MC110 PDI Builder

Release 6.8.43

Embention

2023-08-22

CONTENTS

		k Start Veronte Link Setup
	1.1	verone Link Setup
2		iguration
	2.1	Open Loop Ramp
	2.2	Motor
	2.3	FOC (Field Oriented Control) Background
	2.4	Sensorless Observer / Estimator
	2.5	FOC Control
	2.6	SIN/COS Sensor
		I/O Setup
	2.8	CAN I/O
	2.9	SCI
	2.10	CAN High Speed Telemetry

MC110 PDI Builder is an application employed to configure Veronte motor controllers MC110.

CHAPTER

ONE

QUICK START

1.1 Veronte Link Setup

Once Veronte Link is installed, configure the MC110 ports according to the COM port configuration from the Veronte Link User Manual.

CHAPTER

TWO

CONFIGURATION

MC PDI builder - (v6.8.43) - □ ×
 MC
 Build PDI to configure your MC
 Upload PDI
 Upload PDI to the MC, this option can't be undone
 Open PDI online and work with it
 Open PDI online and work with it

After installing, MC110 PDI Builder the main menu will show as follows:

- 1. MC: Create a new PDI set of files to be saved and exported.
- 2. Upload PDI: Upload a previously created set of files to the current motor controller flash memory.
- 3. Open MC: Edit the current MC settings.

At this point, the user can either create its own configuration offline by clicking on "MC PDI Builder" or start editing the one that is already loaded to the controller by clicking on "Open MC". The same menu will pop up:

MC PDI Builder	MC PDI Builder	×- ف ع ۵ ځ
0		

2.1 Open Loop Ramp

This menu sets the start ramp before engaging the closed loop control. There basically three parameters:

MC PDI Builder		- ×
	Омс	5 5 0
Open Loop Startup Motor Observer FOC Control Sin Cos Status	Fraction of speed 1.0 Startup Acceleration 2.0 Maximum Speed 6.0 Invert	m/s rad/s ² rad/s

- 1. Speed fraction: fraction of maximum speed (third field) to be reached before changing to closed loop.
- 2. Startup Accelaration: angular acceleration to reach maximum speed. In rad/s^2.
- 3. Maximum Speed: final speed to be reached before closing the control loop. In rad/s.
- 4. Invert: Change spining direction of the rotor. This is the main way to invert the motor direction and will also affect the control and closed loop functionalities.

2.2 Motor

This tab sets all the physical parameters of the motor that will be used with Veronte MC. These are:

MC PDI	Builder			- ×
		\bigcirc N	лс	* 4 5 0
 ○ ◆ 	Open Loop Startup Motor	Stator internal resistance	[0.027 Ω]	
•4	Observer	Quadrature Inductance	2.3E-4 H	
	FOC Control Sin Cos	Direct Inductance	2.3E-4 H	
	Status	Pole Pairs	30	
		Maximum RPM	2500.0 rpm	
		Start up lq	0.008 kA	
		Maximum Iq	[1.0 kA]	
		Time to hold Max Iq	0.0 s	
		Phase base voltage	(400.0 V)	

- 1. Stator internal resistance: resistance that usually specified in datasheets. Expressed in Ohms.
- 2. Quadrature Inductance: usually called "Lq". Expressed in Henries (H).
- 3. Direct Inductance: usually called "Ld". Expressed in Henries (H).
- 4. Pole pairs: number of poles divided by two. For instance, if your motor has 42 poles, you must input 21 here.
- 5. **Maximum RPMs:** maximum RPMs motor can reach in combination with your propeller. This parameter is only used to determine the equivalence between the maximum command (PWM or CAN) and the commanded RPM in speed closed loop mode.
- 6. Startup Iq: quadrature current used to start the motor.
- 7. **Maximum Iq:** maximum quadrature current the speed control loop can command to the quadrature current control loop. Please refer to FOC background section for further reference.
- 8. Time to hold Max Iq: maximum time to hold the previous value before going to off.
- 9. Phase base voltage: nominal working voltage of each phase.

2.3 FOC (Field Oriented Control) Background

In order to achieve better dynamic performance, a more complex control scheme needs to be applied, to control the PMSM motor. With the mathematical processing power offered by the microcontrollers, we can implement advanced control strategies, which use mathematical transformations in order to decouple the torque generation and the magnetization functions in PMSM motors. Such de-coupled torque and magnetization control is commonly called rotor flux oriented control, or simply Field Oriented Control (FOC).

The Field Oriented Control consists of controlling the stator currents represented by a vector. This control is based on projections which transform a three phase time and speed dependent system into a two co-ordinate (d and q co-ordinates) time invariant system. These projections lead to a structure similar to that of a DC machine control. Field orientated controlled machines need two constants as input references: the torque component (aligned with the q co-ordinate) and the flux component (aligned with d co-ordinate). As Field Orientated Control is simply based on projections the control structure handles instantaneous electrical quantities. This makes the control accurate in every working operation (steady state and transient) and independent of the limited bandwidth mathematical model.

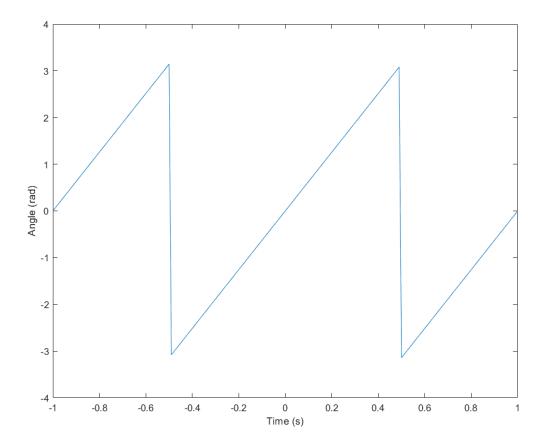
A basic scheme for the FOC is represented as follows:

As it can be seen, there some key pieces in this algorithm:

- 1. **Park/Clark transform**: these output a two co-ordinate time invariant system and a outputs a two co-ordinate time variant system respectively. As mentioned before, this is part of the process of getting two scalar values from a three phase time dependent system.
- 2. **PI Controllers**: there are three of them: two to control quadrature current and direct current (torque and flux) and one to control speed. This last one is placed as the one that controls Iq PI (cascade control) which means that in order to get more speed the system will command more torque (or Iq).
- 3. **Speed estimator**: this block is able to estimate, first electrical angle and then mechanical speed, from currents and voltages using the so-called "Sliding Mode Observer" (SMO) algorithm.

The main dificulty of this control proposal is to tune these three PI controller although in most cases both current PI are exactly the same due to PMSM properties. In addition, it is necessary to tune SMO algorithm as it depends on motor properties.

This last part is optional(but highly recommended due to sensor failures) in case an external sensor is used such as a hall effect sensor or a SIN/COS sensor.


2.4 Sensorless Observer / Estimator

Once the basis of the FOC are covered, the rest of the features of this MC can be explained. This tab covers the observer parameters. The observer that is implemented has an ON/OFF controller that gets the estimated electrical angle. This electrical angle is later derived to find the angular speed:

MC PDI	Builder			- ×
		Омс		2020
<mark>○</mark>	Open Loop Startup Motor	Sliding control gain	0.06	
•	Observer	Time filter constant	0.0 s	
-	FOC Control Sin Cos	Sigmoid function gain	10.0	
	Status	Compute auto offset		
		Offset between sensored and sensorless	0.95 rad [-π,π]	

- 1. Sliding Control Gain: this is the main gain of observer. To guarantee algorithm stability this value has to be bigger than absolute value of Back EMF (ElectroMotive Force) in alpha/beta axes.
- 2. **Time filter constant:** speed calculation has a first order filter. This is the time constant of this filter. The lower value, the lower filtering.
- 3. Sigmoid function gain: this gain is to smooth the bang bang control of SMO.
- 4. **Offset between sensored and sensorless:** this value aligns osberver signal to virtual motor signal. It is very important to go from open to close loop. This value has to match with variable "offset of virtual motor" of MC in open loop.
- 5. Compute auto offset: activate auto-calculation of previous offset value to close loop.

After parameters tuning, electrical angle from SMO should look like this:

Warning: It is recommended to tune this estimator even if an external sensor is used for feedback (sensored control). As it will be described in the next section, the control will automatically jump in case the primary source of feedback fails to a sensorless control.

2.5 FOC Control

This is the main control menu, here all parameters regarding FOC control are set. As mentioned before, the basic blocks that define the FOC control are three PI (Proportional, Integral controllers). First, both current PI (quadrature and direct) are defined. Each current axis (q and d) has two gains configuration: open and close loop. Usually,open and closed loop gains are equal, but it could be that the motor behaviour requieres different current tunning. In addition, quadrature and direct PI gain configuration are usually equals, but it will depend on if the motor parameters are equals in both axes.

Builder		- ×
	Омс	* • •
Open Loop Startup	Quadrature Current Controller	
Motor	Direct Control Controlling	
Observer	Direct Current Controller	
FOC Control	Speed Controller	
Sin Cos		
Status	Control Input	
	Additional options	
·	MC110 DD: Builder	
Builder		- ×
		* & = 0
	Open Loop Startup Motor Observer FOC Control Sin Cos Status Builder	Open Loop Startup Motor • Quadrature Current Controller Observer • Direct Current Controller Sin Cos Status • Control Input • Additional options • Additional options

Open Loop Startup	 Quadrature Current Controller 		
Motor	Quadrature		
Observer FOC Control		Open loop	Close loop
Sin Cos	Proportional loop gain	0.002	0.001
Status	Integral gain	2607.0	1300.0
	Lower saturation gain	-0.7	-0.7
	Upper saturation gain	0.7	0.7
		Open loop	Close loop
	Proportional loop gain	0.002	0.002
	Integral gain	2607.0	2607.0
	Lower saturation gain	-0.7	-0.7
	Upper saturation gain	0.7	0.7
	Speed Controller		
	Speed Controller Control Input		

The form of the PI is the classical parallel form:

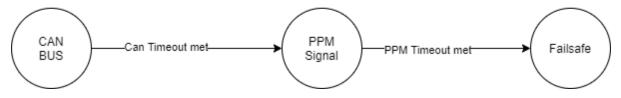
$$u = K_p \left(1 + \frac{1}{T_i} s \right)$$

Where integral gain refers to the quotient **1/Ti**. Lower and upper saturation gain are the limits at which the PI limit its output. In this case, as it is illustrated in FOC background, these outputs are **Vq** and **Vd**.

Equally, the speed controller can be set here as shown below. In this example this PI controller is limited to be output 7 A.

Open Loop Startup	Quadrature Current Controller		
Motor Observer	Direct Current Controller		
FOC Control	 Speed Controller 		
Sin Cos Status	Speed		
	Proportional loop gain	0.001	
	Integral gain	0.0	
	Lower saturation gain	-0.007	
	Upper saturation gain	0.007	
	Limits: Falling -10.0 rad/s	Rising 10.0	rad/s
	Control Input		
	 Additional options 		

In addition, there is a rate limiter that could be used in case the slope needs to be limited with the input comand. Please note that is expressed in rad/s.


Control input allows the user to select the input source and several extra parameters such as:

- 1. **CAN Timeout:** whenever this timeout is met, the control input will be changed to the next option if available. If none of them is available, it will end up in failsafe mode.
- 2. **PPM Timeout:** same as before, but in this case the only option after this one is failsafe.
- 3. Value for Fail Safe: value between 0 and 1. It will be written in case none of the previous options is available.

MC PDI Builder	$- \times$
() MC 🕹 😂 📂	0
Open Loop Startup Motor Quadrature Current Controller Direct Current Controller Speed Controller Speed Controller Status Control Input Mode M_CAN CAN Time Out 0.0 S Value for Fail Safe Additional options Additional options Additional options Additional options Additional options Image: Additional options Additional options	

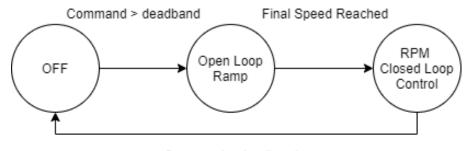
The input flow is the following in case the mode **m_CAN_PPM** is selected:

m_CAN_PPM Selected

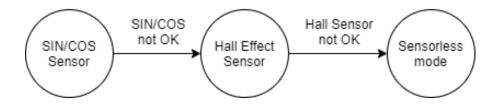
There are some additional options than can be set under FOC control menu:

- 1. **Regenerative Braking:** activates regnerative braking feature which is basically consisting of thoughing some current back to battery whenever the motor is loosing speed (it uses the kinetic energy to charge de battery). This not recommended in case the power side is not connected to a battery.
- 2. **Input deadband:** this is the value that defines when to start moving the motor. For example, it might be wanted to be different from zero in case an RC stick outputs around 0.2 of duty cycle by default.

Note: In case CAN Bus is used to command (see CAN I/O section), this deadband can be calculated as (desired deadband RPM)/(maximum RPM).


- 3. Speed filter cutoff: cutoff frequency (in Hz) that will be applied to filter Hall effect sensors and SIN/COS sensors only.
- 4. Fan Cooling: this option activates a PID control in a cooling fan to achieve the normal working temperature.

5. Idle Speed: minimum speed of motor to go OFF.


6. Idle Speed Hold Time: if speed is lower than idle speed and this time is reached, motor go OFF.

Builder	О мс 🛃 🔁 🗲 🗌
Open Loop Startup Motor Observer	Quadrature Current Controller Direct Current Controller
FOC Control	Speed Controller
Sin Cos Status	Control Input
	▼ Additional options
	Regenerative Braking Input deadband 0.2
	Speed filter cutoff 0.1
	Fan Cooling Idle Speed 5000.0
	Idle Speed Hold Time 1.0 s

Finally, a state machine diagram is presented to clarify how the control and feeback sources work:

Command < deadband

2.6 SIN/COS Sensor

In case an external SIN/COS sensor needs to be used as a source of feedback of electrical angle/velocity the main interface to do it is though ADC inputs. This menu allows the user to customize the main characteristics of its sensor:

- 1. Min Voltage: minimum voltage of the signal. Measured in Volts (V).
- 2. Max Voltage: maximum voltage of the signal. Measured in Volts (V).
- 3. **ADC factor:** a factor multiplying what is read from the ADC port, specially useful if a voltage divider (or any other signal level adaptor) is installed.
- 4. Sin ADC input channel: ADC channel at which the SIN signal is connected.
- 5. Cos ADC input channel: ADC channel at which the SIN signal is connected.
- 6. Invert: inverts the resulting electrical angle. Useful to correct installation inversions.

MC PDI Builder			- ×
	0	мс	* * * 0
Open Loop Startup Motor Observer FOC Control Sin Cos	Min voltage Max Voltage ADC Factor	2.6 V 3.3 V 2.0	
Status	Sin ADC input channel Cos ADC input channel	98	

2.7 I/O Setup

This panel is used to stablish the mapping of ports and the duties they are performing. The layout and principles of function of this feature are common in all Veronte products, a complete explanantion can be found in the I/O Setup section of **1x PDI Builder** user manual.

I/O Setup	Configuratio	on				
CAN	Priority		Producer		Consumer	
CAN I/O	High K	28	Commgr port 0	\rightarrow	Serial to CAN 0	$\dot{\Phi}^{o}_{o}$
SCI CAN High Speed Telemetry	📄 High 🔇	28 	Commgr port 1	\leftrightarrow	RS485	\$\$°
CAN High Speed Telemetry	📄 High 🔇	28	Commgr port 2	\leftrightarrow	RS232	Q0
	📄 High 🔇	28	Commgr port 3	\leftrightarrow	USB(SCI-C)	Q0
	📄 High 🔾	28 C	Commgr port 4	\rightarrow	None	Q0
	📄 High 【	00 ⁰	Commgr port 5	\rightarrow	None	Ф¢
	📄 High 🔍	28	RS485	\leftrightarrow	Commgr port 1	Ф°
	📄 High 🔇	28	RS232	\leftrightarrow	Commgr port 2	Q0
	📄 High 🔇	28	USB(SCI-C)	\leftrightarrow	Commgr port 3	Q0
	🗌 High 【	\$\$	CAN to serial 0	\rightarrow	Commgr port 0	Q0
	📄 High 【	\$\$ <mark>0</mark>	CAN to serial 1	\rightarrow	None	¢¢
	📄 High 【	\$\$ ⁰	Custom Message 0	\rightarrow	None	¢¢

2.8 CAN I/O

This a common part that is shared with Veronte Autopilot products, please refer to CAN Setup section of **1x PDI Builder** user manual for further information.

I/O Setup	Configuration	CAN custom message 1 Mailbo	oxes		
CAN	Priority	Producer		Consumer	
CAN I/O	🗌 High 🔯	Input filter 0	\rightarrow	CAN to serial 0	\$\$ ⁶
SCI CAN High Speed Telemetry	🗌 High 🔯	Input filter 1	\rightarrow	CAN Cmd	Q0
CAN High Speed Telemetry	📄 High 🚺	Input filter 2	\rightarrow	None	Q0
	🗌 High 🔯	Serial to CAN 0	\rightarrow	Output filter 0	Q_0°
	🗌 High 🚺	Serial to CAN 1	\rightarrow	None	Q_0^0
	🗌 High 🔍	CAN custom message 0	\rightarrow	Output filter 1	Q ^o
	V High 🔯	CAN High speed telemetry	\rightarrow	Output filter 2	00

Altough, most of this menu could be familiar to veronte users, there is one new feature : **CAN CMD**. This is the input ESC expects to command the motor. By default, it uses the ID **1434** (**standard**) and the message structure is the following:

MC PDI B	Builder							- ×
		€∕ <mark>°</mark>	Input / Out	put			20	6
0	I/O Setup	Configuration CAN custom message 1 Mailboxes						
	CAN	Priority	Producer Consumer			sumer		
•	CAN I/O	High 👯		£14 0		CAN to serial 0	Qo	â
_	SCI	High 🕵	Port	BOTH	-	CAN Cmd	Q ₀	
	CAN High Speed Telemetry	High 👯	ld	1434		None	Q0	
		High	Mask	2047	dec	Output filter 0	Q0	
		High	Filter type	Standard	•	None	08	
		High 🔅	CAN custor	m message 0	\rightarrow	Output filter 1	Q ^o	
		✓ High Q ⁰ ₀			→	Output filter 2	Q ^o	
			en i ringir sp	- a terementy		- orpar inter a	4.8	
Checksum	-	CII Position Occu	pancy					v X
• —		0 0						+
	Value Bits	Mask						
7	8 255		dec					
- 🖬	🕄 🗍 🕂 PWM 1							
	Variable	Compression	Bits	Encode/Decode	Enco			
					Min		Max	
	PWM 1 Compres	s - Bits Unigned	• 24		0.0	1.0 0	2500	
<								>

Warning: Note that what is represented as PWM1 is in fact sent as a value between 0 and 2500 as a result of the decoding factor. This last 24 bit value is in fact an RPM value.

2.9 SCI

The following fields can be configured:

- 1. Baud rate: this field specifies how fast data is sent over a serial line.
- 2. Length: this field defines the number of data bits in each character.
- 3. Stop: stop bits sent at the end of every character.
- 4. **Parity:** is a method of detecting errors in transmission. When parity is used with a serial port, an extra data bit is sent with each data character, arranged so that the number of 1 bits in each character, including the parity bit, is always odd or always even.

ler	×- 0 4 4 4	
I/O Setup	SCI A SCI B SCI C	
CAN		
CAN I/O	Functionality	
CAN I/O SCI CAN High Speed Telemetry	Functionality Baudrate 115200 • Length 8 • Stop 1 • Parity Disabled • Use address mode	
	/O Setup CAN CAN I/O SCI	VO Setup CAN CAN VO CAN VO CAN High Speed Telemetry CAN HIGH CAN HIGH CA

2.10 CAN High Speed Telemetry

MC is equipped with an special CAN telemetry, which is faster than the regular one. This is meant to monitor all variables that are RPM dependent and can be crucial to tune your ESC during initial stages. For instance, seeing electrical angle can be extremely difficult with a low samplig rate at high RPMs and as a consequence, tuning the observer gain can be tough. Likewise, monitoring the current that is measured in each phase can represent the same issue and make PI tuning really time-consuming.

C PDI Builder	🚓 Input / Output	Ð
CAN CAN I/O SCI CAN High Speed Telemetry	Base ID 512 Extended Frecuency 4 Power Module Temperature (MC110) VMC Mechanical Angular Speed VMC Mechanical Angular Speed	+

There are only two parameters here:

- 1. Base ID: the first ID to be used. The next IDs will be reserved depending on the variable list.
- 2. **Frequency(decimation):** the number of clock steps the ESC skips before sending a High Speed CAN telemetry packet.

Note: MC control is running at 5kHz.

Note: A separate tool is offered to see MC telemetry, please ask support@embention.com