDI error, please refer to the List of PDI errors section in the 1x Software Manual.

5.3 License ID warning in Veronte Ops

Veronte_SD_Image has a license associated to a specific ID. Therefore, customizing the ID of the virtual autopilot may
result in a limited performance of the system.

For solving this issue, open Veronte Ops application and update the limited license as explained in the Platform license
- Platform section of Veronte Ops user manual.

45

https://manuals.embention.com/joint-collaboration-framework/en/0.1/index.html
https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#list-of-pdi-errors
https://manuals.embention.com/veronte-ops/en/6.12/panels/platform/index.html#platform-license
https://manuals.embention.com/veronte-ops/en/6.12/panels/platform/index.html#platform-license

SIL Simulator, Release 6.12.92

License limited

UAV Address:
1008

0 seconds

Distance to operator:
0 meters

If you have any questions contact sales.

Fig. 1: Veronte Ops - Platform license

5.4 Loaded with errors in Veronte Link

Once the simulation is running, the system of Veronte works as if working with a physical autopilot. This means that the
simulated autopilot can appear in Veronte Link as Loaded with errors for several reasons unrelated to SIL. Simulator.

To handle these, users should consult the error type in the 1x PDI Builder, referring to the 1x PDI Builder user manual
for more information.

0 1xVeronte PDI builder - O >

BB 1xVeronte

Build PDI to configure your 1xVeronte

4 Upload PDI ¥ Open 1xVeronte

Upload PDI to the 1x\Veronte, this option can't Open PDI online and work with it
be undone

@ Mormal mode | [Tx w40 1599 (6.12.92) -

Fig. 2: 1x PDI Builder - PDI Errors button

46 Chapter 5. Troubleshooting

https://manuals.embention.com/1x-pdi-builder/en/6.12.latest/index.html

SIL Simulator, Release 6.12.92

5.5 Running Veronte Console

In the case of using VeronteConsole.exe, it is also possible to pass the paths as as arguments to the windows
command, for this:

1. Open windows command = cmd
2. Passtoit:

VeronteConsole.exe \dll C:\Users\user\Folder\VeronteDLL.dll \image C:\Users\user\Folder\
Veronte_SD_Image.img

5.5. Running Veronte Console 47

SIL Simulator, Release 6.12.92

48 Chapter 5. Troubleshooting

CHAPTER
SIX

ACRONYMS AND DEFINITIONS

ADC Analog to Digital Converter

CAN Controller Area Network

DLL Dynamic Link Library

EKF Extended Kalman Filter

FTP File Transfer Protocol

GNC Guidance Navigation Control
GNSS Global Navigation Satellite Systems
GPS Global Positioning System

HIL Hardware In the Loop

IMU Inertial Measurement Unit

ISA International Standard Atmosphere
JCF Joint Collaboration Framework
NED Noth East Down (coordinates)

PC Personal Computer

PDI Parameter Data Item

PWM Pulse Width Modulation

RS232 | Recommended Standard 232

RTK Real Time Kinematic

SCI Serial Communication Interface
SIL Software In the Loop

SRTM Shuttle Radar Topography Mission
UAV Unmanned Aerial Vehicle

UDP User Datagram Protocol

USB Universal Serial Bus

WGS84 | World Geodetic System 84

WMM | World Magnetic Model

49

	Introduction
	Veronte Console
	Veronte S-function

	Quick Start
	Download
	Requirements

	Configuration
	dll_config.vcfg file
	Step by step - Veronte S-Function
	Step by step - Veronte Console

	Simulink workspace
	Inputs
	Outputs
	Sensors
	Environment
	Pressure sensors
	Static Pressure
	Dynamic Pressure

	IMU
	Magnetometer
	GNSS
	ADC
	Serial Communications

	Telemetry
	Simulation

	Troubleshooting
	dll_config.vcfg file not working
	Logs
	License ID warning in Veronte Ops
	Loaded with errors in Veronte Link
	Running Veronte Console

	Acronyms and Definitions

