
Veronte CAN Expander

Embention

Dec 21, 2022

CONTENTS

1 Assembly 1

2 Pinout 3
2.1 Veronte CEX . 3
2.2 Veronte CEM . 5

3 I/O Specifications 7

4 Software 9
4.1 CAN Bus . 9

4.1.1 Arbitration . 10
4.1.2 Request Version . 10
4.1.3 Command PWMs . 11
4.1.4 MCU Telemetry (CEX to Veronte) . 12
4.1.5 MCU Telemetry (Veronte to CEX) . 12
4.1.6 Scorpion Tribunus ESC Telemetry . 13
4.1.7 JetiTM ESC Telemetry . 13
4.1.8 Jeti BEC Telemetry . 13
4.1.9 Jeti Temperature Sensor Telemetry . 14
4.1.10 Set Maintenance Mode Command . 14
4.1.11 Stick Selection Command . 14

4.2 CEX CAN Setup . 14
4.2.1 CAN Basic Setup . 14
4.2.2 CEX CAN Transmission ID . 15
4.2.3 CAN Reception IDs . 16
4.2.4 CAN I/O Interconnections . 17
4.2.5 CAN Telemetry . 19

4.3 Serial Setup . 21
4.4 Ports . 22
4.5 PWMs . 23
4.6 GPIO Manager . 25
4.7 IO Manager . 25
4.8 Digital IO . 26
4.9 RPMs . 27
4.10 PPM . 28
4.11 Scorpion Tribunus Telemetry . 29
4.12 Jetibox Telemetry . 30
4.13 Arbitration . 36

5 Veronte Pipe Configuration 37

i

5.1 Direct Connection . 37
5.2 Connection via Veronte’s CAN . 37

5.2.1 CAN Config Section . 38
5.2.2 IO Manager Section . 41
5.2.3 Ports . 41

6 Examples 43
6.1 CAN Expander Update . 43

6.1.1 Embention Flashing Tool . 43
6.2 CEX configuration over CAN Bus . 46

6.2.1 Veronte Link setup . 47
6.2.2 CEX PDI Builder . 48

6.3 Sending PWMs . 50
6.4 Reading Arbitration Messages . 51
6.5 Reading RPMs . 52

6.5.1 GPIO Configuration . 52
6.5.2 Digital Input Manager . 53
6.5.3 RPM Configuration Menu . 54
6.5.4 CAN Telemetry . 55

6.6 UART . 60
6.6.1 I/O Manager Configuration . 60
6.6.2 SCI . 61
6.6.3 CAN I/O Manager Configuration . 62
6.6.4 Veronte Autopilot Side . 64

7 General Description 65
7.1 Wiring Optimization . 66
7.2 Enhanced I/O . 66
7.3 Applications . 66

ii

CHAPTER

ONE

ASSEMBLY

Veronte CEX dimensions

1

Veronte CAN Expander

Veronte CEM dimensions

CAN Expander does not integrate a termination resistance in order to allow for multiple CAN Expander connected to
the same line. Considering Veronte Autopilot includes one entrance resistance of 120 W, a second resistance needs to
be placed at the end of the line (again 120 W).

CAN assembly diagram example

2 Chapter 1. Assembly

CHAPTER

TWO

PINOUT

2.1 Veronte CEX

Veronte CEX pinout

Warning: Please note the colour code of the 2 connectors as wrong connections can result in permanent damage
of CEX.

3

Veronte CAN Expander

Connector A (Colored) - T1M-20-T-SH-L
PIN Nº I/O Color
1 Power supply 1 Brown
2 Power supply 2 Red
3 GND Orange
4 CAN A (H) Yellow
5 CAN A (L) Green
6 CAN B (L) Blue
7 CAN B (H) Purple
8 UART A (TX) Gray
9 UART A (RX) White
10 GND Black
11 UART B (TX) Brown
12 UART B (RX) Red
13 GND Orange
14 I2C SCL Yellow
15 I2C SDA Green
16 GND Blue
17 3.3V (0.1A max) Purple
18 GND Gray
19 5V (0.1A max) White
20 GND Black

Connector B (Black) - T1M-20-T-SH-L
PIN Nº I/O
1 PWM 1
2 PWM 2
3 PWM 3
4 PWM 4
5 PWM 5
6 PWM 6
7 PWM 7
8 PWM 8
9 ECAP 1
10 ECAP 2
11 ECAP 3
12 ECAP 4
13 ANALOG 1 (3.3V)
14 ANALOG 2 (3.3V)
15 ANALOG 3 (5V)
16 ANALOG 4 (5V)
17 ANALOG 5 (12V)
18 ANALOG 6 (12V)
19 ANALOG 7 (36V)
20 ANALOG 8 (36V)

4 Chapter 2. Pinout

Veronte CAN Expander

2.2 Veronte CEM

Veronte CEM - 780-M44-103L001 connector

PIN Nº I/O PIN Nº I/O
1 PWM 1 23 GND
2 PWM 2 24 Power supply 1
3 PWM 3 25 Power supply 2
4 PWM 4 26 GND
5 PWM 5 27 CAN A (H)
6 PWM 6 28 CAN A (L)
7 PWM 7 29 CAN B (L)
8 PWM 8 30 CAN B (H)
9 GND 31 232_TX
10 ECAP 1 32 232_RX
11 ECAP 2 33 GND
12 ECAP 3 34 RX+
13 ECAP 4 35 RX-
14 GND 36 TX-
15 ANALOG 1 (3.3V) 37 TX+
16 ANALOG 2 (3.3V) 38 GND
17 ANALOG 3 (5V) 39 I2C SCL
18 ANALOG 4 (5V) 40 I2C SDA
19 ANALOG 5 (12V) 41 3.3V (0.1A max)
20 ANALOG 6 (12V) 42 GND
21 ANALOG 7 (36V) 43 5V (0.1A max)
22 ANALOG 8 (36V) 44 GND

2.2. Veronte CEM 5

Veronte CAN Expander

6 Chapter 2. Pinout

CHAPTER

THREE

I/O SPECIFICATIONS

• All inputs are ESD protected

• Double, redundant, power supply inputs.

• Input voltage/current

– Power input: 6V to 60V (DC)

– Power consumption: 3W

• Vmax = 60V

– IMax: 1.5A, Inom: 0.3A

• CAN

– Complies with CAN Bus 2.0A and 2.0B Standards

– Opto-Isolated (4kV)

– Speed up to 1Mbps

• UART

– TTL 3.3V signals up to 115200 baud

• I2C

– 3.3V Signals up to 400KHz

• 3.3V Output

– 100 mA fuse protected

• 5V Output

– 100 mA fuse protected

• PWM Output

– Voltage is 5V

– Current I (oh) = 16mA and I (ol) = -16mA

– Micro Edge Positioning (MEP) step size = 150ps

• Digital Inputs (ECAP)

– Maximum voltage = 5V

– Maximum input current = 2.5mA

– Sampling rate: up to 1us

7

Veronte CAN Expander

• Analog signals

– Input impedance: 10GOhm

– Resolution:

∗ 0-3.3V pins: 0.00080V

∗ 0-5V pins: 0.0012V

∗ 0-12V pins: 0.0029V

∗ 0-36V pins: 0.0087V

8 Chapter 3. I/O Specifications

CHAPTER

FOUR

SOFTWARE

4.1 CAN Bus

Veronte CEX and CEM Communication Protocol over CAN Bus is defined as follow (v6.4.39 or higher):

• cmd (8 bits): Message Type

• data (up to 56 bits): Message Data

First 8 bits refers to the Message Type and are defined as follows:

Message Type Value Description
t_arbitration 0 Arbitration message
t_version 1 Version request / response
t_pwm_0_3_set 2 PWMs 0 to 3
t_pwm_4_7_set 3 PWMs 4 to 7

4 Reserved
t_esc_tm 5 Scorpion Tribunus ESC telemetry data
t_esc_tm2 6 Jeti ESC telemetry data
t_bec_tm1 7 Jeti BEC telemetry data
t_bec_tm2 8 Jeti BEC telemetry data 2
t_temp_tm 9 Jeti Temperature sensor telemetry data
t_mcu_cmd 10 MCU command
t_pwm_8_11_set 11 PWMs 8 to 11
t_pwm_12_15_set 12 PWMs 12 to 15
t_pwm_16_19_set 13 PWMs 16 to 19

14 Reserved
15 Reserved

t_cmd_maint 16 Command to go to Maintenance Mode
t_stick_sel 17 Command for Stick selection
t_mcu_tm1 18 MCU telemetry data 1
t_mcu_tm2 19 MCU telemetry data 2

The following bytes refer to the Message Data.

Next sections decribe each of the possible messages.

9

Veronte CAN Expander

4.1.1 Arbitration

CAN Expander Arbitration Status message is composed as follow:

• Message 1

Message Type Bytes Description
t_arbitration 1 Message type (0)
Flag 1 Status Flag [0xFF]
CAP 7 bits Active Autopilot (Current)
Flag 1 bit Arbitrating
Flag 1 bit AP0 Alive
Flag 1 bit AP1 Alive
Flag 1 bit AP2 Alive
Flag 1 bit AP3 Alive (External)
Flag 1 bit AP0 Ready
Flag 1 bit AP1 Ready
Flag 1 bit AP2 Ready
Flag 1 bit AP3 Ready (External)

• Message 2 (One for each Autopilot)

Message Type Bytes Description
t_arbitration 1 Message type (0)
AP ID 1 Autopilot [0, 3]
Score 4 Autopilot score as Float (32 bits)

4.1.2 Request Version

The command needed to ask the CEX version is the following:

• cmd (8 bits): t_version

And CEX will answer with:

• cmd (8 bits): t_version (1)

• data0 (8 bits): App -> 9 CEXv2

• data1 (8 bits): Version

• data2 (8 bits): Major

• data3 (8 bits): Minor

• data4 (8 bits):

– bits 7-3: 0

– bit 1: arbitration_enabled

– bit 0: arbitrating

10 Chapter 4. Software

Veronte CAN Expander

4.1.3 Command PWMs

Each PWM in Veronte CAN Expander has to be associated to a Sub Id that indicates which of the CAN Bus message’s
PWM is listening to.

That allows to control up to four PWMs using the same message if that is desired. Each message is composed by 4
PWMs maximum.

PWMs from 0 to 3 are sent in a message that includes 4 PWMs coded as 12-bit integers:

• cmd (8 bits): t_pwm_0_3_set (2)

• pwm0 (12 bits) PWM value for sub-id 0

• pwm1 (12 bits) PWM value for sub-id 1

• pwm2 (12 bits) PWM value for sub-id 2

• pwm3 (12 bits) PWM value for sub-id 3

PWMs from 4 to 7 are sent in a message that includes 4 PWMs coded as 12-bit integers:

• cmd (8 bits): t_pwm_4_7_set (3)

• pwm0 (12 bits) PWM value for sub-id 4

• pwm1 (12 bits) PWM value for sub-id 5

• pwm2 (12 bits) PWM value for sub-id 6

• pwm3 (12 bits) PWM value for sub-id 7

PWMs from 4 to 7 are sent in a message that includes 4 PWMs coded as 12-bit integers:

• cmd (8 bits): t_pwm_8_11_set (11)

• pwm0 (12 bits) PWM value for sub-id 8

• pwm1 (12 bits) PWM value for sub-id 9

• pwm2 (12 bits) PWM value for sub-id 10

• pwm3 (12 bits) PWM value for sub-id 11

PWMs from 4 to 7 are sent in a message that includes 4 PWMs coded as 12-bit integers:

• cmd (8 bits): t_pwm_12_15_set (12)

• pwm0 (12 bits) PWM value for sub-id 12

• pwm1 (12 bits) PWM value for sub-id 13

• pwm2 (12 bits) PWM value for sub-id 14

• pwm3 (12 bits) PWM value for sub-id 15

PWMs from 16 to 19 are sent in a message that includes 4 PWMs coded as 12-bit integers:

• cmd (8 bits): t_pwm_16_19_set (13)

• pwm0 (12 bits) PWM value for sub-id 16

• pwm1 (12 bits) PWM value for sub-id 17

• pwm2 (12 bits) PWM value for sub-id 18

• pwm3 (12 bits) PWM value for sub-id 19

4.1. CAN Bus 11

Veronte CAN Expander

4.1.4 MCU Telemetry (CEX to Veronte)

The telemetry sent by CEX over CAN Bus is composed by:

• Message 1

Message Type Bytes Description
t_mcu_tm1 1 Message type (18)
Battery SN 1 Battery Serial Number [0]
Battery SN 1 Battery Serial Number [1]
Temperature 1 Battery Temperature (as received from MCU)
Voltage 1 Low Cell Voltage (as received from MCU)

4 bits Reserved (Zeros)
Status Bit 1 PWM receiving Ok
Status Bit 1 CAN PWM receiving Ok
Status Bit 1 CAN B receiving
Status Bit 1 CAN A receiving

• Message 2

Message Type Bytes Description
t_mcu_tm2 1 Message type (19)
Battery SN 1 Battery Serial Number [2]
Battery SN 1 Battery Serial Number [3]
Battery SN 1 Battery Serial Number [4]
Battery SN 1 Battery Serial Number [5]
Battery SN 1 Battery Serial Number [6]
Battery SN 1 Battery Serial Number [7]

4.1.5 MCU Telemetry (Veronte to CEX)

The telemetry sent from Veronte to CEX must be configured as follows:

Message Type Bytes Description
t_mcu_cmd 1 Message type (10)
SUB-id 1 SUB-id A
LED Value 1 Value A
SUB-id 1 SUB-id B
LED Value 1 Value B
SUB-id 1 SUB-id C
LED Value 1 Value C

Each Veronte CAN Expander will use the SUB-id of the PWM associated to the “Scorpion Tribunus”/PWM ID to
identify the value to be used.

12 Chapter 4. Software

Veronte CAN Expander

4.1.6 Scorpion Tribunus ESC Telemetry

The telemetry read from the Scorpion ESC is sent as:

Message Type Bytes Description
t_esc_tm 1 Message type (5)
Voltage 1 Input voltage in range [0, 85]
Temperature 1 Temperature in Celsius
Errors 1 Error Flags from the ESC
Current 1 Current in Amps [0, 255]
Consumption 1 Consumption in mAmps [0, 25500]
RPMs 1 RPMs [0, 25500]
Throttle 1 Throttle as percentage*2 [0, 200]

4.1.7 JetiTM ESC Telemetry

The telemetry read from Jeti-TM compatible ESCs is sent as:

Message Type Bytes Description
t_esc_tm2 1 Message type (6)
Throttle 1 Throttle value [0, 200]
RPMs 2 Current RPMs
Voltage 10 bits Input voltage in the range [0, 70] Volts
Temperature 10 bits Temperature in the range [0, 575] Kelvin
Current 12 bits Current in the range [0, 400.0] Amps

4.1.8 Jeti BEC Telemetry

The telemetry read from a BEC will be sent in 2 different messages:

• Message 1:

Message Type Bytes Description
t_bec_tm1 1 Message type (7)
Device ID 2
Voltage In 12 bits Input voltage in the range [0, 70] Volts
Voltage Out 12 bits Output voltage in the range [0, 70] Volts
Temperature 12 bits Temperature in the range [0, 575] Kelvin

• Message 2:

Message Type Bytes Description
t_bec_tm2 1 Message type (8)
Device ID 2
Current 12 bits Current in the range [0, 100.0] Amps

4.1. CAN Bus 13

Veronte CAN Expander

4.1.9 Jeti Temperature Sensor Telemetry

The telemetry read from a Temperature sensor will be send as:

Message Type Bytes Description
t_temp_tm 1 Message type (9)
Device ID 2
Temperature 1 12 bits Measured temperature 1 in the range [0, 750] Kelvin
Temperature 2 12 bits Measured temperature 2 in the range [0, 750] Kelvin

4.1.10 Set Maintenance Mode Command

This command will configure the CEX in maintence mode, setting its configuration in a way that Communications can
work over SCI-A, SCI-B or Serial-Over-CAN configured as:

• SCI-A and SCI-B: 115200 bauds, 8 data bits, 1 stop, no parity

• Serial over CAN:

– TX Id: 1301

– RX Id: 1301

The format of the command is:

• cmd (8 bits): t_cmd_maint (16)

4.1.11 Stick Selection Command

This command is used to enable or disable the CEX PPM reader. If the address received matches the CEX’s one, CEX
PPM reader will be enabled, otherwise it will be disabled.

The format of the command is:

• cmd (8 bits): t_stick_sel (17)

• address (16 bits)

4.2 CEX CAN Setup

4.2.1 CAN Basic Setup

Main screen to configure bus speed and the reception mailboxes of each CAN bus:

14 Chapter 4. Software

Veronte CAN Expander

CAN BUS configuration

4.2.2 CEX CAN Transmission ID

CEX is able to send information about its version, Arbitration status (check the Arbiter manual for a description of
these messages) and Jeti telemetry from devices connected to CEX. We can define the CAN Id used to those messages:

4.2. CEX CAN Setup 15

Veronte CAN Expander

4.2.3 CAN Reception IDs

We CAN setup the recepcion CAN Ids for each of the 4 possible Veronte Autopilots sending data to CEX. If arbitration
is not enabled, only the configuration of the Autopilot 0 will be used.

16 Chapter 4. Software

Veronte CAN Expander

4.2.4 CAN I/O Interconnections

Once the CAN IDs are set, we shall configure:

• The Input Filters going to be used.

• The connection between input filters and data Consumers.

4.2. CEX CAN Setup 17

Veronte CAN Expander

For each CAN Input Filter, it is requried to configure the can bus from which it listens (CAN-A, CAN-B or Both), the
CAN id, the CAN Id mask and the type of frame (Standard, Extended or Both).

The Mask defines the bits that sould match. For example if we want to admit statndard Ids (11 bits) from 8 to 11 (100
to 111 in binary) we should set the mask to binary 11111111100, that is 2044 in decimal.

Next step is to connect each of the desired data Producers to an Output Filter, and configure both the Producer and the
Output Filter:

18 Chapter 4. Software

Veronte CAN Expander

4.2.5 CAN Telemetry

CEX is able to send telemetry via CAN. To enable this feature CAN Telemetry producer shall:

1. Connect it to an Ouptut Filter as follows:

4.2. CEX CAN Setup 19

Veronte CAN Expander

2. Select the fields to send in the Telemetry tab. Note that each message is limited to 64 bits and
larger messages will be cut to that size.

20 Chapter 4. Software

Veronte CAN Expander

4.3 Serial Setup

CEX can use up to three serial peripherals, which can be individually configured with given:

• Baudrate

• Data length: 4 to 8 bits

• Number of Stop bits: 1, 1.5, 2

• Parity: disabled, odd, even

• Address mode: 9-bit data framing uses the bit typically associated with parity error detection to identify address
messages. Sent serial data that does not have the address bit set will be ignored (unless the device had previously
identified an address message associated with it). This option can be disabled or enabled.

4.3. Serial Setup 21

Veronte CAN Expander

4.4 Ports

CEX can be configured to route its communications to any specific port given a destination address:

22 Chapter 4. Software

Veronte CAN Expander

4.5 PWMs

In this tab we can configure each PWM:

4.5. PWMs 23

Veronte CAN Expander

Note that the PWMs in CEX works in normalized mode, so when the input value is 0 the output value will be the
minimum configured, and when the input value is 4095 (12 bits all with ones), the output will be the maximum
configured. This approach allows usage of the maximum resolution for the commanded value.

The configuration items are:

• Enable: Define if the PWM is enabled or not.

• Sub id: Define from which CAN PWM message element reads its value [0, 19].

• Frequency: PWM output frequency.

• Timeout: If a PWM message is not received in less than this time, the PWM will output the start value.

• Start value: Value used before any PWM message arrives and on timeout.

• Pulse source ID: PWM input ID [0,3], defined in Digital Input Manager tab.

• PWM specifics

– Active High: Polarity high or low.

– Mode: Time os Duty cicle

– Min: Minimum value. That will output when the PWM message specifies 0

– Max: Minimum value. That will output when the PWM message specifies 4095

24 Chapter 4. Software

Veronte CAN Expander

4.6 GPIO Manager

In this tab we can configure each individual GPIO behavior:

4.7 IO Manager

In this tab we can configure how serial-based devices and ports are connected:

4.6. GPIO Manager 25

Veronte CAN Expander

4.8 Digital IO

CEX digital inputs can be used to measure pulse count, pulse widths and PPM signals from a RC radio. We shall
connect each source to the desired consumer to allow measuremets.

26 Chapter 4. Software

Veronte CAN Expander

4.9 RPMs

CEX can measure RPMs by measuring from up to four inputs sources:

4.9. RPMs 27

Veronte CAN Expander

4.10 PPM

CEX can be configured to read PPM using a wide range of possibilities:

28 Chapter 4. Software

Veronte CAN Expander

4.11 Scorpion Tribunus Telemetry

CEX can read telemetry from Tribunus ESCs by connecting it to one of its serial ports. Note that the serial port will
be totally reserved for this, so it will not be usable to other things and the IO Manager affecting it wil be ignored.

We can configure the serial port, the telemetry period and a special MCU telemetry period for a propietary device
(MCU). Telemetry data will be send using the configured CEX CAN Transmission ID.

4.11. Scorpion Tribunus Telemetry 29

Veronte CAN Expander

4.12 Jetibox Telemetry

CEX can simulate a Jetibox to read telemetry from legacy Jeti devices.

Note that the serial port will be totally reserved for this, so it will not be usable to other things and the IO Manager
affecting it wil be ignored.

We shall configure the serial port with: 9800, 2 stop bits, Odd parity and address mode ON

30 Chapter 4. Software

Veronte CAN Expander

4.12. Jetibox Telemetry 31

Veronte CAN Expander

and link the specific Jetibox IO consumer to that port:

32 Chapter 4. Software

Veronte CAN Expander

Also the sequence to retrieve the data shall be configured in the Jetibox consumer:

4.12. Jetibox Telemetry 33

Veronte CAN Expander

For example, to read the Actual Voltage from a Jeti MasterSpin 220 we should configure the Consumer with (use big
endian in all messages):

1. Expected text: “CONTROLLER TYPE MasterSpin 220~”

Action: Down

• Matcher(32) “CONT” 0x434F4E54 (1129270868)

• Skip(24*8) 192

• Matcher(32) “220~” 0x3232307E (842150014)

2. Expected text: “MeasureOrSetting MEASURE ~”

Action: Down

• Matcher(32) “Meas” 0x4D656173 (1298489715)

3. Expected text: “Max Temperature”. . .

Action: Down

• Matcher(32) “Max ” 0x4D617820 (1298233376)

4. Expected text: “Min Temperature”. . .

Action: Down

• Matcher(32) “Min ” 0x4D696E20 (1298755104)

34 Chapter 4. Software

Veronte CAN Expander

5. Expected text: “Actual Temperatu”. . .

Action: Down

• Matcher(32) “Actu” 0x41637475 (1097036917)

6. Expected text: “MaxCurrent”. . .

Action: Down

• Matcher(32) “MaxC” 0x4D617843 (1298233411)

7. Expected text: “MinCurrent”. . .

Action: Down

• Matcher(32) “MinC” 0x4D696E43 (1298755139)

8. Expected text: “Max Voltage”. . .

Action: Down

• Matcher(32) “Max ” 0x4D617820 (1298233376)

9. Expected text: “Min Voltage”. . .

Action: Down

• Matcher(32) “Min ” 0x4D696E20 (1298755104)

10. Expected text: “Actual Voltage 11,86 V “

Action: Nop

• Matcher(32) “Actu” 0x41637475 (1097036917)

• Skip(12*8) 96

• Ascii int(2), separartor(‘,’), decimal(2)

4.12. Jetibox Telemetry 35

Veronte CAN Expander

4.13 Arbitration

CEX is able to output PWMs using arbitration in the same way 4xVeronte does. This functionality has to be enabled
as follows:

Master arbitration RX CAN Id is exclusive for CEX and specifies if we want be in synchronization with a 4xVeronte
arbitration.

If enabled, when an arbitration message is received from the 4xVeronte, the selected Autopilot will be updated from
the data received.

The “Config” and “CAN Config” sections work the same as in the 4xVeronte and are explained in depth in its manual.

CEX is a sophisticated tool that allows multiple ways to communicate various systems.

From version 5.42.x, it can be configured without the need of reflashing it.

36 Chapter 4. Software

CHAPTER

FIVE

VERONTE PIPE CONFIGURATION

5.1 Direct Connection

By default CEX can stablish VCP communications over its SCI-A and SCI-B ports (RS232 nd RS485 on the MC
version). Using any of these connection will be possible to connect it to a PC and establish communication with PIPE
software.

5.2 Connection via Veronte’s CAN

It is usual to have a CEX in a system that does not allow to directly connect CEX to a PC. In that situation, we can
configure a Veronte that is connected over CAN with CEX, to be able to stablish a connection between Pipe and CEX.

By default CEX as a Serial-Over-CAN connection configure, using Standard CAN ids:

• Tx CAN Id: 1301

• Rx CAN Id: 1302

Veronte shall be configured as follows:

• One Serial-Over-CAN having:

– Rx CAN Id: 1301 (With at least 5 mailboxes reserved)

– Tx CAN Id: 1302

37

Veronte CAN Expander

5.2.1 CAN Config Section

SerialCAN Mailboxes

38 Chapter 5. Veronte Pipe Configuration

Veronte CAN Expander

SerialCAN CAN Connections

5.2. Connection via Veronte’s CAN 39

Veronte CAN Expander

SerialCAN CAN Configuration

40 Chapter 5. Veronte Pipe Configuration

Veronte CAN Expander

5.2.2 IO Manager Section

IO SerialCAN Connections

5.2.3 Ports

This step is not always necessary, but will improve the communications. Add it if there are lags or the communication
does not work.

The address of target CEX shall be set correctly in the route destination UAV (40117 in this example). If the theorical
address does not work, 999 (unknown) can be used as sometimes the address has not been set in CEX.

5.2. Connection via Veronte’s CAN 41

Veronte CAN Expander

Ports Configuration

This section describes how to configure Pipe and Veronte to be able to communicate with CEX.

42 Chapter 5. Veronte Pipe Configuration

CHAPTER

SIX

EXAMPLES

6.1 CAN Expander Update

Required items:

• Veronte CEX or CEM.

• Embention Flashing Tool.

• CAN Expander Update file.

• CAN Expander Programming tool (JTAG).

6.1.1 Embention Flashing Tool

1. Uncompress the Flashing_Tool.zip file received by Embention.

2. Connect the CAN Expander Programming tool (JTAG) to CEX.

3. Be sure to keep the following files structure:

Flashing Tool folders

4. Copy the Update file (CanEXpander_v6.4.X.out, where X refers to the CEX firmware version) inside the
Flash_images folder.

43

Veronte CAN Expander

Flash images

1. Open the EmbentionFlashingTool.exe file in order to launch the program. The following window will show up:

Flashing Tool 1

6. Set the CAN Expander ID (remember that it is composed by 40000 + CEX SN). Tap Enter.

7. Choose between Flash, Change serial number and Quit options and tap Enter.

Flashing Tool 2

8. Once the Flash option is selected, the user must select the XXX.out file that refers to the desired firmware version,
from the executable list. This list can be modified in the Flash_images folder.

44 Chapter 6. Examples

Veronte CAN Expander

Flashing Tool 3

1. Wait until the end of the flashing process. A “Success” message will show up if the .

6.1. CAN Expander Update 45

Veronte CAN Expander

Flashing Tool 4

6.2 CEX configuration over CAN Bus

Required items:

• Veronte Link (v1.1.3 or higher).

• CEX PDI Builder (v6.4.47 or higher).

• Veronte CEX or CEM flashed with v6.4.35 or higher.

• Veronte Autopilot (v6.4.22 or higher) configured as described in the previous section.

46 Chapter 6. Examples

Veronte CAN Expander

6.2.1 Veronte Link setup

1. Install and open Veronte Link. Close all the Veronte Pipe open windows or disable tghe “Autodiscovery” option
and remove all the COM Ports configured in its Connections tab.

Veronte Link

2. Click on Connections, then select “Serial” and the COM Port that Veronte Autopilot is using. CLick on Apply
to save these settings.

Veronte Link Connections

3. Open the Devices tab and confirm that Veronte has shown up. The Refresh button can be used in case the devices
list is not automatically updated.

6.2. CEX configuration over CAN Bus 47

Veronte CAN Expander

4. Click then on the “Find Device” button and input the CAN Expander ID. Remember that CEX or CEM ID is
built as 40000 + CEX Board serial number (SN) (for instance, board 229 will use ID 40229).

5. Once found, CAN Expander will show up in the Devices list together with Veronte.

Veronte Link Devices

6.2.2 CEX PDI Builder

1. Once Veronte and CEX have been detected on Veronte Link, install and open CEX PDI Builder.

CEX PDI Builder

2. Click on “Link CEX” and enter the CAN Expander’s ID.

48 Chapter 6. Examples

Veronte CAN Expander

CEX PDI Builder - Address

Once connected, CEX/CEM firmware version and its ID are shown in the lower part of the same window.

CEX PDI Builder linked

The user can access now to four configuration options:

• Select PDI: A previously exported CAN Expander PDI can be opened and modified offline.

• Update CEX: not in use, under development.

• Upload PDI: A previously exported CAN Expander PDI can be imported to the linked CAN Expander.

• Open CEX: CAN Expander PDI are downloaded from the linked CEX and they can be modified online.

6.2. CEX configuration over CAN Bus 49

Veronte CAN Expander

6.3 Sending PWMs

The PWM message format is described in the section Command PWMs

PWM Message

Inside the Veronte configuration, each PWM has to be set using the following format:

• Compress bits unsigned: 12

• Encode:: Min=0, Max=1

• Decode:: Min=0, Max=4095

Conversion to the current width is made taking into account the configuration.

50 Chapter 6. Examples

Veronte CAN Expander

PWM Output

6.4 Reading Arbitration Messages

Note that those messages are generated only if arbitration and the messages are enabled in CEX.

Arbiter will send its telemetry in little endian format, using its CAN-TX ID

• Variable value message: (same as the 4XV)

– Byte0 0 : t_arbitration message (CANstdp)

– Byte1 N : Autopilot [0, 3]

– Byte2-5 VVVV : Autopilot score as Float (32 bits)

• Status message: (same as the 4XV. However, 4XV sends more data)

– Byte0 0 : t_arbitration message (CANstdp)

– Byte1 0xFF : Status flag

– Byte2

∗ bits6-0 : Chief autopilot (current, selected)

∗ bit7 : Arbitrating 0:false, 1:true

6.4. Reading Arbitration Messages 51

Veronte CAN Expander

– Byte3:

∗ bit0 : AP0 Alive

∗ bit1 : AP1 Alive

∗ bit2 : AP2 Alive

∗ bit3 : AP3 Alive (external)

∗ bit4 : AP0 Ready

∗ bit5 : AP1 Ready

∗ bit6 : AP2 Ready

∗ bit7 : AP3 Ready (external)

Arbiter telemetry reading

6.5 Reading RPMs

6.5.1 GPIO Configuration

RPM can be read on the available digital inputs I/O 1-4. The chosen pin needs to be configured as “GPIO as input”. In
the example shown here, I/O1 is chosen (pin 9 on OEM version; pin 10 on MC version).

52 Chapter 6. Examples

Veronte CAN Expander

GPIO Configuration

6.5.2 Digital Input Manager

There are 4 possible producers: CAP 1 - 4. One needs to be chosen and linked to one of the RPMs consumers, PPS 1 -
4 (Pulse Per Second). Then, each chosen producer needs to be pointing to the right I/O (in this example, I/O1). Lastly,
the expected pulse needs to be wrapped: for RPMs the desired options are “first rising edge” or “first falling edge”.

6.5. Reading RPMs 53

Veronte CAN Expander

Digital Input Manager Configuration

6.5.3 RPM Configuration Menu

Here the expected pulse needs to be defined. There are 4 tabs (RPM 1 - 4). The user needs to select the tab according
to the chosen consumer in the Digital Input Manager. In the example, PPS1 was chosen, therefore RPM1 will be
edited.

54 Chapter 6. Examples

Veronte CAN Expander

RPM: Pulse Data

The data available is:

• Units: avaialble options are pulses per cycle, radians per pulse or custom.

• Average filter: the readout of the pulse can be filtered for the output to be an average. The amount of
measurements to do the average needs to be specified.

• Minimum pulse: here the minimum expected pulse period needs to be specified. This will discard spurius pulses
(e.g. induced by EMI) which are smaller than this minimum pulse.

• Maximum time without capture: if no incoming pulse is received for more than this time, the output RPMs
will be 0.

6.5.4 CAN Telemetry

Last, the RPMs sensed need to be sent to the autopilot. In the CAN I/O Manager a new telemetry message needs to
be created with its correspondent ID, endianness and period. In the example below:

• ID: 1200.

• Endianness: little.

• Period: 0.01 s.

In the telemetry message one of CEX’s variables needs to be selected. As we have chosen PPS1 as our consumer in
the Digital Input Manager, the variable we need to send is RPM1.

6.5. Reading RPMs 55

Veronte CAN Expander

RPM: CAN Telemetry

The telemetry (producer) needs to be send over one of the avialable CAN Output Filters (consumer). In the example
below, the RPM1 variable is sent over CAN B bus of the CEX.

56 Chapter 6. Examples

Veronte CAN Expander

RPM: CAN Telemetry I/O Configuration

On the autopilot side, some mailboxes with ID 1200 will have to be created on whichever chosen reception CAN bus.

6.5. Reading RPMs 57

Veronte CAN Expander

RPM: Mailboxes Assigned on the Autopilot

Accordingly, the 4 bytes information contained in RPM1 will have to be stored in one of the available 300 real user
variables (32 bits).

58 Chapter 6. Examples

Veronte CAN Expander

RPM: CAN Telemetry on the Autopilot

An input filter is used (producer) and the information is being received on the Custom Message 1 (producer). Both
CAN buses of the autopilot can be used, as well as normal IDs and extended IDs.

6.5. Reading RPMs 59

Veronte CAN Expander

RPM: CAN Telemetry I/O Configuration on the Autopilot

6.6 UART

6.6.1 I/O Manager Configuration

Reception of serial information on UART-A (producer) is stored in Serial to CAN 2 (consumer). Transmission of serial
information is sent using the CAN to Serial 2 (producer) over UART-A (consumer).

‘Serial to CAN’ and ‘CAN to Serial’ configuration is explained in the CAN I/O Manager menu section below.

60 Chapter 6. Examples

Veronte CAN Expander

IO Manager Configuration

6.6.2 SCI

Serial ports A, B and C parameters can be edited in this menu to fit the serial protocol requirements. Ports A and B
will be different depending on the CAN Expander version (2xUART in OEM version; 1x RS232 and 1xRS485 in MC
version).

6.6. UART 61

Veronte CAN Expander

SCI-A Configuration

6.6.3 CAN I/O Manager Configuration

The information that will be sent over serial port UART-A is going to be received on the CAN Expander board over
its CAN B port. A mask id of 51 is added to the Input filter. The incoming information (from Veronte autopilo) is
processed in ‘CAN to Serial 2’.

The information coming from port UART-A and processed in the board as ‘Serial to CAN 2’ is going to be linked to
an Output filter. The information of ‘Serial to CAN 2’ is going to be sent over CAN B of the board with a mask ID of
50 (to be read by Veronte autopilot).

62 Chapter 6. Examples

Veronte CAN Expander

CAN I/O Manager Configuration

On the CAN Expander board, as in with Veronte autopilot, mailboxes need to be defined for the reception of CAN
messages. In the example above, mailboxes for ID 51 need to be added on CAN B port of the board.

CAN B Mailboxes

6.6. UART 63

Veronte CAN Expander

6.6.4 Veronte Autopilot Side

On the I/O Manager, link an ‘RS Custom Message’ to a ‘Serial to CAN’ with the serial data that the autopilot is going
to send to the CAN Expander board. Then, link another ‘RS Custom Message’ to a ‘CAN to Serial’ with the expected
serial messages that the CAN Expander board will receive in the selected serial port.

Veronte I/O Manager Configuration

As for the CAN I/O Manager, the same IDs employed in the CAN Expander board for the Input and Output filters are
going to be employed on Veronte’s side, but they need to be inverted.

Therefore, the Input filter linked to the chosen ‘CAN to Serial’ needs to have ID 50. And the Output filter linked to
the chosen ‘Serial to CAN’ will have ID 51. Some mailboxes with ID 50 will have to be created on whichever chosen
reception CAN bus.

Some configuration examples are explained in this section.

64 Chapter 6. Examples

CHAPTER

SEVEN

GENERAL DESCRIPTION

Veronte CAN Expander stands as a powerful peripheral to ease the reduction of wire in autonomous vehicles at the
time it permits to increase the number of devices in the system. It makes possible to relocate and to group sensors,
actuators, payloads, motor controllers. . . enhancing the I/O connectivity in the Veronte Autopilot. With its easy
integration, Veronte CAN Expander becomes a quick solution for increasing connectivity capacity and allowing wiring
optimization, especially in large systems.

Veronte CEX

65

Veronte CAN Expander

Veronte CEM

7.1 Wiring Optimization

It is especially in large vehicles, where wire optimization plays a critical role permitting a significant weight reduction.
This upgrade is achieved thanks to the reduction of cable length and because of the added flexibility so the right device
can be installed in the right location. Another advantage of the use of Veronte CAN Expander is the robustness of the
CAN Bus, being resistant to electromagnetic interferences and permitting the installation of long cables with no signal
loss. Furthermore, it includes redundancy with CAN bus isolation, making it fail operational even in case of a CAN
bus line break.

7.2 Enhanced I/O

With the use of Veronte CAN Expander, the data capacity for input and output in Veronte Autopilots is increased in a
great manner. The advanced design makes possible to control several peripherals (PWM, UART, Digital Output, I2C,
Analog Inputs. . .) through the CAN Bus. It can be used for both, expanding the I/O capacity in Veronte Autopilot, or
for controlling peripherals with a robust communications protocol. In case it is needed, several CAN Expander boards
can be installed in the same network for increasing the number of I/O ports or because of system architecture needs.

7.3 Applications

In aviation, a field where weight means such an important agent in design, struggling with wiring is one of the most
common issues faced during the vehicle design. With the use of Veronte CAN Expander, not only this issue would be
reduced, but a bunch of opportunities for different sensors and payload could arise:

• By adding more I/O interfaces, a more complex payload control can be achieved, improving connectivity.

• Advanced control of actuators and peripherals becomes feasible, being possible to condensate the connection of
control, feedback, sensors. . . in a single board.

66 Chapter 7. General Description

Veronte CAN Expander

• Devices can be installed at long distances from the autopilot with no signal degradation thanks to the robustness
of the CAN Bus.

7.3. Applications 67

	Assembly
	Pinout
	Veronte CEX
	Veronte CEM

	I/O Specifications
	Software
	CAN Bus
	Arbitration
	Request Version
	Command PWMs
	MCU Telemetry (CEX to Veronte)
	MCU Telemetry (Veronte to CEX)
	Scorpion Tribunus ESC Telemetry
	JetiTM ESC Telemetry
	Jeti BEC Telemetry
	Jeti Temperature Sensor Telemetry
	Set Maintenance Mode Command
	Stick Selection Command

	CEX CAN Setup
	CAN Basic Setup
	CEX CAN Transmission ID
	CAN Reception IDs
	CAN I/O Interconnections
	CAN Telemetry

	Serial Setup
	Ports
	PWMs
	GPIO Manager
	IO Manager
	Digital IO
	RPMs
	PPM
	Scorpion Tribunus Telemetry
	Jetibox Telemetry
	Arbitration

	Veronte Pipe Configuration
	Direct Connection
	Connection via Veronte’s CAN
	CAN Config Section
	IO Manager Section
	Ports

	Examples
	CAN Expander Update
	Embention Flashing Tool

	CEX configuration over CAN Bus
	Veronte Link setup
	CEX PDI Builder

	Sending PWMs
	Reading Arbitration Messages
	Reading RPMs
	GPIO Configuration
	Digital Input Manager
	RPM Configuration Menu
	CAN Telemetry

	UART
	I/O Manager Configuration
	SCI
	CAN I/O Manager Configuration
	Veronte Autopilot Side

	General Description
	Wiring Optimization
	Enhanced I/O
	Applications

