
SIL Simulator
Release 6.12.92

Embention

2024-04-09

CONTENTS

1 Introduction 3
1.1 Veronte Console . 4
1.2 Veronte S-function . 4

2 Quick Start 5
2.1 Download . 5
2.2 Requirements . 6

3 Configuration 9
3.1 dll_config.vcfg file . 9
3.2 Step by step - Veronte S-Function . 10
3.3 Step by step - Veronte Console . 14

4 Simulink workspace 17
4.1 Inputs . 19
4.2 Outputs . 20
4.3 Sensors . 21

4.3.1 Environment . 22
4.3.2 Pressure sensors . 24

4.3.2.1 Static Pressure . 24
4.3.2.2 Dynamic Pressure . 25

4.3.3 IMU . 27
4.3.4 Magnetometer . 34
4.3.5 GNSS . 35
4.3.6 ADC . 39
4.3.7 Serial Communications . 40

4.4 Telemetry . 41
4.5 Simulation . 43

5 Troubleshooting 45
5.1 dll_config.vcfg file not working . 45
5.2 Logs . 45
5.3 License ID warning in Veronte Ops . 45
5.4 Loaded with errors in Veronte Link . 46
5.5 Running Veronte Console . 47

6 Acronyms and Definitions 49

i

ii

SIL Simulator, Release 6.12.92

SIL Simulator, or Software-in-the-Loop Simulator, is an advanced simulation system designed to replicate the
functionality of an autopilot in a virtual environment.

Warning: Select your version before reading any user manual for software. The following image shows where to
select a version from any Embention user manual.

CONTENTS 1

SIL Simulator, Release 6.12.92

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

SIL Simulator software acts as a ‘virtual Autopilot 1x’, providing a realistic simulation experience for testing and
development purposes.

The essence of SIL Simulator lies in its capacity to replicate Autopilot 1x behavior through the utilization of a dynamic-
link library (DLL) embedded with Veronte Autopilot 1x code, Veronte DLL.

This code can simulate the physical autopilot firmware through two primary interfaces, Veronte Console or Simulink
workspace (by means of the Veronte S-function block). To suit customer preferences, Veronte DLL could also be run
with other languages, such as Python. However, this integration must be undertaken independently by clients.

Fig. 1: SIL Simulator interfaces

Error: Running Veronte DLL with Veronte Console and Simulink workspace simuntaneaously will interfere
with the functioning of the system, causing the simulation not to work.

3

SIL Simulator, Release 6.12.92

1.1 Veronte Console

Veronte Console is a Windows executable that allows to simulate the ‘virtual Autopilot 1x’ (VeronteDLL).

Through this simulation option, users can employ Veronte applications with the simulated autopilot. However, at
present, the main difference with Veronte S-function is that inputs cannot be emulated in this simulation option.

1.2 Veronte S-function

Veronte S-function consists of a Simulink block which can be integrated in a Simulink model to virtually simulate
the behavior of Veronte Autopilot 1x in a customized environment.

In the workspace of Simulink, users can design the dynamic model of their own aircraft, the desired input signals of
the system, and therefore, analyse the response of the provided virtual autopilot in a emulated environment.

Note: Signal conditioning and calculation depend on the aircraft to simulate and the purpose of the simulation. Users
must program their own Simulink workspace accordingly to these considerations.

SIL has several advantages when compared to a HIL Simulator setup:

• Complete simulations without any hardware.

• Possibility to use the user’s vehicle model: users can define the dynamics of their vehicle (with the desired
complexity) without the need to use external programs, such as Plane Maker.

• Possibility to simulate different types of sensors even if they are not installed in Veronte Autopilot 1x. All that
is needed is the raw sensor reading.

• All results can be exported/visualized to MATLAB workspace simultaneously.

• Veronte Autopilot 1x blocks run faster than real-time, allowing the user to execute a series of simulations in a
short time. This feature depends on the complexity of the model and the capability of the computer where the
simulation is running.

4 Chapter 1. Introduction

https://manuals.embention.com/hil-simulator/en/6.12.20/index.html

CHAPTER

TWO

QUICK START

This section sums up the basic requirements to start using SIL Simulator, both with Veronte Console and with
Simulink blocks.

Note: For further details about SIL Simulator configuration, please proceed to the subsequent section Configuration.

2.1 Download

Once SIL package has been purchased, a GitHub release should be created for the customer with the application.

• Download the SIL zip file from its corresponding release and decompress it in the desired location.

• Download Veronte Autopilot 1x SD image downloadable from the Drive folder linked in the
Veronte_SD_Image_SIL.zip.gdrive file and decompress it in the desired location.

5

SIL Simulator, Release 6.12.92

Fig. 1: SIL folder - Drive file

Note: For further information about how to access to the release and download the software, read the Releases section
of the Joint Collaboration Framework manual.

2.2 Requirements

• Veronte Software Package:

– Veronte Link (v6.12.X): Used to connect Autopilot 1x to the other tools.

– 1x PDI Builder (v6.12.X): To build and load PDIs.

– Veronte Ops (v6.12): Operations interface.

• SIL with Simulink: To perform a SIL simulation using Simulink with the Veronte Autopilot 1x, the following
programs and toolboxes are required in addition to the requirements described above:

– MATLAB + Simulink (basic package).

– The user can be helped by other simulink toolboxes when implementing their model:

∗ Simulink Real-Time: This blockset contains useful blocks to be used with buses: UDP/RS232/CAN.

∗ Aerospace toolbox: Contains sensor blocks, flight instruments and environment blocks.

6 Chapter 2. Quick Start

https://manuals.embention.com/joint-collaboration-framework/en/0.1/releases/index.html

SIL Simulator, Release 6.12.92

– Microsoft Visual Studio 2015 (or later) as your MEX compiler. Despite .mex file is already compiled and
it works as a black box, some libraries are necessary.

1. First, get Microsoft Visual Studio from here.

2. Follow the onscreen steps, please make sure that C++ tools are selected (they may appear as an optional
item).

3. When finished, select it as your default MEX compiler by typing in MATLAB console mex -setup
c++.

2.2. Requirements 7

https://visualstudio.microsoft.com/

SIL Simulator, Release 6.12.92

8 Chapter 2. Quick Start

CHAPTER

THREE

CONFIGURATION

This section details a step by step explanation of how to configure SIL Simulator.

3.1 dll_config.vcfg file

This file sets the simulation configuration, and it is common for both simulation options: Veronte Console and
Veronte S-Function for Simulink.

dll_config.vcfg file indicates the location of the Veronte DLL and Veronte image and establishes some parameters
of the simulation, as the hardware version to simulate or the ID of the virtual autopilot.

This is an example of dll_config:

Path to DLL
\dll .\x64\VeronteDLL.dll

Path to image file (absolute or relative to dll)
\image .\..\Veronte_SD_Image.img

Hardware version
\hwversion 4.8

Autopilot ID
\idversion 2

Before configuring SIL Simulator, these are aspects of the dll_config.vcfg file to consider for a proper functioning
of the simulation:

• Location of dll_config.vcfg file: It must be placed in the same path as the executable code to run. Depending
on the simulation option to use, it must be placed in:

– VeronteConsole.exe path if using Veronte Console

– .slx path if using Veronte S-function for Simulink

Note: .slx files store Simulink model information in a reduced size. As previously explained, users must
program their own Simulink workspace according to their aircraft and simulation goal, but an example is
provided in the SIL folder (mex_function_example.slx).

• DLL and image files paths: It is crucial to precisely indicate the paths of DLL and image files.

9

SIL Simulator, Release 6.12.92

Hardware version parameter

\hwversion version

Users can decide which hardware version to simulate:

4.0 hwversion 4.0
4.5 hwversion 4.5
4.8 hwversion 4.8

ID version parameter

\idversion index

Available Autopilot IDs vary depending on the selected hardware version. The index to be entered will be indicated
by the following table:

idversion 0 1 2 3 4 5
hw v4.0 1008 1025 1128 1373 1559 1654
hw v4.5 1805 1862 1871 2375 2680 2821
hw v4.8 4041 4064 4065 4144 4146 4213

3.2 Step by step - Veronte S-Function

1. Once decompressed, open the SIL folder.

Fig. 1: SIL folder

2. Ensure that the dll_config.vcfg file is in the same path as the .slx file.

Note: .slx files store Simulink model information in a reduced size. As previously explained, users must program
their own Simulink workspace according to their aircraft and simulation goal, but an example is provided in the
SIL folder (mex_function_example.slx).

3. Configure the dll_config.vcfg file in the following cases:

• If the hardware version to simulate differs from v4.0.

• If the DLL and image files are not located in the paths specified in dll_config.vcfg.

10 Chapter 3. Configuration

SIL Simulator, Release 6.12.92

Parameters to configure:

• Path to DLL file VeronteDLL.dll (absolute or relative to the .slx file)

• Path to image file Veronte_SD_Image.img (absolute or relative to DLL file)

• (Optional) Hardware version to simulate

• (Optional and dependent on hardware version) Autopilot ID to simulate

Warning: Autopilot ID parameter only can be chosen if hardware version is also specified. For more
information about setting the ID parameter, consult dll_config.vcfg file section of the present manual.

4. Open Simulink and configure the blocks explained below:

• Add a S-function block, and point to Veronte_SIL.mexw64 code by editing the S-function name:

Fig. 2: S-Function block parameters

• Add a UDP serial communication block and connect it to USB data and length inputs of Veronte S-function.

• Add a second UDP serial communication block and connect it to the USB outputs of Veronte S-function.

3.2. Step by step - Veronte S-Function 11

SIL Simulator, Release 6.12.92

Fig. 3: UDP Blocks

• Configure the desired destination port.

Fig. 4: Destination UDP Port

• For extra information about Simulink configuration, consult the Simulink workspace section of this
manual.

5. In Veronte Link application, configure a UDP connection with the following parameters:

Note: For more information about configurating connections, please consult Connection section of the Veronte
Link user manual.

12 Chapter 3. Configuration

https://manuals.embention.com/veronte-link/en/latest/operation/index.html#connection

SIL Simulator, Release 6.12.92

• Type of connection: UDP

• IP: IP previously configured in Simulink workspace

• Port: Port previously configured in Simulink workspace

6. Run the simulation by running the Simulink model.

7. Check that the Autopilot 1x appears in Veronte Link as Connected and Ready:

Fig. 5: Veronte Link

Note: The autopilot may appear as Loaded with errors in Veronte Link for reasons not related to the simulation
configuration. Refer to Loaded with errors in Veronte Link - Troubleshooting section of this manual.

8. Once the simulation starts, user can proceed as with a physical autopilot:

• 1x PDI Builder for configuration.

• Veronte Ops for operation and mission.

• HIL Simulator for simulating the virtual autopilot with external simulators.

9. Important events or messages occuring within the simulation are registered on SIL.log.

3.2. Step by step - Veronte S-Function 13

https://manuals.embention.com/1x-pdi-builder/en/6.12.latest/index.html
https://manuals.embention.com/veronte-ops/en/6.12/index.html
https://manuals.embention.com/hil-simulator/en/6.12.20/index.html

SIL Simulator, Release 6.12.92

3.3 Step by step - Veronte Console

1. Once decompressed, open the SIL folder.

Fig. 6: SIL folder

2. Ensure that the dll_config.vcfg file is in the same path as VeronteConsole.exe.

3. Configure the dll_config.vcfg file in the following cases:

• If the hardware version to simulate differs from v4.0.

• If the DLL and image files are not located in the paths specified in dll_config.vcfg.

Parameters to configure:

• Path to DLL file VeronteDLL.dll (absolute or relative to VeronteConsole.exe)

• Path to image file Veronte_SD_Image.img (absolute or relative to DLL file)

• (Optional) Hardware version to simulate

• (Optional and dependent on hardware version) Autopilot ID to simulate

Warning: Autopilot ID parameter only can be chosen if hardware version is also specified. For more
information about setting the ID parameter, consult dll_config.vcfg file section of the present manual.

4. In Veronte Link application, configure a UDP connection with the following parameters:

Note: For more information about configurating connections, please consult Connection section of the Veronte
Link user manual.

• Type of connection: UDP

• IP: 127.0.0.1

• Port: 12345

14 Chapter 3. Configuration

https://manuals.embention.com/veronte-link/en/latest/operation/index.html#connection

SIL Simulator, Release 6.12.92

Fig. 7: Veronte Link - UDP Connection for Veronte Console

5. Run the simulation by executing Veronte Console.exe.

6. Check that the Autopilot 1x appears in Veronte Link as Connected and Ready:

3.3. Step by step - Veronte Console 15

SIL Simulator, Release 6.12.92

Fig. 8: Veronte Link

Note: The autopilot may appear as Loaded with errors in Veronte Link for reasons not related to the simulation
configuration. Refer to Loaded with errors in Veronte Link - Troubleshooting section of this manual.

7. Once the simulation starts, user can proceed as with a physical autopilot:

• 1x PDI Builder for configuration.

• Veronte Ops for operation and mission.

• HIL Simulator for simulating the virtual autopilot with external simulators.

16 Chapter 3. Configuration

https://manuals.embention.com/1x-pdi-builder/en/6.12.latest/index.html
https://manuals.embention.com/veronte-ops/en/6.12/index.html
https://manuals.embention.com/hil-simulator/en/6.12.20/index.html

CHAPTER

FOUR

SIMULINK WORKSPACE

SIL Simulator can be run with Simulink software, by means of the S-function block.

This kind of block takes a C, C++, Fortran or even Matlab code, and implements it in a block containing a certain
number of inputs and outputs. As explained in Step by step section, in order to simulate Autopilot 1x the S-function
block must be configured to point to Veronte code (Veronte_SIL.mexw64).

In the following subsections, Veronte S-function parameters are listed and general aspects of Simulink workspace are
explained.

17

SIL Simulator, Release 6.12.92

Fig. 1: S-Function containing the Veronte Autopilot 1x embedded code
18 Chapter 4. Simulink workspace

SIL Simulator, Release 6.12.92

4.1 Inputs

Inputs are described in the next table:

PIN Description Form Size Units
1 Static Pressure 1 [pressure_measurement;sensor temperature] 2x1 𝑃𝑎 ; 𝐾
2 Static Pressure 2 [pressure_measurement;sensor temperature] 2x1 𝑃𝑎 ; 𝐾
3 Static Pressure 3 [pressure_measurement;sensor temperature] 2x1 𝑃𝑎 ; 𝐾
4 Dynamic Pressure [pressure_measurement;sensor temperature] 2x1 𝑃𝑎 ; 𝐾
5 IMU 1 [acc_x;acc_y;acc_z;gyr_x;gyr_y;gyr_z;sensor temperature] 7x1 𝑚

𝑠2 ; 𝑟𝑎𝑑
𝑠 ; 𝐾

6 IMU 2 [acc_x;acc_y;acc_z;gyr_x;gyr_y;gyr_z;sensor temperature] 7x1 𝑚
𝑠2 ; 𝑟𝑎𝑑

𝑠 ; 𝐾
7 IMU 3 [acc_x;acc_y;acc_z;gyr_x;gyr_y;gyr_z;sensor temperature] 7x1 𝑚

𝑠2 ; 𝑟𝑎𝑑
𝑠 ; 𝐾

8 Magnetometer 1 [mag_x;mag_y;mag_z;sensor temperature] 4x1 𝑇 ; 𝐾
9 Magnetometer 2 [mag_x;mag_y;mag_z;sensor temperature] 4x1 𝑇 ; 𝐾
10 Magnetometer 3 [mag_x;mag_y;mag_z;sensor temperature] 4x1 𝑇 ; 𝐾
11 Magnetometer 4 [mag_x;mag_y;mag_z;sensor temperature] 4x1 𝑇 ; 𝐾
12 GNSS 1 [1;3;lon;lat;alt;hr_accu;vt_accu;v_n;v_e;v_d;v_accu] 11x1 𝑑𝑒𝑔 · 107 ; 𝑚𝑚 ; 𝑚𝑚

𝑠

13 GNSS 2 [1;3;lon;lat;alt;hr_accu;vt_accu;v_n;v_e;v_d;v_accu] 11x1 𝑑𝑒𝑔 · 107 ; 𝑚𝑚 ; 𝑚𝑚
𝑠

14 Relative Position 1 [1;x_rel;y_rel;z_rel;d_x;d_y;d_z;x_accu;y_accu;z_accu] 10x1 𝑐𝑚 ; 𝑚𝑚 · 10−1

15 Relative Position 2 [1;x_rel;y_rel;z_rel;d_x;d_y;d_z;x_accu;y_accu;z_accu] 10x1 𝑐𝑚 ; 𝑚𝑚 · 10−1

16 GNSS Time [week_number;milliseconds_of_week] 2x1 -; 𝑚𝑠
17 Lidar 1 [lidar_measurement] 1x1 𝑐𝑚
18 Lidar 2 [lidar_measurement] 1x1 𝑐𝑚
19 Lidar 3 [lidar_measurement] 1x1 𝑐𝑚
20 Lidar 4 [lidar_measurement] 1x1 𝑐𝑚
21 Lidar 5 [lidar_measurement] 1x1 𝑐𝑚
22 IDs Bit Var Out. [Var_IDs] Dynamic(2200 max.)x1 -
23 IDs Unsigned Var Out. [Var_IDs] Dynamic(2002 max.)x1 -
24 IDs Real Var Out. [Var_IDs] Dynamic(4021 max.)x1 -
25 ADCs [adc(1-17)] 17x1 -
26 SCI-A (4G) Data [serial_data] 1024x1 -
27 SCI-A (4G) Length [serial_length] 1x1 -
28 SCI-B (Radio) Data [serial_data] 1024x1 -
29 SCI-B (Radio) Length [serial_length] 1x1 -
30 SCI-C (RS-485) Data [serial_data] 1024x1 -
31 SCI-C (RS-485) Length [serial_length] 1x1 -
32 SCI-D (RS-232) Data [serial_data] 1024x1 -
33 SCI-D (RS-232) Length [serial_length] 1x1 -
34 USB Data [serial_data] 1024x1 -
35 USB Length [serial_length] 1x1 -
36 Bit Var In. [Var0_ID;Var0_value;. . . ;Var80_ID;Var80_value] 160x1 -
37 Unsigned Var In. [Var0_ID;Var0_value;. . . ;Var80_ID;Var80_value] 160x1 -
38 Real Var In. [Var0_ID;Var0_value;. . . ;Var80_ID;Var80_value] 160x1 -

Note: In the table above, the size of the inputs “IDs Bit/Unsigned/Real Var Out.” (pins 22, 23 and 24 respectively)
have been described as Dynamic because they don’t need to have a fixed size. However, the size has to be continuous
throughout the simulation.

4.1. Inputs 19

SIL Simulator, Release 6.12.92

4.2 Outputs

Outputs are the following:

PIN Description Form Size Units
1 Control Outputs [control_outputs(1-20)] 20x1 -
2 Servo Outputs [servos(1-32)] 32x1 -
3 Position [lon;lat;alt] 3x1 𝑟𝑎𝑑 ; 𝑚
4 Heights [msl,agl] 2x1 𝑚
5 Velocities [longitudinal_v;lateral_v;velocity(module)] 3x1 𝑚

𝑠

6 IAS, TAS, GS [ias,tas,gs] 3x1 𝑚
𝑠

7 MSL [msl_from_qnh;msl_from_ISA] 2x1 𝑚
8 Angle of Attack, Sideslip [angle_of_attack;sideslip] 2x1 𝑟𝑎𝑑
9 Dynamic Pressure [dynamic_pressure] 3x1 𝑃𝑎
10 Raw IAS [ias_raw] 1x1 𝑚

𝑠

11 Tangential Acceleration [tangential_acceleration] 1x1 𝑚
𝑠2

12 Body Velocities [longitudinal_v;lateral_v;vertical_v] 3x1 𝑚
𝑠

13 Angular Velocities [roll_rate;pitch_rate;yaw_rate] 3x1 𝑟𝑎𝑑
𝑠

14 Angular Acceleration [acc_z_axis;acc_y_axis;acc_x_axis] 3x1 𝑟𝑎𝑑
𝑠

15 NED Acceleration [acc_north;acc_east;acc_down] 3x1 𝑚
𝑠2

16 NED Velocities [v_north;v_east;v_down] 3x1 𝑚
𝑠

17 Attitude [Yaw;Pitch;Roll] 3x1 𝑟𝑎𝑑
18 Co-Angles [co-Yaw;co-Pitch;co-Roll] 3x1 𝑟𝑎𝑑
19 Aerodynamic Angles [heading,flight_path;bank_angle] 3x1 𝑟𝑎𝑑
20 Body Accelerations [acc_x,acc_y;acc_z] 3x1 𝑚

𝑠2

21 Load factor [nx;ny;nz] 3x1 -
22 SCI-A (4G) Data [serial_data] 1024x1 -
23 SCI-A (4G) Length [serial_length] 1x1 -
24 SCI-B (Radio) Data [serial_data] 1024x1 -
25 SCI-B (Radio) Length [serial_length] 1x1 -
26 SCI-C (RS-485) Data [serial_data] 1024x1 -
27 SCI-C (RS-485) Length [serial_length] 1x1 -
28 SCI-D (RS-232) Data [serial_data] 1024x1 -
29 SCI-D (RS-232) Length [serial_length] 1x1 -
30 USB Data [serial_data] 1024x1 -
31 USB Length [serial_length] 1x1 -
32 Bit Var Out. [Var_values] Dynamic(2200 max.)x1 -
33 Unsigned Var Out. [Var_values] Dynamic(2002 max.)x1 -
34 Real Var Out. [Var_values] Dynamic(4021 max.)x1 -

Note: The outputs “Bit/Unsigned/Real Var Out.” (pins 32, 33 and 34 respectively) correspond to the inputs “IDs
Bit/Unsigned/Real Var Out.” (pins 22, 23 and 24 respectively), so they will have the same size as defined in the inputs.

In the following sections, the user can have a look at how to implement the sensors and telemetry blocks, as well as
general visualisation of a complete simulation.

20 Chapter 4. Simulink workspace

SIL Simulator, Release 6.12.92

4.3 Sensors

Sensors measurements are the inputs of the mex block (embedded code).

To perform a correct simulation, the user has to configure the inputs with the same scheme as Veronte Autopilot 1x
reads them. Each sensor has a certain vector/array which usually includes raw data in one or more coordinates, sensor
temperatures, variances or squared errors.

Warning: Users cannot set constant values for these variables as this may be interpreted by Veronte Autopilot 1x
as sensor failure.

For this reason, if the simulated signal is constant, it is recommended to add some white noise to it.

This section aims to ilustrate how to implement the inputs described in the previous section. The structures shown
here are indicative and can of course be adapted by the user:

Fig. 2: Sensors inputs

Next, the user will find some examples of how to implement the following sensors:

• Environment

4.3. Sensors 21

SIL Simulator, Release 6.12.92

• Pressure sensors

• IMU

• Magnetometer

• GNSS

• ADC

• Serial Communications

4.3.1 Environment

To simulate a model correctly, it is necessary to take into account that the environmental variables change depending
on the position of the UAV. The user can choose between using a simple and constant model or modifying at each step
the environmental variables according to a complex model.

This model should group the atmospheric properties (temperature, pressure, etc.) which change with altitude (an offset
can also be added), the gravity vector, as well as the magnetic field which changes according the UAV coordinates. All
this information can be used for a better characterisation of the sensor measurements.

A basic example is shown below. It is divided into 3 different models (ISA atmosphere model, WGS84 model for
gravity vector, and the World Magnetic Model). Each model is included in a user Matlab function whose arguments
are the inputs of the block.

Fig. 3: Environment block

Instead of creating their own functions, users can use those included in the Aerospace Toolbox:

1. World Magnetic Model 2020:

22 Chapter 4. Simulink workspace

SIL Simulator, Release 6.12.92

Fig. 4: Aerospace blockset function - WMM2020

2. ISA Atmosphere Model:

Fig. 5: Aerospace blockset function - ISA Atmosphere Model

3. WGS84 Gravity Model:

Fig. 6: Aerospace blockset function - WGS84 Gravity Model

4.3. Sensors 23

SIL Simulator, Release 6.12.92

4.3.2 Pressure sensors

4.3.2.1 Static Pressure

Static Pressure inputs in the S-function simulate the internal ones in Veronte Autopilot 1x. The required information
consists of raw measurements and the sensor device temperature.

The S-function contains 3 ports representing the 3 static pressure sensors that are included in Autopilot 1x. Then
this information should be used according to the static pressure sensor selected in the configuration (in the 1x PDI
Builder software).

In the following table, the user can consult the static pressure sensors available for each hardware version:

Hardware version Static Pressure
4.0 Static Pressure sensor 0

Static Pressure sensor 1
4.5 Static Pressure sensor 0

Static Pressure sensor 1
Static Pressure sensor 2

4.8 Static Pressure sensor 1
Static Pressure sensor 2

Important: Please note that, the number of inputs (ports) correspond to the maximum number of inputs available on
all hardware versions, as can be seen in the aforementioned table.

Below are some examples of how to implement the static pressure:

• Constant value

Only one block constant for raw pressure and one for temperature.

Fig. 7: Static pressure - Constant

• Step

If users wish to simulate a leap in pressure measurements, it is possible to add a step to the previous configuration.
In the example below a difference in 100 meters is represented.

24 Chapter 4. Simulink workspace

SIL Simulator, Release 6.12.92

Fig. 8: Static pressure - Step input

Important: Note that in both examples a White Noise block has been added.

4.3.2.2 Dynamic Pressure

The dynamic or velocity pressure input requires the raw measurement of dynamic pressure and sensor device
temperature.

Some examples of how to implement dynamic pressure are shown below:

• Constant value

As the raw measurement of dynamic pressure has been added as a constant, a white noise block is also added:

4.3. Sensors 25

SIL Simulator, Release 6.12.92

Fig. 9: Dynamic pressure - Constant

• Complex model

In this example, Autopilot 1x is assumed to be mounted on the X-axis in Body rame. Therefore, from the velocity
in NED frames, a rotation is applied to obtain the velocity in Body frames, and then the first component of the
vector is taken.

In addition, the density value is taken from the environment model.

Fig. 10: Dynamic Pressure - Subsystem

26 Chapter 4. Simulink workspace

SIL Simulator, Release 6.12.92

4.3.3 IMU

IMU measures and informs about velocity, attitude and forces by combining the accelerometer and gyroscope readings.

Veronte Autopilot 1x needs to receive 7 measurements: 3-axis accelerometer, 3-axis gyroscope and sensor device
temperature.

In the S-function there are 3 inputs for IMUs. These IMUs are mounted differently on the Autopilot 1x (they may not
be aligned with the autopilot), so the user has to keep in mind the rotation matrix that the Autopilot 1x is using.

Important:

• The rotation matrices listed in the following table are the required rotations between each sensor and the Autopilot
1x board coordinates (for more information on the Veronte Autopilot 1x coordinates, please check the Orientation
- Hardware Installation section of the 1x Hardware Manual).

• Please note that, the number of inputs (ports) correspond to the maximum number of inputs available on all
hardware versions, as can be seen in the following table.

• As detailed in the table below, if users wish to enter measurements into the IMU 3 with hardware version 4.8,
they must enter them into the IMU0 input.

This is because the block input values belonging to IMU0 also go internally to this IMU. Therefore, the same
S-Function can be used for both hardware version 4.0 and 4.8.

4.3. Sensors 27

https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#orientation
https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#orientation

SIL Simulator, Release 6.12.92

Hardware
version

IMU Rotation
Matrix

4.0 IMU0 𝑅 =⎛⎝0 1 0
1 0 0
0 0 −1

⎞⎠
IMU1 𝑅 =⎛⎝0 0 −1

1 0 0
0 −1 0

⎞⎠
4.5 IMU0 𝑅 =⎛⎝0 1 0

1 0 0
0 0 −1

⎞⎠
IMU1 𝑅 =⎛⎝0 0 −1

1 0 0
0 −1 0

⎞⎠
IMU2 𝑅 =⎛⎝ 0 −1 0

−1 0 0
0 0 −1

⎞⎠
4.8 IMU3

Note: IMU3 corresponds to IMU0 input as explained in the previous note

𝑅 =⎛⎝1 0 0
0 0 1
0 −1 0

⎞⎠
IMU1 𝑅 =⎛⎝−1 0 0

0 0 1
0 1 0

⎞⎠
IMU2 𝑅 =⎛⎝−1 0 0

0 0 1
0 1 0

⎞⎠
Within the S-Function, the introduced data is transformed to match the coordinates of the Veronte Autopilot 1x. So, in
order to be correctly transformed inside the S-Function, the data must have been previously “prepared” to be introduced
into it in the following way:

𝑑𝑎𝑡𝑎(𝑖𝑛𝑝𝑢𝑡) = (𝑆𝑒𝑛𝑠𝑜𝑟 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑡𝑟𝑖𝑥)𝑇 · 𝑑𝑎𝑡𝑎(𝑏𝑜𝑎𝑟𝑑)

In the example provided by Embention with the SIL package, the simin_IMU0 block already has this transformation
implemented, so it can be entered directly into the S-Function without prior “preparation”.

There are several ways to implement a suitable read group for an IMU:

• Constant value

The user can create a vector with constant values.

• From Workspace block

28 Chapter 4. Simulink workspace

SIL Simulator, Release 6.12.92

Another option could be to store some data (i.e. from a previous flight), load it into the matlab workspace, and
then send these values to Simulink using the block name as From Workspace.

Fig. 11: IMU - From workspace blocks

This block allows the user to read from an array of values (and interpolate when there is no information in this
step). Moreover, users can choose between several options in case data vector is over. For example, it is possible
to extrapolate the information or reset the list of values.

4.3. Sensors 29

SIL Simulator, Release 6.12.92

Fig. 12: From workspace block configuration

• Complex model

Another method is to read these values from Environment (gravity vector in NED frame and air temperature)
and from States (acceleration in body axes, angular velocity, angular acceleration and the rotation matrix from
NED to Body).

These values are fed into a Matlab function in which the IMU behaviour is simulated and the measurements are
computed. In addition, users have to cross-reference the measurements or apply a rotation matrix depending on
the orientation of the IMU sensor.

In the example below, this data feeds the first port (this IMU is selected in the 1x PDI Builder configuration).

30 Chapter 4. Simulink workspace

SIL Simulator, Release 6.12.92

Therefore, the user has to cross the signals to adjust the rotation matrix.

The complete subsystem results as follows:

Fig. 13: IMU - Subsystem

Fig. 14: IMU - Accelerometer selected in 1x PDI Builder

4.3. Sensors 31

SIL Simulator, Release 6.12.92

Fig. 15: IMU - Gyroscope selected in 1x PDI Builder

However, instead of using a user function, Aerospace blockset includes some functions for IMU simulation that
can be employed:

Fig. 16: IMU - Aerospace Toolbox block

• Specific example from the example provided by Embention

The data in the example provided is already prepared for being introduced into the S-Function as the IMU 0 data,

32 Chapter 4. Simulink workspace

SIL Simulator, Release 6.12.92

that is the IMU0 sensor in hardware version 4.0.

Therefore, if users want to use the data provided by Embention (simin_IMU0) and in their configuration with a
4.8 hwv they have the IMU 3 selected, the following transformations are necessary for correct operation:

1. Transform from IMU 0 to board coordinates

Undo the “preparation for input” (this “preparation” has been described at the beginning of the section) to
obtain the data provided by the sensor in body coordinates:

𝑑𝑎𝑡𝑎(𝑏𝑜𝑎𝑟𝑑) =

⎛⎝0 1 0
1 0 0
0 0 −1

⎞⎠ · 𝑑𝑎𝑡𝑎(𝑒𝑥𝑎𝑚𝑝𝑙𝑒)

– 𝑑𝑎𝑡𝑎(𝑒𝑥𝑎𝑚𝑝𝑙𝑒) is the data inside the simin_IMU0 block

2. Transform from board to IMU 3 coordinates

Prepare the data for conversion to IMU 3 coordinates by multiplying the sensor body data by the IMU 3
rotation matrix transpose:

𝑑𝑎𝑡𝑎(𝑖𝑛𝑝𝑢𝑡) =

⎛⎝1 0 0
0 0 −1
0 1 0

⎞⎠ · 𝑑𝑎𝑡𝑎(𝑏𝑜𝑎𝑟𝑑)

Finally, the whole transformation should look like this:

Fig. 17: IMU - Example

4.3. Sensors 33

SIL Simulator, Release 6.12.92

4.3.4 Magnetometer

The magnetometer inputs expect to receive magnetic field measurements in 3 axes, as well as the sensor device
temperature.

The S-function has 4 ports for magnetometer reading. In addition, as with IMUs, the user must take into account how
the magnetometer is mounted (rotation matrix).

Hardware version Magnetometer Rotation Matrix

4.0 MAG0 𝑅 =

⎛⎝−1 0 0
0 1 0
0 0 −1

⎞⎠
4.5 MAG0 𝑅 =

⎛⎝−1 0 0
0 1 0
0 0 −1

⎞⎠
MAG1 𝑅 =

⎛⎝ 0 −1 0
−1 0 0
0 0 1

⎞⎠
4.8 MAG0 𝑅 =

⎛⎝0 0 −1
0 1 0
1 0 0

⎞⎠
MAG1 𝑅 =

⎛⎝ 0 0 1
−1 0 0
0 1 0

⎞⎠
MAG2 𝑅 =

⎛⎝0 0 1
1 0 0
0 1 0

⎞⎠

Important: Please note that the number of inputs (ports) corresponds to the maximum number of inputs available on
all hardware and SIL Simulator versions, as can be seen in the aforementioned table.

Fig. 18: Magnetometer - Subsystem

The user can also simulate another magnetometer (external magnetometer) and send the information through a serial
port. For more information on serial communication, refer to Serial communications section of this manual.

34 Chapter 4. Simulink workspace

SIL Simulator, Release 6.12.92

4.3.5 GNSS

GNSS receiver ports (there are 2 ports, GNSS1 and GNSS2) expect to receive an array with the following
information:

1. Fix status

2. Fix type

• 0: no fix

• 1: dead reckoning only

• 2: 2D-fix

• 3: 3D-fix

• 4: GNSS + dead reckoning fix

3. Longitude

4. Latitude

5. Altitude

6. Horizontal accuracy

7. Vertical accuracy

8. North Velocity

9. East velocity

10. Down Velocity

11. Speed Accuracy

4.3. Sensors 35

SIL Simulator, Release 6.12.92

Fig. 19: GNSS array

Note:

• The angle inputs are in 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 · 107 units.

• The distance inputs are in 𝑚𝑖𝑙𝑙𝑖𝑚𝑒𝑡𝑟𝑒𝑠 units.

• The speed inputs are in 𝑚𝑖𝑙𝑙𝑖𝑚𝑒𝑡𝑟𝑒𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 units.

The accuracy values are equal to the square root of the “Square error” parameter. These values are supposed to
be computed by the GPS device and are used in the EKF for GNSS solution. However, in the configuration files user
can choose between these ones or values set by user.

36 Chapter 4. Simulink workspace

SIL Simulator, Release 6.12.92

Fig. 20: GNSS variances - 1x PDI Builder

RTK Example Block

To enable the RTK feature, the user has to modify the configuration (for more information on this, see GNSS sensor
block - Block Programs section of the 1x PDI Builder user manual), and include more inputs via the S-function.

This input is called Relative Position, and requires an array of 10 elements:

1. Status: 0 is Data invalid and 1 is Data valid.

2. RelPosN: North component of relative position vector (cm)

3. RelPosE: East component of relative position vector (cm)

4. relPosD: Down component of relative position vector (cm)

4.3. Sensors 37

https://manuals.embention.com/1x-pdi-builder/en/6.12.latest/1x%20configuration/block%20programs/sensors/index.html#gnss-sensor
https://manuals.embention.com/1x-pdi-builder/en/6.12.latest/1x%20configuration/block%20programs/sensors/index.html#gnss-sensor

SIL Simulator, Release 6.12.92

5. relPosHPN: High precision North component (mm)

6. relPosHPE: High precision East component (mm)

7. relPosHPD: High precision Down component (mm)

8. accN: Accuracy of relative position North component (mm)

9. accE: Accuracy of relative position East component (mm)

10. accD: Accuracy of relative position DOwn component (mm)

High precision components must be in range -99 to 99 millimetres. The full component of the relative position vector
(in cm) is given by the addition of the 2 components.

An example of this subgroup is shown below:

Fig. 21: RTK inputs

38 Chapter 4. Simulink workspace

SIL Simulator, Release 6.12.92

4.3.6 ADC

Veronte Autopilot 1x is equipped with 5 external ADC channels (linked to 5 pins) and 12 internal channels.
Therefore, in total, user has to create an array of 17 elements. These values are stored as internal variables in Veronte
Autopilot 1x, and it is possible to use them in certain user programs.

The order of this array is: Internal ADC Channel 0, External ADC Channel 0-4, Internal ADC 1-11.

The following image shows an example (with the first external ADC pin):

Fig. 22: ADC readings

4.3. Sensors 39

SIL Simulator, Release 6.12.92

4.3.7 Serial Communications

Veronte Autopilot 1x can manage input and output serial ports (for more information on this, see the I/O Setup -
Input/Output section of the 1x PDI Builder user manual).

A simply way to create serial frames (data in length wires) is by using the simulink UDP block. Therefore, the data
entering Veronte Autopilot 1x should be sent via UDP (if this approach is adopted):

Fig. 23: UDP Block

The ports included in Autopilot 1x and represented in the S-function are as follows:

• USB: USB port

• SCI-A: 4G connection

• SCI-B: Radio

• SCI-C: Serial Port 485

• SCI-D: Serial Port 232

Example: Sending a RS-232 message

In the following example, a constant value is sent as a RS-232 message.

First, the message is created as a bit array with Byte Pack block.

Next, it is neccesary to receive this information as UDP packets on the corresponding port (in this case 16003).
Width block is used to compute data length. This UDP packet is then sent to the S-function:

40 Chapter 4. Simulink workspace

https://manuals.embention.com/1x-pdi-builder/en/6.12.latest/1x%20configuration/input_output/io%20setup/index.html
https://manuals.embention.com/1x-pdi-builder/en/6.12.latest/1x%20configuration/input_output/io%20setup/index.html

SIL Simulator, Release 6.12.92

Fig. 24: Sending a RS-232 message in Simulink

Finally, the Autopilot 1x configuration should be able to parse this information using Serial Custom Messages
consumers. For more information on this, refer to Serial Custom Messages - Input/Output section of the 1x PDI
Builder user manual.

Fig. 25: Custom message - 1x PDI Builder

Warning: The variable type parsed by Veronte Autopilot 1x has to match the variable type generated in the Byte
Pack block.

4.4 Telemetry

In the S-function there are 3 inputs specially dedicated to select custom temeletry (pin 22 for Bit variables, pin 23 for
Unsigned variables and pin 24 for Real variables). The size of each of these inputs is not fixed, although it has to be
continuous throughout the simulation.

Users must enter the corresponding Ids of the variables that is aiming to monitor. The ID of each variable can be easily
found in the List of variables section of the 1x Software Manual.

In the following example, a block function has been configured for each type of variables:

4.4. Telemetry 41

https://manuals.embention.com/1x-pdi-builder/en/6.12.latest/1x%20configuration/input_output/io%20setup/index.html#serial-custom-messages
https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html

SIL Simulator, Release 6.12.92

Fig. 26: Telemetry blocks

The example function for real variables is given below. In it, the desired real variables are configured to be displayed.

Fig. 27: Telemetry block - Real variables function

Finally, the last 3 outputs of the S-function are vectors containing the Bit, Unsigned and Real variables information
respectively. The user can postprocess them as desired (Scope block, To Workspace block, etc.).

42 Chapter 4. Simulink workspace

SIL Simulator, Release 6.12.92

Fig. 28: Display variables - Scope block example

4.5 Simulation

A complete simulation is composed of many systems or blocks.

In this manual the sensors, the environment and the Veronte Autopilot 1x subsystem have been already introduced.
All theses blocks must be combined with others, such as Airframe block to simulate the vehicle behavior.

Once the main blocks are configured, the complete simulation result should look like this:

Fig. 29: Complete Setup Example

Important:

• Please note that this is only an example.

• Users will not receive this example with SIL Simulator package.

4.5. Simulation 43

SIL Simulator, Release 6.12.92

The main systems are:

• Veronte Autopilot 1x: Consists basically of the S-function and its link with the rest of the blocks (sensors,
outputs, etc.)

• Airframe: A model of the flight dynamics. The inputs of this system are the outputs of the Veronte Autopilot
1x system (nominal value for servos).

For example, for a quadcopter, the input to this block consists of the PWM signal values (one for each motor).
Then, with this value, the airframe system updates the status of the platform. The state vector is used to predict
new environmental conditions and sensor readings.

• Environment: A model of the atmosphere, magnetic field, WGS84, etc.

• Sensors: It contains individual blocks or subgroups of all sensors that Veronte Autopilot 1x needs as input.

• Visualization: Contains display blocks, scopes, flight instruments, etc.

To ensure that everything works correctly, users must choose the simulation time step according to GNC frequency and
core 1 frequency. Core 1 frequency is 1000 Hz fixed while GNC frequency is configurable. The simulation time step
must be a common divisor of both time steps.

For example: if GNC has a time step of 0.0025 s (frequency = 400 Hz) and core 1 has a time step of 0.001 s (1000 Hz),
the simulation can be set to 0.0005 s (2000 Hz), so the S-function will execute core 1, GNC or both everytime they are
required.

Fig. 30: Time step settings

44 Chapter 4. Simulink workspace

CHAPTER

FIVE

TROUBLESHOOTING

5.1 dll_config.vcfg file not working

A usual mistake while configuring dll_config.vcfg is defining paths using quoting marks. Note that paths must be
defined as explained in dll_config.vcfg file section of this manual.

Not valid configuration:

Path to DLL
\dll ".\x64\VeronteDLL.dll"

Valid configuration:

Path to DLL
\dll .\x64\VeronteDLL.dll

5.2 Logs

SIL.log provides a record of any issues that have arisen during the execution process, please take a look at it if anything
fails and do not hesitate to contact the support team using the Joint Collaboration Framework; for more information,
please consult the JCF user manual.

In case the log shows a PDI error, please refer to the List of PDI errors section in the 1x Software Manual.

5.3 License ID warning in Veronte Ops

Veronte_SD_Image has a license associated to a specific ID. Therefore, customizing the ID of the virtual autopilot may
result in a limited performance of the system.

For solving this issue, open Veronte Ops application and update the limited license as explained in the Platform license
- Platform section of Veronte Ops user manual.

45

https://manuals.embention.com/joint-collaboration-framework/en/0.1/index.html
https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#list-of-pdi-errors
https://manuals.embention.com/veronte-ops/en/6.12/panels/platform/index.html#platform-license
https://manuals.embention.com/veronte-ops/en/6.12/panels/platform/index.html#platform-license

SIL Simulator, Release 6.12.92

Fig. 1: Veronte Ops - Platform license

5.4 Loaded with errors in Veronte Link

Once the simulation is running, the system of Veronte works as if working with a physical autopilot. This means that the
simulated autopilot can appear in Veronte Link as Loaded with errors for several reasons unrelated to SIL Simulator.

To handle these, users should consult the error type in the 1x PDI Builder, referring to the 1x PDI Builder user manual
for more information.

Fig. 2: 1x PDI Builder - PDI Errors button

46 Chapter 5. Troubleshooting

https://manuals.embention.com/1x-pdi-builder/en/6.12.latest/index.html

SIL Simulator, Release 6.12.92

5.5 Running Veronte Console

In the case of using VeronteConsole.exe, it is also possible to pass the paths as as arguments to the windows
command, for this:

1. Open windows command ⇒ cmd

2. Pass to it:

VeronteConsole.exe \dll C:\Users\user\Folder\VeronteDLL.dll \image C:\Users\user\Folder\
Veronte_SD_Image.img

5.5. Running Veronte Console 47

SIL Simulator, Release 6.12.92

48 Chapter 5. Troubleshooting

CHAPTER

SIX

ACRONYMS AND DEFINITIONS

ADC Analog to Digital Converter
CAN Controller Area Network
DLL Dynamic Link Library
EKF Extended Kalman Filter
FTP File Transfer Protocol
GNC Guidance Navigation Control
GNSS Global Navigation Satellite Systems
GPS Global Positioning System
HIL Hardware In the Loop
IMU Inertial Measurement Unit
ISA International Standard Atmosphere
JCF Joint Collaboration Framework
NED Noth East Down (coordinates)
PC Personal Computer
PDI Parameter Data Item
PWM Pulse Width Modulation
RS232 Recommended Standard 232
RTK Real Time Kinematic
SCI Serial Communication Interface
SIL Software In the Loop
SRTM Shuttle Radar Topography Mission
UAV Unmanned Aerial Vehicle
UDP User Datagram Protocol
USB Universal Serial Bus
WGS84 World Geodetic System 84
WMM World Magnetic Model

49

	Introduction
	Veronte Console
	Veronte S-function

	Quick Start
	Download
	Requirements

	Configuration
	dll_config.vcfg file
	Step by step - Veronte S-Function
	Step by step - Veronte Console

	Simulink workspace
	Inputs
	Outputs
	Sensors
	Environment
	Pressure sensors
	Static Pressure
	Dynamic Pressure

	IMU
	Magnetometer
	GNSS
	ADC
	Serial Communications

	Telemetry
	Simulation

	Troubleshooting
	dll_config.vcfg file not working
	Logs
	License ID warning in Veronte Ops
	Loaded with errors in Veronte Link
	Running Veronte Console

	Acronyms and Definitions

