

Software in the Loop (SIL)

[image: Workspace Main Interface]

Veronte autopilot
This manual contains the information required for the user to run a Software in the loop simulation using Matlab and Simulink. This document includes a basic description of how our autopilot works with Simulink, and some examples to allow the user to create a complete model from scratch.

	Version

	UM.306.5.42.28

	Date

	2023-01-30

Introduction

A software in the loop simulation consists of a Simulink model that simulates the behaviour of the system formed by the autopilot and a vehicle, without having the physical devices connected to the computer, in contrast to the HIL which has both the autopilot and (optionally) vehicle connected to the PC. This option has several advantages when it is compared with a HIL setup:

	Complete simulations without any hardware.

	Possibility of using your own vehicle model: user can define the dynamics of his vehicule (with the desired complexity) without using external programs, like Plane Maker.

	Possibility of simulating differents kinds of sensors even if they are not fitted in Veronte. All you need is the raw sensor reading.

	All results can be exported/visualized to MATLAB workspace simultaneously.

	Veronte Block runs faster than real time, allowing the user to execute a series of simulations in a short time. This feature depends on the complexity of the model and the capability of the computer where the simulation is running.

	Light computational load.

Requisites

In order to run a SIL simulation with veronte autopilot the followings programs and toolbox are required:

	MATLAB + Simulink (basic package).

	Simulink Real-Time : this blockset contains useful blocks to be used with buses: UDP/RS232/CAN.

	Microsoft Visual Studio 2015 (or later) as your MEX compiler. Despite .mex file is already compiled and it works as a black box, some libraries are necessary.

Moreover, the user can be helped by other toolboxes when implementing their model, such as Aerospace toolbox: contains sensor blocks, flight instruments and environment blocks.

Basic Package

[image: ../_images/basicfiles.png]

Basic package files

	The basic SIL package consists of the followings files:
	
	gps_time.m: a matlab function which calculates the GPS/GNSS number of weeks.

	import_post_flight: a matlab script for loading an external source of inertial data (IMU). It reads this information from a csv file.

	mex_function_example.slx: simulink file. It includes a little example about how using veronte autopilot with sensor readings.

	Mex.m: matlab script for compiling veronte code.

	reset_SIL: script which must be executed before running a simulation.

	Veronte_SD_image.img: contains the autopilot configuration information.

	Veronte_SIL.mexw64 : mex file. It consists of all the embedded veronte code compiled. It works as a black box. Like Veronte, each mex file has a version. In order to ask for a newer version, contact with sales team at sales@embention.com.

Dealing with PDI files

Before Pipe v.6.6

Veronte_SD_image.img contains all the configuration information. PDI are uploaded exactly the same way that would be uploaded to a physical autopilot. Once connected to Veronte Pipe, a virtual autopilot will be detected in safe mode. So the steps to upload/change the PDI configuration are:

	Run Simulink model: to be able to upload new PDI files the virtual autopilot must appear in pipe. So the SIL simulation must start in order to send the proper information.

	Enter autopilot in maintenance mode: then stop the simulation and press run again.

[image: ../_images/enterMaintenance.png]

Enter Maintenance mode

	Upload a new PDI file: Once the virtual autopilot appears in maintenance mode, press on change configuration. Select your PDI files and exit from maintenance mode. Stop Simulink.

[image: ../_images/maintenance.png]

Change setup

	Run Simulink with the correct configuration.

After Pipe v.6.6 (Included) - PDI builder

	Open VeronteLink and create an Ethernet connection (Connecting to Pipe).

	Run Simulink Model to simulate the autopilot information. Check autopilot information appears in VeronteLink.

[image: ../_images/verontelink.png]

Veronte Link

	Open PDI Builder and select your autopilot. Then click on link button (5). PDI Builder Interface allows the user the following actions : Create or modify PDI files offline (1), upload PDI configuration to the autopilot (2), open the autopilot configuration to modify it (3), change between maintenance and normal mode (4).

[image: ../_images/pdibuilder.png]

PDI builder

	If you want to modify a SD image click on (3).

	If you want to upload your PDI files, change to Maintenance mode (4). Stop the Simulation and press run again. Now the autopilot selected has an orange color. Press Upload PDI (2) and select the new configuration. Exit maintenance mode (4).

Autopilot Simulation

The autopilot is implemented in Simulink with an S-Function. This kind of block takes a C, C++, Fortran or even Matlab code, and implements it in a block containing a certain number of inputs and outputs. A typical Veronte s-function is shown below.

[image: Simulation - S-Function containing the autopilot embedded code]

S-Function containing the autopilot embedded code
Inputs are described in the next table:

	PIN

	Signal Type

	Description

	Form

	Size

	Units

	1

	Input

	Static Pressure 1

	[pressure_measurement;sensor temperature]

	2x1

	Pa / K

	2

	Input

	Static Pressure 2

	[pressure_measurement;sensor temperature]

	2x1

	Pa / K

	3

	Input

	Static Pressure 3

	[pressure_measurement;sensor temperature]

	2x1

	Pa / K

	4

	Input

	Dynamic Pressure

	[pressure_measurement;sensor temperature]

	2x1

	Pa / K

	5

	Input

	IMU 1

	[acc_x;acc_y;acc_z;gyr_x;gyr_y;gyr_z;sensor temperature]

	7x1

	m/s^2 / m/s / K

	6

	Input

	IMU 2

	[acc_x;acc_y;acc_z;gyr_x;gyr_y;gyr_z;sensor temperature]

	7x1

	m/s^2 / m/s / K

	7

	Input

	IMU 3

	[acc_x;acc_y;acc_z;gyr_x;gyr_y;gyr_z;sensor temperature]

	7x1

	m/s^2 / m/s / K

	8

	Input

	Magnetometer 1

	[mag_x;mag_y;mag_z;sensor temperature]

	4x1

	T

	9

	Input

	Magnetometer 2

	[mag_x;mag_y;mag_z;sensor temperature]

	4x1

	T

	10

	Input

	Magnetometer 3

	[mag_x;mag_y;mag_z;sensor temperature]

	4x1

	T

	11

	Input

	Magnetometer 4

	[mag_x;mag_y;mag_z;sensor temperature]

	4x1

	T

	12

	Input

	GNSS 1

	[1;3;lon;lat;alt;hr_accu;vt_accu;v_n;v_e;v_d;v_accu]

	11x1

	deg 10^7 / mm / mm/s

	13

	Input

	GNSS 2

	[1;3;lon;lat;alt;hr_accu;vt_accu;v_n;v_e;v_d;v_accu]

	11x1

	deg 10^7 / mm / mm/s

	14

	Input

	Relative Position 1

	[1;x_rel;y_rel;z_rel;d_x;d_y;d_z;x_accu;y_accu;z_accu]

	10x1

	cm / mm * 10^-1

	15

	Input

	Relative Position 2

	[1;x_rel;y_rel;z_rel;d_x;d_y;d_z;x_accu;y_accu;z_accu]

	10x1

	cm / mm * 10^-1

	16

	Input

	GPS Time

	[week_number;seconds_of_week]

	2x1

	
	/ s

	17

	Input

	Lidar 1

	[lidar_measurement]

	1x1

	cm

	18

	Input

	Lidar 2

	[lidar_measurement]

	1x1

	cm

	19

	Input

	Lidar 3

	[lidar_measurement]

	1x1

	cm

	20

	Input

	Lidar 4

	[lidar_measurement]

	1x1

	cm

	21

	Input

	Lidar 5

	[lidar_measurement]

	1x1

	cm

	22

	Input

	ID Bit Var

	[Var_IDs]

	50x1

	m

	23

	Input

	ID Unsigned Var

	[Var_IDs]

	50x1

	m

	24

	Input

	ID Real Var

	[Var_IDs]

	50x1

	m

	25

	Input

	ADCs

	[adc(1-17)]

	17x1

	
	

	26

	Input

	SCIA Data

	[serial_data]

	1024x1

	
	

	27

	Input

	SCIA Length

	[serial_length]

	1x1

	
	

	28

	Input

	SCIB Data

	[serial_data]

	1024x1

	
	

	29

	Input

	SCIB Length

	[serial_length]

	1x1

	
	

	30

	Input

	SCIC Data

	[serial_data]

	1024x1

	
	

	31

	Input

	SCIC Length

	[serial_length]

	1x1

	
	

	32

	Input

	SCID Data

	[serial_data]

	1024x1

	
	

	33

	Input

	SCID Length

	[serial_length]

	1x1

	
	

	34

	Input

	USB Data

	[serial_data]

	1024x1

	
	

	35

	Input

	USB Length

	[serial_length]

	1x1

	
	

Outputs are the following:

	PIN

	Signal Type

	Description

	Form | Size

	

	1

	Output

	Control Outputs

	[control_outputs(1-20)] | 20x1

	
	

	2

	Output

	Servo Values

	[servos(1-32)]

	32x1

	
	

	3

	Output

	Position

	[lat;lon;alt]

	3x1

	rad / m

	4

	Output

	Heights

	[msl,agl]

	2x1

	m

	5

	Output

	Velocities

	[longitudinal_v;lateral_v;velocity(module)]

	3x1

	m/s

	6

	Output

	IAS TAS GS

	[ias,tas,gs]

	3x1

	m/s

	7

	Output

	MSL

	[msl_from_qnh;msl_from_ISA]

	2x1

	m

	8

	Output

	Angle of Attack / Sideslip

	[angle_of_attack;sideslip]

	2x1

	rad

	9

	Output

	Q_Infinty

	[dynamic_pressure]

	1x1

	Pa

	10

	Output

	IAS RAW

	[ias_raw]

	1x1

	m/s

	11

	Output

	Tangential Acceleration

	[tangential_acceleration]

	1x1

	m/s^2

	12

	Input

	Body Velocities

	[lon_v;lat_v;vertical_v]

	3x1

	m/s

	13

	Output

	Angular Velocities

	[roll_rate;pitch_rate;yaw_rate]

	3x1

	rad/s

	14

	Output

	Angular Acceleration

	[acc_z_axis;acc_y_axis;acc_x_axis]

	3x1

	rad/^2

	15

	Output

	Acceleration NED

	[acc_north;acc_east;acc_down]

	3x1

	m/s^2

	16

	Output

	Velocity NED

	[v_north;v_east;v_down])

	3x1

	m/s

	17

	Output

	Angles

	[Yaw;Pitch;Roll])

	3x1

	rad

	18

	Output

	Co-Angles

	[co-Yaw;co-Pitch;co-Roll]

	3x1

	rad

	19

	Output

	Aerodynamic Angles

	[heading,flight_path;bank_angle]

	3x1

	rad

	20

	Output

	Acceleration Body

	[acc_x,acc_y;acc_z]

	3x1

	m/s^2

	21

	Output

	Load factor

	[nx;ny;nz]

	3x1

	
	

	22

	Output

	SCIA Data

	[serial_data]

	1024x1

	
	

	23

	Output

	SCIA Length

	[serial_length]

	1x1

	
	

	24

	Output

	SCIB Data

	[serial_data]

	1024x1

	
	

	25

	Output

	SCIB Length

	[serial_length]

	1x1

	
	

	26

	Output

	SCIC Data

	[serial_data]

	1024x1

	
	

	27

	Output

	SCIC Length

	[serial_length]

	1x1

	
	

	28

	Output

	SCID Data

	[serial_data]

	1024x1

	
	

	29

	Output

	SCID Length

	[serial_length]

	1x1

	
	

	30

	Output

	USB Data

	[serial_data]

	1024x1

	
	

	31

	Output

	USB Length

	[serial_length])

	1x1

	
	

	32

	Output

	Unsigned Variables

	[selected variables(1-50)]

	50x1

	
	

	33

	Output

	Bit Variables

	[selected variables(1-50)]

	50x1

	
	

	34

	Output

	Real Variables

	[selected variables(1-50)]

	50x1

	
	

Sensors simulation

Sensors measurements are the inputs of the mex blocks (embedded code). To perform a correct simulation user have to set the inputs with the same scheme as Veronte reads them. Each sensor have a certain vector/array which usually includes raw data in one or more coordinates, the sensor temperatures, variances or square errors. User can set constant values for this variables or compute a complex environment model depending on the state of the plaform (position, velocity, etc.).
This section aims to ilustrate how to implement the inputs described in the previous section. The structures that are shown here are orientative and, of course, can be adapted by the user:

[image: ../_images/sensors.png]

Sensors inputs
In the previous example the same type readings (static pressure, magnetic field, etc.) field all the port of each kind of sensor (Then the user can select the correct one in the configuration).

Environment

To simulate properly a model is necessary to take in account that the environment variables changes depending on the uav position. User can choose between a simple and constant model or modify in each step the environment variables according to a complex model.

This model should group the atmospherical properties (temperature, pressure, etc.) which change with the altitude (also you can add an offset), the gravity vector as well as the magnetic field which change according to certain coordinates on earth. All this information is required by the S-function or is necessary for a good characterization of the sensors measurements. A basic example is shown below. It is divided into 3 different models (ISA atmosphere model, WGS84 model for gravity vector, and the World Magnetic Model). Each model is included in a user Matlab function whose arguments are the inputs of the block.

[image: ../../_images/environment.png]

Environment block
Instead of creating their own functions, user can employ those that are included in Aerospace Toolbox:

	World Magnetic Model 2015

	ISA Atmosphere Model

	WGS84 Gravity Model

[image: ../../_images/aerospace.png]

Aerospace blockset functions
The input of this block is the state (in the previous step) of your vehicule. You have to compute this state from a dynamic model whose inputs are the values of the actuators (outputs of the autopilot). These variables (position, velocity, acceleration, etc.) can be group in a vector or a bus. If a vector is chosen then you have to pick the desired variables with a demux block or a selector block. In the case of a bus, the information is separated with a bus selector block.

[image: ../../_images/bus_selector.png]

Bus selector block
For the environment block the only variables required are these shown in the picture below:

[image: ../../_images/LLA.png]

Environment input

Static Pressure

Static Pressure inputs in S-function simulate the real ones in Veronte. The information required consists of raw measurements and the sensor device temperature. The S-function contains 3 ports as the autopilot hardware. Then this information should be used according to the static pressure sensor selected in the configuration.

Normally the same information should feed the 3 ports, althougth you can simulate that one of them is not working properly.

Some examples of how implement the static pressure are shown below:

Constant value

Only a block constant for raw pressure and another for temperature. Also it is possible to add some white noise.

[image: ../../_images/constantpressure.png]

Constant pressure

Step

If you want to simulate a leap in pressure measurements you can add a step to the previous configuration. In the example below a difference in 100 meters is represented.

[image: ../../_images/pressureleap.png]

Step input in pressure

Variable pressure

If you want a more accurate model which modify this value according to vehicle position you need to enter pressure information from the environment block. This block is necessary when user is simulating movement because pressure is an input to the fusion algortihms (Ex.:Kalman filter). You had to select the raw measurement and the temperature from the bus that cointains all the atmosphere properties.

[image: ../../_images/buspressure.png]

Selecting environment variables
Finally, the complete group results as the image below. The temperature is compute as the ambient temperature plus an offset.

[image: ../../_images/pressureEnv.png]

Variable pressure

Dynamic Pressure

The dynamic or velocity pressure input needs the static pressure raw measurement and the flow velocity. In our example the autopilot is supposed to be mounted in the X-axis in body frame. Therefore, from velocity in NED frames we apply a rotation to obtain velocity in body frames and then we pick the first component of the vector. The value of density is taken from the environment model.

[image: ../../_images/qinf.png]

Dynamic Pressure subsystem

Inertial Measurement Unit

This device measures and informs about velocity, attitude and forces combining readings of accelerometers and gyroscopes. Veronte needs to receive 7 measurements: accelerometer in 3 axes, gyroscopes in 3 axes and device temperature. In the S-function there are 3 inputs for IMUs. The first one is the main unit and the second one the secondary unit. These units are mounted differently in the autopilot (is not aliganed with autopilot), so user has to keep in mind the rotation matrix which autopilot is using. This matrix is pre-configurated in each PDI and cannot be changed.

[image: ../../_images/rotationmatrices.png]

Veronte IMU rotation matrices
There are some ways to implement a suitable group of readings for a IMU. You can create a vector with constant values. Another option could be to store some data (i.e. from a previous flight), load in the matlab workspace, and then send this values to Simulink using the block name as From workspace.

[image: ../../_images/imudata.png]

IMU data from workspace
This blocks allows the user to read from an array of values (and interpolate when there are no information in this step). Moreover, user can choose between several options in case data vector is over. For example, it is possible to extrapolate the information or restart the list of values.

[image: ../../_images/extrapolateIMU.jpg]

Methods applied when the final data value is reached
Another method is reading this values from Environment (gravity vector in NED, and air temperature), and from states (acceleration in body axes, angular velocity, angurlar acceleration, and the rotation matrix from NED to body). This values are entered to a Matlab function where IMU behaviour is simulated and the measurements are computed). Finally, user have to cross the measurements or apply a rotation matrix according to IMU sensor orientation. In the example below, this data is feeding the first port (in the PDI configuration this IMU is selected). Therefore, user has to cross the signals to fit the rotation matrix.

[image: ../../_images/accelgyro.png]

PDI configuration for main IMU
The complete subgroup results as follows:

[image: ../../_images/imu.png]

IMU subgroup
Instead of use a user function, Aerospace blockset include some functions for IMU simulation:

[image: ../../_images/imutoolbox.png]

IMU block from Aerospace Toolbox

Magnetometer

The magnetometer block is simply a rotated environment magnetic field where the temperature of sensor has been added (same as before OAT + 60). S-function has 4 port for magnetometer readings (the internal one and 3 external - HMR2300, LIS3MDL, HSCDTD008A-). Also you can simulate another magnetometer and send the information by a serial port. Just as IMUs, user must have in mind how the magnetometer is mounted (rotation matrix). Therefore, the signal could be crossed as in the example below. You can use a Matrix multiplication block, or if it is simple, you can change directly the orientation with a selector crossing block.

[image: ../../_images/magneto.png]

Magnetometer

GNSS

GNSS receiver ports (there are 2 ports -GNSS1 and GNSS2-) expect to receive an array with the following information:

	Fix status

	Fix type

	0: no fix

	1: dead reckoning only

	2: 2D-fix

	3: 3D-fix

	4: GNSS + dead reckoning fix

	Latitude

	Longitude

	Altitude

	Horizontal accuracy

	Vertical accuracy

	North Velocity

	East velocity

	Down Velocity

	Speed Accuracy

[image: ../../_images/gps.png]

GNSS array
The angle inputs are in degrees*10^7, and the distance inputs in millimeters. The accuracy values are equivalent to the square root of the square error. These values are supposed to be computed by the GPS device and are used in the EFK for GNSS solution. However, in the configuration files user can choose between these ones or values set by user.

[image: ../../_images/gnssvariances.png]

GNSS variances
RTK Example Block (Relative Position)

To enable RTK feature user has to modify the configuration (more information can be found in Veronte Autopilot Manual), and include more inputs by S-function. This input is named as Relative Position, and it requires an array of 10 elements.

	Status : 0 is Data invalid and 1 is Data valid

	RelPosN : North component of relative position vector (cm)

	RelPosE : East component of relative position vector (cm)

	relPosD : Down component of relative position vector (cm)

	relPosHPN : High precision North component (mm)

	relPosHPE : High precision East component (mm)

	relPosHPD : High precision Down component (mm)

	accN : Accuracy of relative position North component (mm)

	accE : Accuracy of relative position East component (mm)

	accD : Accuracy of relative position DOwn component (mm)

High precision components must be in range -99 to 99 millimeters. The full component of the relative position vector (in cm) is given by the addition of the 2 components. An example of this subgroup is shown below:

[image: ../../_images/rned.png]

RTK inputs

Analog to Digital Converter Port

Veronte is equipped with 5 external ADC channel (linked to 5 pins) and 12 internal channels. Therefore, in total, user has to create an array of 17 elements. This values are stored as internal variables in Veronte, and you can use them in certain user programs. The order of this array is :Internal ADC Channel 1, External ADC Channel 1-5, Internal ADC 2-12.

In the picture below an example is shown (with the first external ADC pin).

[image: ../../_images/adcsfull.png]

ADC readings

Serial communications

Veronte can manage input and output serial ports (more information in Veronte Autopilot Manuals), and we can simulate these as inputs and outputs on the S-function. An easy way to create serial frames (data in length wires) is by using the simulink UDP block. Therefore, the data coming in to veronte should be sent though UDP (if this approach is taken):

[image: ../../_images/sci.png]

UDP Block
The ports that Veronte includes and that are represented in the S-function are the following:

	USB : USB port

	SCIA : 4G connection

	SCIB : Radio

	SCIC : Serial Port 485

	SCID : Serial Port 232

EXAMPLE: Sending a rs-232 message

In the example below we have sent a constant value as a rs-232 message. Firstly, you have to create the message as a bit array with Byte Pack Block. Then, it is neccesary to receive this information as UDP Packets to corresponding port (in this case 16003). Width block is used to compute data length. Then this UDP packet is send to S-function.

[image: ../../_images/message232.png]

Sending a rs-232 message in Simulink
Finally, we have to configure a custom message to store this value in a user variable as follows:

[image: ../../_images/232.png]

Custom message

Monitoring Telemetry

In the S-function there are three inputs specially dedicated to select custom temeletry (pin 22 for Bit variables, pin 23 for integers and pin 24 for reals). Each of this variables have an ID. The input structure of those is fixed and must be of size 50. User have to enter the corresponding Ids of the variables he is aiming to monitor. In the following example some BIT variables are requested:

[image: ../_images/bvar.png]

Telemetry ID Mux
The ID of each variable in Veronte can be easily found in Veronte Pipe by adding a new workspace widget or in the Program window by adding a specific block (Read Bit, Read Integer or Read Real). The ID is labelled right before variable name.

[image: ../_images/ids.png]

ID Indicator
Finally, to monitor or see their values, you can add a scope connected to the matching output (pin 32, 33 or 34), or use a demux block to separate the array in single values and connect them with a Display block.

[image: ../_images/allvars.png]

Display variables

Connecting SIL & Veronte Pipe

	Add a UDP serial communication block and connect it to USB data and length.

	Add a second UDP serial communication block and connect it to the USB output of veronte.

[image: Simulation - S-Function containing the autopilot embedded code]

UDP Blocks

	Configure your destination port.

[image: Simulation - S-Function containing the autopilot embedded code]

Destination UDP Port

	Set an ethernet network in Preferences as shown using the destination port selected before. Check that Local IP Address and Local Subnet Mask have non-zero values.

[image: Simulation - S-Function containing the autopilot embedded code]

Destination UDP Port (Pipe)

Pipe v6.6 and higher

In case of using VeronteLink (comunication with Pipe v6.6 or higher) you have to configure the connections tab selecting UPD as connection type and set the configuration as in fourth step.

[image: Simulation - S-Function containing the autopilot embedded code]

Destination UDP Port (Veronte Link)

Simulation

A complete simulation is composed by many systems or blocks. In this manual the sensor the environment and the autopilot subsystem have been already introduced. All theses blocks must be combined with others such as Airframe block (a brief example will be included in this manual).

Complete Simulation

After setting the main blocks, the result should look like this:

[image: Simulation - S-Function containing the autopilot embedded code]

Complete Setup Example
The main systems are:

	Veronte Autopilot: It contains our flight control software. It basically consists of the S-function and their link with the rest of the blocks (sensors, outputs, etc.)

	Airframe: a model of the flight dynamics.The inputs of this systems are the output of the Veronte autopilot (nominal value for servos). For example, for a quacopter, the input of this block consists of the values of the PWM signal (one for each motor). Then with this value the airframe system updates the platform’s state. The state vector is used for predict the new environment conditions and the sensors readings.

	Environment: a model of the atmosphere, magnetic field, WGS84…

	Sensors: it contains individual blocks or subgroup of all the sensors that veronte needs as input.

	Visualization: It contains Display blocks, scopes, flight instruments…

The time step should be set to 0.0002 as shown in the next figure in order to guarantee a good GNC/Adquisition frequency:

[image: Simulation - S-Function containing the autopilot embedded code]

Time step settings

Quadcopter Example

In this section a basic example about how make an airframe model is shown.

In the picture below this is represented. Once Veronte receives all the sensor information, the autopilot computes the guidance and control algorithms. As a result, the autopilot computes the necessary value for servos. The inputs of the system are the values of the PWM, it means, servos output (pin 2). User also can use the control output value directly. These values have to be entered in a user function that computes the airframe model. However, these values are the current ones. To perform a properly simulation the input values must be those from the previous step. It can be solved with the memory block (stored previous step input).

[image: ../../_images/airframe.png]

Complete Setup Example
In this example, the value of PWM is transformed to RPM. For this, it is necessary to implement an engine/rotor model, for example, by using a Transfer function (power unit model).

[image: ../../_images/TransferFcn.png]

Transfer function
Once the RPM are calculated, the aerodynamic forces and moments can be computed with a properly model. Then this forces are entered to the Rigid Body model to integrate the vehicule state.

[image: ../../_images/model.png]

Airframe model

Index

 _static/minus.png

_static/plus.png

_static/file.png

_static/logo.png
(e N =5

=M ==NTT IO

R
e
-

5\

_images/basicfiles.png
[Name ~

) gps.simem
) impor_post fightim
Eaunch o

NGO sensors.cov
) Neum
4l mex_function_example.six
) Mo releasem
A rescistm
5] Veronte.SD_imageimg
B Veronte 0 image S v4072
B Veronte S0 image S 4572
(2] Veronte_SiLmenwed

_images/bus_selector.png

_images/airframe.png
Position on Earth

> Euer

»{0CH be States.

States

>vb

‘Mult-rotor rigid body model Bus setup.

_images/allvars.png
Buars

Uvars.

Ruars

_images/complete.png
Visualization

&

UERONTE

AuToPILOTS

4

Veronte Autopilot

Environment

_images/constantpressure.png
Pressure Area

il

White Noise

E

Static Pressure

Temperature

stp0

stp1

stp2

Inline C++
S-function

_images/buspressure.png
Block Parameters: Bus Selector

Busselector

“This block accepts a bus as input which can be created from a Bus Creator, Bus Selector or a block that defines its output.
using a bus object. The left listbox shows the signals in the input bus. Use the Select button to select the output signals.
“The right listbox shows the selections. Use the Up, Down, or Remove button to reorder the selections. Check 'Output as

virtual bus' to output a single bus signal.

Parameters

e — R W
Sees | |AtmosphereBus pressure —
'Grzmy Emls in the bus us.air_temp
- g Refresh Remove
v AtmosphereBus
ar temp
speed_sound
pressre
air_density
MagneticField_ned

] Output as virual bus

Q o][concel | [relp | [apply

_images/bvar.png
system_ok

10
freq_ok

12
pbitt

50
sensors_ok

17|
power_a

100

59
12¢_devs

Bvar_IDs

_images/enterMaintenance.png
VerontePipe V6457 = O X

£ OLD CONFIGUR... =+
Setwp

Operation

Export 701

Change config

About

Refresh communications
L

=

Updste

_images/environment.png
- StatesLog

States

<LLA>

Gravity Model (WGS84)

Magnetic Model

air_temp

speed_sound

Gravity_ned

pressure

air_density

AtmosphereBus

MagneticField_ned

[2.677 0.0148 3.5153]*1e4
Magnetic Field

V}VIagneticField_ned)

Environment

_images/accelgyro.png
0- Integer var sensor 1

Accelerometer
+ oiond T tntegervarsensor2 || poo = .
2- Decimal var sensor 1
 Sensors
- Decimal var sensor Normal | Pro
¥ Accelerometer =l J 8
Configuration O e Antialiasing filter bandwith | 50 Hz -
5 - Secondary Acceleromete
Aimeter

/] Enable digital filter sensor

» Communications - 0 Integer var sensor 1 Gyroscope
+ Payiond - Integer var sensor 2
S 2-Decimalvarsensor1 || Renge 500 -
I e |
Configuration (©)4- Main Gy By e
5 - Secondary Gyroscope nable low pas fier
Altimeter Low pass filter
> Gnss
v Gyroscope
Confiourstion Digital Filter

12C Devices

_images/adcsfull.png
int. Ch. 1

User Variable 02 (Real - 32
bits)

2.4414062E-4

_images/TransferFcn.png
1 1
>S+_IF)z+0.5F

Transfer Fcn Discrete
Transfer Fcn

_images/UDPlink.png
B Veronte Link (v6.6.11)

= Devices 4 Connections
+ @ & % Autodiscover
¥ 230001

Configuration

UDP Configuration
Address 239001

Port 12345
m
Acvanced

V] Recomecttime: | 6

V| Disconnect time: | 6

_images/aerospace.png
Horizontal Intensity (nT)

®Dﬂﬂnlﬁm (dea)|

Inciination (deg)|

Total Intensity (nT)|

_images/extrapolateIMU.jpg
Block Parameters: From Workspace x
From Workspace

Read data values specified in timeseries, matrix, or structure format from the
MATLAB workspace, model workspace, or mask workspace.

MATLAB timeseries format may be used for any data type, complextty, or fixed
dimensions. To load data for a bus signal, use a MATLAB structure that
matches the bus hierarchy and specify timeseries for each leaf signal.

For matrix formats, each row of the matrix has a time stamp in the first
‘column and a vector containing the corresponding data sampl in the.
subsequent column(s).

For structure format, use the following kind of structure:
var time=[TimeValues]

var.signals values=[DataValues]

var.signals dimensions=[DimValues]

Parameters

Data:

simin_IMUO

Output data type: [Inherit: auto v

‘sample time (-1 for inherited):

0.001

Interpolate data

Enable zero-crossing detection

Form output after final data value by: [Holding final value -

Extrapolation A
Setting to zero

9 Holding final value

Cpciic ropeiica

nav.xhtml

 Table of Contents

 		
 Software in the Loop (SIL)

_images/232.png
Checksum Matcher Skp Varable ASCIl Positon Occupancy.
0 0 0 10 o

=) () | utteengian | Timeout (10 <] ey [00 < B0

(] o uservariable 10 Real - 2)

Varisbie Compression Decimals Encode/Decode

encoce Decoc
Min Max Min Max

User Variabl.. | | Uncompress - 64 bits =l [] (J(] { Il |

_images/ids.png
Selectvar Fiter ~

0-1AS (indicated Airspeed)

R 6 Ui
1-TAS (True Airspeed)

R 6 s

2GS (Ground Spesc)
R & U

3 - Heading
R & Ui rea fmd

4~ Fiight Path Angle
R 6 U rea L

5-Bank
R & unic red fmm

6-Yaw
R 6 unit

7-Pitch
R 6 tnic red fnm

Cancel

_images/LLA.png
Block Parameters: Bus Selector X
BusSelector

‘This block accepts a bus as input which can be created from a Bus Creator, Bus Selector or a block that defines its output
using a bus object. The left listbox shows the signals in the input bus. Use the Select button to select the output signals.

“The right listbox shows the selections. Use the Up, Down, or Remove button to reorder the selections. Check 'Output as

virtual bus' to output a single bus signal.

Parameters

Filter by name @ Find ‘Selected signals up

signals in the bus Down
V_body Remove
‘©Omega_body

Euler

Accel_body

] Output as virual bus

Q oK Cancel Help Apply

_images/imu.png
IMU crossed due to
internal rotation

<Accel_body>

<Omega_body>

<dOmega_body>
CG location

imuraw

Matrix
Multiply

<Gravity_ned>

Environment .
<air_femp>

& | Internal Temp Offset

_images/gnssvariances.png
» Communications ~ ||| configuration | 5BAS | Message rate | EKF Navigation | Advanced

» Payiosd V] Enable GNSS in EF Navigation
v Sensors Use position measures in the attitude caculation
> Accelerometer Use speed measures in atitude calculation
Alimeter

v onss Square error on strong acceleration for position

(GNSS 1 Configuratior Square error onstrong acceleration for spesd

‘GNSS 2 Configuratior Pt

(GNSS Compass Duration of effect (dsappears inearly with time)

GPS External

NTRI Square error
> Gyroscope

e s North Positon)
+ Vagnetometer GNSS East Poiton (] | Accuracy
Values values

Configuration GNSS Down Position by | [| Y asinput
> Obstacle detection GNSS North Velociy User | |] [ofthe s-
» Pressure function

NS Exst Velody [) o
> RoM
S| Ev— [) o
Deloy

Add device -

_images/gps.png
s

States

<V_ned>

ix

3

fo_type

mtomm

|2

mis to mmis

2

mis to mms ()

2

mis to mms (1)

2000

sace

GNSSSolution

_images/magneto.png
Environment

<DCM_be> > Matrix

> Multiply

<MagneticField_ned>

<air_temp>

,@

60

Temperature Offset

1

MagneticField

_images/maintenance.png
Maintenance Mode

The Veronte failed to initalize and booted in maintenance mode, this may be due
to 2 configuration problem or disconnect the Veronte during startup

Select an option to exit compatibili

Exit maintenance mode. Change setup Update Retry

_images/imudata.png
simin_IMUO.

Simin_IMU1

simin_IMUO.

Inline C++
S-function

_images/imutoolbox.png
A_meas

w_meas

Three-axis Inertial
Measurement Unit

_images/message232.png
35

Byte Pack

Data g4 UDP packets

Using host-target connection

To: 127.0.0.1:16003
»{Length

Dat
Receive UDP packets 0
Using host-target connection
From: 127.0.01
Length

scib_data

scib_length

scic_data

scic_length

scid_data

scid_length

_images/model.png
Tnput: PWM signal(value:0~1)

CoO—fic

inPWMs Gain

Power unit model

Product
10 —>|
x
98 Mass
moment of inertia
g

Propeller Model Rigid body model

_images/pdibuilder.png
1X PDI Builder | ¥

I Veronte PDI Builder

Buld PDI to configure your Veronte

(0]

2 Upload PDI ¥ Open Veronte

Upload PDI to the Veronte, this option can't be | | Open PDI online and work with it
undone

(0]

Q Veronte v40 1000 (65.5)

_images/pressureleap.png
Block Parameters: Step

step
Output a step.

Main | Signal Attributes
Step time:

[x

Pressure Area

Initial value:

01324

Final value:

[Lo012043865106948+05

‘Sample time:

[0

Interpret vector parameters as 1-D

Enable zero-crossing detection

<

9 e

Help

Apply

ise

20

Temperature

_images/qinf.png
Matrix ~al] 2

<DCM_be>
- Multiply |'v_body > o u

<V_ned>

05— x
>
>

<air_density> qinfinity

Environment <air_temp>

60 | Temperature Offset

_images/port1.png
UDP Send

Send data over UDP network to a remote device. Send to
1255.255.255.255 for broadcast.

"Local 1P address' applies only when the block executes on a target
computer.

Parameters
Local IP address:
Use host-target connection -

Local port: 56777 |

To port: [56778]

Sampletim (- for inerte): :
cancel | [welp || Apply

_images/pressureEnv.png
<pressure>

D,

Environment

Press_temp
<air_temp>

60 | Temperature Offset

_images/s-function.png
s g

o

Er==

ntined G+
S-Function

gt Sty

===

-

_images/sci.png
9

Data[—

Receive UDP packets -
Using host-target connection
From: 127.0.0.1

Length |—

4

_images/rned.png
©@ 0 @6 6 6

® ©

1

rel_valid

30

med_x

40

med_y

50

med_z

20

med_dmm_x

10

med_dmm_y

med_dmm_z

2500

ace_x

1500

acc_y

3500

acc_z

cm

cm

om

0.Amm

0.Amm

0.Amm

0.Amm

0.Amm

0.Amm

_images/rotationmatrices.png
©

_images/settings.png
@ Configuration Parameters: /Configuration (Active) - o X
Q Search
[sover] simusation tme 2
Data ImportExport
Math and Data Types starttme: [0 Stop time: [TFinal]
> Diagnostics
e ‘Solver selection

Hardware Implementation
Model Referencing
‘Simulation Target

» Code Generation

» Coverage

» HDL Code Generation

Type: Varable sep

Salver: [auo (Automatic saiver seecton)

+ Solve detals
Max st size: [0.0002] Retatie toerance: [1e-3]
Min sep size: [ato] Absolute tolerance: [auto]
It tep iz 7] Auto cale absolute tlerance
Shape preservaton: [isable AT =]

Number of consecuive min steps: [1

Zero-crossing options.

Zero-cossing contot:[Use localsetings [=] Agortom: [Nonagaptve

Time tolerance: 10128%ps ‘Signal threshold: auto

Number of consecuive z0o crossings: 1000

Tasking and sample time options
[] Automatcally handie rate transiton for data transfer
] Higher prioriy value indicates higher task priorty

_images/sil.png
0o

N
O— UERONTE [— M
INPUTS AutoriLoTs OUTPUTS

4

EMBENTION

Embedded Code

_images/sensors.png
Static Pressure Sensor 1

Dynanmic Pressure

States

Environment

MU 1

Magnetometer 1

GNSS1

Sensors

_images/verontelink.png

_images/simudp.png
Send telemetry

Ensble Ensble
Port 3000 Host [127001 Port (3000 | Frequeney (100 1)
Autodiscover COMs

Ethemet

Moticast P
Serisl COM
127001
Port
se77e
Network Interfsce
Resttek PCle GbE Family Controller -
Locsl P Address 192..168.0.124

Local Subnet Mask ~ 255.255.252.0

Add -

_images/udp.png
b

D
Receive UDP packets
Using host-target connection
From: 127.0.01
Length

L] — e

usb_data

N

usb_length

Inline C++
S-function

usb_length

Data
Send UDP packets
Using host-target connection
To: 127.0.0.1:56778
Length

