
4x PDI Builder
Release 6.12.27

Embention

2024-04-03

CONTENTS

1 Quick Start 3
1.1 Download . 3
1.2 Installation . 3

2 Configuration 5
2.1 Arbiter . 12

2.1.1 GPIO . 12
2.1.2 Initial time . 14
2.1.3 Status . 14

2.2 Input/Output . 15
2.2.1 SCI . 15
2.2.2 I/O Setup . 17
2.2.3 CAN . 18
2.2.4 CAN I/O . 19

2.2.4.1 Configuration . 19
2.2.4.2 Custom message . 22

2.2.5 CAN Setup . 23
2.3 Communications . 24
2.4 Arbitration . 26

2.4.1 Config . 27
2.4.1.1 Absolute Arbitration Variables . 27
2.4.1.2 Relative Arbitration Variables . 27
2.4.1.3 Arbitration Example . 27
2.4.1.4 Config menu . 27

2.4.2 CAN Setup . 29

3 Integration examples 31
3.1 Arbitration configuration . 31
3.2 GPIO command . 37

3.2.1 1x PDI Builder side . 37
3.2.2 4x PDI Builder side . 39

4 Troubleshooting 41
4.1 Maintenance mode . 41
4.2 Maintenance mode (loaded with errors) . 42
4.3 Migrate configuration . 44

5 FAQ 45
5.1 How to calculate a mask . 45

i

ii

4x PDI Builder, Release 6.12.27

4X PDI Builder is an application for modifying, generating and uploading PDI files for Arbiters, the autopilot
managers of the redundant Veronte Autopilot 4x.

Warning: Select your version before reading any user manual for software. The following image shows where to
select a version from any Embention user manual.

CONTENTS 1

4x PDI Builder, Release 6.12.27

2 CONTENTS

CHAPTER

ONE

QUICK START

4x PDI Builder is the main configuration tool to adapt Arbiters for a specific system, being its main function to decide
which Autopilot 1x controls the vehicle at every moment. 4x PDI Builder includes:

• Communications: through general purpose CAN bus, RS-232, RS-485 and GPIOs.

• Arbitration criterion: Arbiters decide which Autopilot 1x controls the vehicle according to the criterion decided
by the user.

All Veronte devices, including Arbiters, are configured with PDI files.

1.1 Download

Once Veronte Autopilot 4x has been purchased, a GitHub release should be created for the customer with the
application.

To access to the release and download the software, read the Releases section of the Joint Collaboration Framework
manual.

1.2 Installation

Warning: If users have any problems with the installation, please disable the antivirus and the Windows firewall.
Disabling the antivirus depends on the antivirus software.

To disable the firewall:

• Go to “Control Panel” → “System and Security” → “Windows Defender Firewall”

• Then, click on “Turn windows Defender Firewall on or off”.

3

https://manuals.embention.com/joint-collaboration-framework/en/0.1/index.html

4x PDI Builder, Release 6.12.27

Fig. 1: Windows Defender Firewall

Fig. 2: Windows Defender Firewall: Settings

4 Chapter 1. Quick Start

CHAPTER

TWO

CONFIGURATION

This section explains each option and parameter available in 4x PDI Builder.

Once the installation is finished, connect the Management Board of the 4x (using the Connector 4) with Veronte
Link.

Then, open 4x PDI Builder and select the Arbiter to configure.

Fig. 1: Arbiter ID

If the Veronte Autopilot 4x is correctly connected, 4x PDI Builder will display the mode in which the connected unit

is. In addition, a PDI error button will appear:

5

https://manuals.embention.com/veronte-link/en/latest/index.html
https://manuals.embention.com/veronte-link/en/latest/index.html

4x PDI Builder, Release 6.12.27

Fig. 2: 4x PDI Builder

• 4x mode: The 4x unit should appear in Normal mode, as shown in the figure above, or Maintenance mode.

It can also appear as Maintenance mode (loaded with errors) or Normal mode - Disconnected.

Note: Maintenance mode (loaded with errors) appears when something is wrong with the configuration. For
more information, see Maintenance mode (loaded with errors) - Troubleshooting section of this manual.

• PDI Errors button: The user can check if the connected unit has PDI Errors by simply clicking on it. If
there are no errors, the following message is displayed:

Fig. 3: 4x PDI Builder - PDI Errors message

The user can access now to three configuration options:

6 Chapter 2. Configuration

4x PDI Builder, Release 6.12.27

Fig. 4: 4x PDI Builder options

• 4xVeronte: It allows the user to work with offline configurations. A previously exported 4x PDI configuration
can be opened and modified. It is also possible to build a new one from the default configuration.

Note: When an offline configuration is opened, it is possible to select the hardware version to work with on the
marked button. Versions 1.8 A and 1.8 B are arbiters A and B of version 1.8 respectively.

It is recommended to select the same hardware version that the user’s Arbiter has, so that if the user wishes to
load this configuration later to the Arbiter, there will be no compatibility problems.

Fig. 5: Hardware versions selector

When switching between hardware versions, the following confirmation message appears:

7

4x PDI Builder, Release 6.12.27

Fig. 6: Hardware versions selector - Confirmation message

• Upload PDI: A previously exported 4x PDI configuration can be imported to the linked Arbiter (PDI files are
transferred from computer to Arbiter).

Warning: When a configuration is loaded into Arbiter with a version older than the software version being
used, an automatic migration from the configuration version to the software version being used will be
performed.

For more information on this, see Migrate configuration - Troubleshooting section of this manual.

• Open 4x Veronte: It opens the configuration (the PDI files) loaded in the Arbiter (PDI files are transferred from
Arbiter to computer). Then, the user can modify it online.

Note: PDI files are Arbiter configuration files. These PDI files are stored in the setup folder, holding several
.xml files which contain all the control system and parameters.

Fig. 7: PDI files

Finally, click on ‘4xVeronte’ to edit a configuration offline or ‘Open 4xVeronte’ to open the current configuration and
start editing it online.

Note: The 4x unit must enter Maintenance mode for the user to start editing, so it is necessary to accept the
confirmation panel below.

8 Chapter 2. Configuration

4x PDI Builder, Release 6.12.27

Fig. 8: Open 4xVeronte

Once in Maintenance mode, the user can access the Initial menu. The different ‘buttons’ that can be seen in this menu
of the 4x PDI Builder are explained below.

Fig. 9: Initial menu

1. Save and close: After changes are done, press here to apply changes.

While saving, a percentage of saving process is displayed.

9

4x PDI Builder, Release 6.12.27

Fig. 10: Save and close

In order to save the configuration in the 4x unit it is necessary to RESET, therefore the 4x PDI Builder software
will close. For this reason, the user must accept the following panels:

10 Chapter 2. Configuration

4x PDI Builder, Release 6.12.27

Fig. 11: Save and close - Confirmation panels

Danger: As the Arbiter is reset, it is not advisable to save changes during flight tests.

Note: This button will only appear if an Arbiter is connected. When working offline this button will not be
available.

2. Export PDI: After modifying a configuration, press here to save the configuration in the local storage (both
folders with the PDI files are downloaded). Users can store this configuration in an empty folder or in the folder
where the previously imported configuration is stored. With the latter option, the “original” configuration will
be overwritten by the one with the new changes.

3. Import PDI from repository: The user can import a configuration file from the GitHub repository and modify
it. After that, if the Save and close button (1) is pressed, this configuration will be uploaded to the connected
arbiter.

4. Import PDI from local storage: The user can import a configuration file from the local storage and modify
it. After that, if the Save and close button (1) is pressed, this configuration will be loaded into the connected
arbiter.

5. Feedback: Users can report a problem they have encountered by creating an issue in their own ‘Joint

11

4x PDI Builder, Release 6.12.27

Collaboration Framework’. The ‘Download’ button downloads a zipped folder with the current arbiter
configuration and more information needed for Embention to resolve the issue. It is advisable to attach this
folder when creating the issue.

Note: The user’s ‘Joint Collaboration Framework’ is simply a own Github repository for each customer.

If the user has any questions about this Joint Collaboration Framework, please see Joint Collaboration Framework
user manual or contact sales@embention.com.

Fig. 12: Feedback

6. These are the different functions of the arbiter. They are explained in the following menus.

• Arbiter

• Input/Output

• Communications

• Arbitration

2.1 Arbiter

2.1.1 GPIO

In this window, each individual GPIO (General Purpose Input/Output) behavior can be configured:

12 Chapter 2. Configuration

https://manuals.embention.com/joint-collaboration-framework/en/0.1/index.html
https://manuals.embention.com/joint-collaboration-framework/en/0.1/index.html
mailto:sales@embention.com

4x PDI Builder, Release 6.12.27

Fig. 13: GPIO panel

• Signal: Pin ID as described in Arbiter connector pinout - Hardware Installation section of the 4x Hardware
Manual.

• GPIOId: GPIO ID of the microcontroller.

• IO: Define GPIO as an input or ouput.

• Pull-up: Enable or disable the pull-up resistance.

• Function: Mux 0/GPIO, Mux 1, Mux 2 or Mux 3. These are the different functionalities that the GPIO can have,
depending on the multiplexer.

• Qsel: This is the “input qualification”, it is used to control how the value of a GPIO is evaluated. The available
options are:

– Sync: The value is taken as the time it is checked (synchronously). This is the default mode of all GPIO
pins.

– 3 Samples: The value is checked 3 times and the value is only changed when the 3 times are the same.

– 6 Samples: Same as 3 samples, but checking 6 times instead of 3.

– ASync: No checks are performed. It is used when it is not used as GPIO.

2.1. Arbiter 13

https://manuals.embention.com/4x/en/1.8/hardware%20installation/index.html#arbiter-connector-pinout

4x PDI Builder, Release 6.12.27

2.1.2 Initial time

If any Autopilot 1x has not power supply, the Management Board will detect it as a fault. The Initial time parameter
is the margin of time from the moment when the Management Board is powered up until it starts cheking power
supplies.

With this parameter it is possible to connect each 1x one by one after the Management Board.

Fig. 14: Initial time panel

2.1.3 Status

• Enable VCP Status Message: Enables the periodic sending of the status message that Veronte Link uses to
recognize an arbiter.

• Period: Establishes the desired period to send repeatedly the status message.

Note: VCP is the Veronte Communication Protocol. To know more, read the VCP user manual.

14 Chapter 2. Configuration

https://manuals.embention.com/vcp/en/latest/index.html

4x PDI Builder, Release 6.12.27

Fig. 15: Status panel

2.2 Input/Output

2.2.1 SCI

Arbiters can use up to three serial SCIs (Serial Communication Interface). Serial ports A, B and C parameters can be
edited in this menu to fit the serial protocol requirements.

Note: SCI A corresponds to RS-232 port A (RS232-1), SCI B to RS-232 port B (RS232-2) and SCI C to RS-485.

2.2. Input/Output 15

4x PDI Builder, Release 6.12.27

Fig. 16: SCI panel

• Baudrate: How fast data is sent over a serial line.

• Length: Number of data bits for each character: 4 to 8 bits.

• Stop: Number of stop bits sent at the end of each character: 1, 1.5 or 2.

• Parity: Is a method of detecting errors in transmission. When parity is used with a serial port, an extra data bit
is sent with each data character, arranged so that the number of 1 bits in each character, including the parity bit.
Disabled, odd or even.

• Use address mode: 9-bit data framing uses the bit typically associated with parity error detection to identify
address messages. Sent serial data that does not have the address bit set will be ignored (unless the device had
previously identified an address message associated with it). This option can be disabled or enabled.

16 Chapter 2. Configuration

4x PDI Builder, Release 6.12.27

2.2.2 I/O Setup

In this panel the user can establish the relationship between a determined signal with a I/O port. This allows users to
configure external sensors, custom messages, etc.

Fig. 17: I/O Setup panel

• Priority: Certain connections between I/O ports can be marked with high priority with this checkbox. If it is
enabled, they will run at high frequency: 1000 Hz.

• Producer: Functions to create and send messages.

• Consumer: Functions to receive and parse messages.

The following are the steps to setting up reception or transmission between ports:

1. Choose the Producer to use.

2. To configure the desired Consumer that will be bind to the chosen Producer, it is first required to establish the
relationship between them:

• Bind →: Unidirectional relationship.

• Bind Bidirectional ↔: Bidirectional relationship. This enables a port to receive or send information.

Note: Once the Consumer has been selected, it is possible to undo the selection by pressing the Clear button.

3. Select the desired Consumer element.

2.2. Input/Output 17

4x PDI Builder, Release 6.12.27

The following I/O ports are available:

Field Description
RS232 1 Serial Port 232 A
RS232 2 Serial Port 232 B
RS485 Serial Port 485
Commgr port COM Manager ports send and receive VCP messages. This is the protocol used by

Veronte products to communicate. For more information, read the VCP user manual
CAN to serial / Serial to
CAN

Serial to CAN sends serial streams over a CAN Bus / CAN to serial undoes the
transformation ‘Serial to CAN’

CAN wrapper for serial
transmission / CAN
message unwrapper for
serial transmission

CAN wrapper for serial transmission sends CAN streams over a serial Bus / CAN
message unwrapper for serial transmission undoes this transformation. For more
information on these ports, please refer to CAN wrapper/CAN unwrapper - Input/Output
section of the 1x PDI Builder user manual

Warning: By default, RS232 1-2 are set up for Arbiter configuration.

If these connections are removed, it will not be possible to communicate with the Arbiter in Normal mode. In this
situation, force the arbiter into Maintenance mode in order to recover the communication.

2.2.3 CAN

A CAN (Controller Area Network) Bus is a robust standard communication protocol for vehicles widely used in the
aviation sector. The Management Board has two CAN buses that can be configured independently.

The structure of a CAN message can be seen in the following image:

Fig. 18: CAN message structure

Only the ID is introduced in the system, the rest of the message layout is already coded. The data field is built by the
user to send, and parsed when received.

For more information on the CAN Bus protocol, see CAN Bus protocol section of the 4x Software Manual.

The baudrate of both CAN buses can be configured in the Baudrate box.

18 Chapter 2. Configuration

https://manuals.embention.com/vcp/en/latest/index.html
https://manuals.embention.com/1x-pdi-builder/en/6.12.latest/1x%20configuration/input_output/io%20setup/index.html#can-wrapper-can-unwrapper
https://manuals.embention.com/4x-software-manual/en/6.12/canbus/index.html

4x PDI Builder, Release 6.12.27

Fig. 19: CAN panel

2.2.4 CAN I/O

2.2.4.1 Configuration

This panel allows the configuration of CAN communications between different devices.

2.2. Input/Output 19

4x PDI Builder, Release 6.12.27

Fig. 20: Configuration panel

In this panel, the user can find the same ‘columns’ (Priority, Producer and Consumer) as in the I/O Setup panel.
In addition, the process for configuring producers and consumers is also the same as described in the I/O Setup -
Input/Output section.

Warning: In CAN, in Low state the specified period is not guaranteed, but it is guaranteed with High state.

However, only those messages that are critical for external devices should be set as high priority, as this may
disrupt the proper functioning of the arbiter.

Producers:

• Arbiter: It sends a status and a score mesage.

To know more, read Arbitration messages - CAN Bus protocol section of the 4x Software Manual.

• Serial to CAN: Serial messages through CAN output, it has to be connected to I/O Setup consumer. It can be

configured by clicking on , a pop-up window will appear:

20 Chapter 2. Configuration

https://manuals.embention.com/4x-software-manual/en/6.12/canbus/index.html#arbitration-messages

4x PDI Builder, Release 6.12.27

Fig. 21: Serial to CAN configuration

– Id: CAN Id must be set and it is used to identify messages. The value set has to be decimal format.

– Extended: If it is enabled, the frame format will be ‘Extended’, i.e. with a 29-bit identifier. Otherwise, the
frame format ‘Standard’ (11-bit identifier) is set by default.

– Time out: This is the threshold time between receptions to consider that it is not being received correctly.

• Input filter: Those CAN messages received in one filter can no longer be received in subsequent filters. The

following parameters need to be configured by clicking on :

Fig. 22: Input filter configuration

– Port: It is required to configure the CAN bus from which it listens, the user can choose between CAN A,
CAN B or BOTH.

– Id: CAN Id must be set and it is used to identify messages. The value set has to be decimal format.

– Mask: A CAN Id mask can be set to filter messages. The mask defines which bits of the message id (in
binary) should match.

For example, to admit standard Ids (11 bits) from 8 to 11 (100 to 111 in binary) the user should set the
mask to binary 11111111100, that is 2044 in decimal.

Warning: Make sure that mask is set properly to be able to receive the desired CAN messages.

The mask should be 11 bits for Standard frame format and 29 bits for Extended frame format.

More information about this can be found in How to calculate a mask - FAQ section of this manual.

– Filter type: The available options are Standard (frame format with a 11-bit identifier), Extended (frame
format with a 29-bit identifier) and Both.

• Custom messages: CAN custom messages transmission. They are configured in the next panel, explained in thr
Custom message section of the present manual.

• CAN unwrapper: This undoes the ‘CAN wrapper’ action, it has to be connected to I/O Setup consumer (CAN
unwrapper for serial transmission)..

2.2. Input/Output 21

4x PDI Builder, Release 6.12.27

Consumers:

• Arbiter: It sends ready and arbitration messages.

To know more, read Arbitration messages - CAN Bus protocol section of the 4x Software Manual.

• CAN to serial: This undoes the ‘Serial to CAN’ action, it has to be connected to I/O Setup producer.

• Output filter: CAN output filters. The user can choose between CAN A, CAN B or BOTH in the configuration

button .

Fig. 23: Output filter configuration

• Custom messages: CAN custom messages reception. They are configured in the next panel, explained in thr
Custom message section of the present manual.

• CAN GPIO consumer: CAN message from Veronte Autopilot 1x for GPIO inputs. An example of how to
implement it can be found in the GPIO command - Integration examples section of this manual.

• CAN wrapper: CAN message through serial output, it has to be connected to I/O Setup producer (CAN wrapper
for serial transmission).

Warning: The Input filter connected to the Arbiter consumer must have a mask that allows all arbitration CAN
IDs.

2.2.4.2 Custom message

In this tab, the user chooses the variables to be sent/received through CAN buses. The following elements can be
configured:

• TX Ini: It is used to configure transmitted messages that are only sent once at the beginning of the operation
(sent when the arbiter boots up). They can be used to initialize some devices.

• TX: Configuration for transmitted messages.

• RX: Configuration for the reception messages (where they are stored).

Warning:

• The maximum capacity of a CAN message is 64 bits (8 bytes), so to send more information it must be
divided into several messages.

• Each arbiter has a CAN limitation of 40 TX messages, 40 TX Ini messages and 80 RX messages. In
addition, the following limits apply:

– Maximum number of vectors (fieldset): 104

– Maximum number of fields: 2000

22 Chapter 2. Configuration

https://manuals.embention.com/4x-software-manual/en/6.12/canbus/index.html#arbitration-messages

4x PDI Builder, Release 6.12.27

Fig. 24: Custom message panel

Since this section works in a similar way to the CAN Custom Message configuration in the 1x PDI Builder software,
the explanation on how to configure the telemetry messages via CAN is reflected in the Custom Messages - Input/Output
section of the 1x PDI Builder user manual.

2.2.5 CAN Setup

In this screen, users can configure the baudrate and reception mailboxes of each CAN Bus.

Since the arbiter is going to receive data on the CAN Bus, it is mandatory to configure a certain number of mailboxes
to store that data until the arbiter reads it.

A mailbox can be configured for multiple CAN message IDs as long as the mask is configured correctly and these
messages are sent spaced out with enough time between them to allow the high priority core to read each one
individually. More information on masks can be found in How to calculate a mask - FAQ section of this manual.

Warning: Since 4x PDI Builder allows up to 32 mailboxes, users should make sure to leave at least one mailbox
free for transmission (TX).

If any mailbox is full and another message arrives, the new message is discarded.

2.2. Input/Output 23

https://manuals.embention.com/1x-pdi-builder/en/6.12.latest/1x%20configuration/input_output/can%20setup/index.html#custom-messages

4x PDI Builder, Release 6.12.27

Fig. 25: CAN Setup panel

More information about mailboxes can be found in the Mailboxes - Input/Output section of the 1x PDI Builder user
manual.

2.3 Communications

Ports configuration allows the user to configure which communication ports (Commgr Ports in I/O Setup) will be used
for communication. When using the Route feature, arbiters can be configured to route VCP messages for an external
Veronte device with a known address (ID) through a given port.

Note: To know more about VCP messages, read the VCP user manual.

24 Chapter 2. Configuration

https://manuals.embention.com/1x-pdi-builder/en/6.12.latest/1x%20configuration/input_output/can%20setup/index.html#mailboxes
https://manuals.embention.com/vcp/en/latest/index.html

4x PDI Builder, Release 6.12.27

Fig. 26: Communications panel

Each port can be configured with the following options:

• Forward: Any message generated by this unit (i.e. telemetry or response messages to certain commands) will
be sent through these ports.

• Route: Any message received at any Commgr Port with the defined address will be re-sent through the defined
port. It is possible to route several addresses through the same port, but is not possible to route the same address
through several ports. Only the first configured port will be used. Routing also applies to messages generated by
the unit for the defined address.

Note: The same port cannot be used as Forward and Route at the same time.

It is possible to define up to 4 routing setups, which can be switched using the Ports action of 1x PDI Builder software.
Routing 1 will always be selected by default when booting an arbiter.

Warning: An incorrect port configuration can disable USB communications. If this happens, the arbiter will not
be detected through Veronte Link.

If this is the case, please visit How to enter in maintenance mode - Troubleshooting section of the 4x Hardware
Manual.

2.3. Communications 25

https://manuals.embention.com/1x-pdi-builder/en/6.12.latest/1x%20configuration/automations/actions/index.html#ports-action
https://manuals.embention.com/4x/en/1.8/troubleshooting/index.html#how-to-enter-in-maintenance-mode

4x PDI Builder, Release 6.12.27

2.4 Arbitration

The arbitration algorithm in Autopilot 4x is based on a scoring system. Each autopilot must send continuously a set
of arbitration variables that will be used by the arbiter in order to calculate the score for each unit. Then, based on the
scores and the current arbitration mode, the arbiter will choose to keep the current selected autopilot, or switching to
one of the other units.

A Score is a 32 bit, single precission, floating-point value. This parameter is first computed resulting in a range between
0 and 0xFFFFFFFF, where 0 is a perfect score (Score’). To achieve a better understanding, Score’ is converted to a
value comprehended between 0 an 100 (Score), being 100 the best possible score in the end.

Scores are calculated using the arbitration variables received from each autopilot at their dedicated addresses. After
receiving the value, the following formula is used to compute the score for their respective unit:

Where:

𝑗 Variable index
𝑥𝑖,𝑗 j variable from autopilot i
𝜇𝑗 j variable reference
𝑑𝑗,𝑚𝑎𝑥 Maximum allowed error
𝑤𝑗 Weight of j variable
𝑁 Number of variables
𝑠𝑐𝑜𝑟𝑒′𝑖 Score’ of unit i
𝑠𝑐𝑜𝑟𝑒𝑖 Score of unit i

Tip: The Arbitration weights should be used to increase or decrease the relevance that a certain arbitration variable
has over the calculation of the score.

Any variable in Veronte can be used as an arbitration variable. Depending on the platform, operation, application etc.
the more relevant variables can be selected for its use as arbitration references.

26 Chapter 2. Configuration

4x PDI Builder, Release 6.12.27

2.4.1 Config

2.4.1.1 Absolute Arbitration Variables

Absolute arbitration variables are indicators that are inherently good or bad, and so they are added directly to the
score.

Examples of absolute arbitration variables are Link Quality, GNSS accuracy or warnings such as Sensors error or
Position not fixed.

2.4.1.2 Relative Arbitration Variables

Relative arbitration variables are not inherently good or bad, and hence need to be compared against the other
autopilots in order to calculate its score contribution.

The contribution to the score from a relative arbitration variable will be its Deviation from the Average of the same
variable from each autopilot.

Examples of relative arbitration variables are Attitude, Position, measurements from sensors, etc.

2.4.1.3 Arbitration Example

Autopilot Var.
Nº

Veronte
Variable

Type 𝑥𝑖,𝑗 𝜇𝑗 𝑤𝑗 Relative
score

𝑆𝑐𝑜𝑟𝑒′𝑖 𝑆𝑐𝑜𝑟𝑒𝑖

1 1 Roll Relative 0.12 0.096 1 0.054 0.043 95.67
2 Pitch Relative 0.30 0.283 1 0.027
3 GNSS 1

Accuracy
Absolute 1.7 0.01 0.004

2 1 Roll Relative 0.10 0.096 1 0.0011 0.0039 99.60
2 Pitch Relative 0.28 0.283 1 0.0011
3 GNSS 1

Accuracy
Absolute 1.9 0.01 0.005

3 1 Roll Relative 0.07 0.096 1 0.071 0.046 95.39
2 Pitch Relative 0.27 0.283 1 0.017
3 GNSS 1

Accuracy
Absolute 1.5 0.01 0.0036

In the above example, AP2 is considered to be the best, since it has the highest total score. Even though its GNSS
accuracy is the worst of all 3, its values for pitch and roll are the ones with the lower deviation from the mean.

2.4.1.4 Config menu

In Config menu the parameters of the arbiter algorithm are adjusted.

2.4. Arbitration 27

4x PDI Builder, Release 6.12.27

Fig. 27: Config panel

1. Preferred: The preferred autopilot will be chosen in case of a score draw. Fixed while ok mode will always
select this autopilot first.

2. Method: The method of arbitration can be chosen by the user. The available options are:

• Always best: It chooses always the best autopilot.

• Change if worst: The arbiter will only switch if the currently selected autopilot has the worst score. In that
case, it will switch to the one with the best score.

• Round robin control: Using the Holding CAP time parameter, the arbiter will periodically switch
between autopilots. This mode is meant for testing purposes only.

• Fixed: Arbitration is disabled and one autopilot is selected. In this mode Autopilot 4x will behave as an
Autopilot 1x.

– Fixed 0: Autopilot 1 is selected.

– Fixed 1: Autopilot 2 is selected.

– Fixed 2: Autopilot 3 is selected.

• Fixed while ok: This mode does not take into account scores. In this mode, the Preferred autopilot will
be selected by default. A switch will only happen if the current autopilot is considered Dead.

3. Holding CAP time: Amount of time needed from last switch in order to allow a new switch.

4. Hysteresis: When comparing scores, the difference between them needs to be bigger than this proportional value,
in order to assess scores. The difference is proportional to the score of the selected autopilot.

28 Chapter 2. Configuration

4x PDI Builder, Release 6.12.27

i.e: If current selected autopilot is the number 1, arbitration mode is Always best, hysteresis is 0.5 and score for
AP 1 is 0.3, AP 2 will need a score lower than 0.15 in order to be selected.

5. Enable arbitration of external autopilot.

6. Variable - Max error: Arbitration maximum error for each variable.

7. Variable - Weight: Arbitration weight for each variable.

8. Variable - Absolute: If it is enabled, it will indicate that it is an absolute variable. The value set here will be
used to compare the variables in order to choose the best autopilot.

Click on to add variables and to delete them. Currently, the maximum amount of arbitration variables
supported is 32.

The number for each variable is assigned with the CAN I/O configuration in the arbiter consumer. With this consumer,
arbitration variables are selected with their corresponding numbers.

2.4.2 CAN Setup

Here users can configure the received CAN Ids for each one of the 3 possible Autopilots 1x that are sending data to
arbiters. Therefore, to send data from any of them to arbiters, these Ids must be specified.

Fig. 28: CAN Setup panel

1. Send status: The user can enable status sending and set a status message period.

2. Send score: Score sending can be enabled and a period of scoring messages can be set.

2.4. Arbitration 29

4x PDI Builder, Release 6.12.27

3. Status message ID: CAN ID to which Status and Score messages are sent.

• Extended: If enabled, the frame format will be this, ‘Extended’, i.e. with a 29-bit identifier. Otherwise,
the frame format ‘Standard’ (11-bit identifier) is set by default.

4. Autopilot 1-3: CAN IDs used for the reception of autopilot 4x arbitration messages for each AP.

• Extended: If enabled, the frame format will be this, ‘Extended’, i.e. with a 29-bit identifier. Otherwise,
the frame format ‘Standard’ (11-bit identifier) is set by default.

30 Chapter 2. Configuration

CHAPTER

THREE

INTEGRATION EXAMPLES

3.1 Arbitration configuration

The following arbitration configuration has been done in conjunction with the integration example detailed in the
Autopilots 1x configuration - Integration examples section of the 1x PDI Builder user manual. Also, this is the
recommended configuration and a good starting point.

The following schema broadly summarizes the configuration that will be explained:

Fig. 1: Arbitration configuration diagram

Important: All the Ids represented in the schema are the default ones and those that will be used throughout this
example, but users can change them as they wish.

Nonetheless, the Ids designated for arbitration in this configuration must match those entered in the Autopilots 1x
configuration of the 1x PDI Builder software.

AP 1 arbitration Id AP 2 arbitration Id AP 3 arbitration Id Status message Id
8 9 10 255

31

https://manuals.embention.com/1x-pdi-builder/en/6.12.latest/integration%20examples/veronte%20products/index.html#autopilot-4x

4x PDI Builder, Release 6.12.27

Users should follow the steps below:

1. Go to Input/Output menu → CAN I/O panel → Configuration tab.

• For sending the status and score messages to the Autopilots 1x, connect the Arbiter producer to an
Output filter consumer, in this case Output filter 2 has been selected.

This Output filter must be set to CAN A port, as this is the CAN Bus employed by the arbiter to
communicate with Autopilots 1x. For more information on the CAN architecture of an Autopilot 4x,
see the General description - Technical section of the 4x Hardware Manual.

• For receiving the ready and arbitration variables messages from the Autopilots 1x, connect an Input
filter producer to the Arbiter consumer, in this case Input filter 2 has been selected.

To read these message correctly, it is necessary to configure this Input filter to CAN A port, with Id 8 and
mask 2044 (decimal format), this will read messages with Ids from 8 to 10.

Note: The following table shows the Ids and mask in binary and decimal format used in this example.

Decimal format Binary format
AP 1 arbitration Id 8 000 0000 1000
AP 2 arbitration Id 9 000 0000 1001
AP 3 arbitration Id 10 000 0000 1010
Mask 2044 111 1111 1100

32 Chapter 3. Integration examples

https://manuals.embention.com/4x/en/1.8/technical/index.html#general-description

4x PDI Builder, Release 6.12.27

Fig. 2: Arbitration configuration - CAN I/O configuration

Fig. 3: Arbitration configuration - Output filter configuration

Fig. 4: Arbitration configuration - Input filter configuration

2. Go to Input/Output menu → CAN Setup panel → CAN A tab.

3.1. Arbitration configuration 33

4x PDI Builder, Release 6.12.27

Configure at least 4 mailboxes in CAN A for each arbitration Id:

Fig. 5: Arbitration configuration - CAN Setup configuration

3. Go to Arbitration menu → Config panel.

Here users have to configure the necessary parameters for the arbitration algorithm. For more information on
this algorithm, see Arbitration section of the present manual.

34 Chapter 3. Integration examples

4x PDI Builder, Release 6.12.27

Fig. 6: Arbitration configuration - Config (Arbitration) configuration

• Arbiter: These are the recommended values for each parameter:

– Preferred: Autopilot 1

– Method: Change if worst

– Holding CAP time: 2.0 s

– Hysteresis: 0.1

• Variables: Add as many variables as have been configured in the 1x PDI Builder software as arbitration
variables.

The variables chosen in this example, as well as their configuration parameters, are presented below:

Variable Max error Weight Absolute
Roll 0.35 2.0 -
Pitch 0.35 2.0 -
Position not fixed 1.0 3.0 Enabled | 1
Custom Arbitration Variable 1.0 3.0 Enabled | 0

Note: Remember that the number for each variable is assigned with the CAN I/O configuration in the
arbiter consumer. With this consumer, arbitration variables are selected with their corresponding numbers.

4. Go to Arbitration menu → CAN Setup panel.

3.1. Arbitration configuration 35

4x PDI Builder, Release 6.12.27

Finally, users must enable the sending of status and scores messages from the arbiter and configure the CAN
Ids described above.

Fig. 7: Arbitration configuration - CAN Setup (Arbitration) configuration

• Send status: Enabled

– Period: 0.15

• Send score: Enabled

– Period: 0.25

• Status message ID: 255

• Autopilot 1: ID 8

• Autopilot 2: ID 9

• Autopilot 3: ID 10

36 Chapter 3. Integration examples

4x PDI Builder, Release 6.12.27

3.2 GPIO command

The following are the steps to send a GPIO command from the Veronte Autopilot 1x, receive it at Arbiter and process
it, so that Arbiter carries out the command. GPIO Command is very similar to PWM command with a few exceptions.

Warning: For the reception of CAN messages, Mailboxes need to be configured accordingly.

3.2.1 1x PDI Builder side

1. Go to Input/Output menu → CAN Setup panel → Configuration tab.

Connect a CAN GPIO remote producer to an Output filter consumer:

Fig. 8: 1x PDI Builder - CAN Setup configuration

CAN GPIO remote must be configured. For more information on its configuration, see CAN Setup - Input/Output
section of the 1x PDI Builder user manual.

3.2. GPIO command 37

https://manuals.embention.com/1x-pdi-builder/en/6.12.latest/1x%20configuration/input_output/index.html#can-setup

4x PDI Builder, Release 6.12.27

Fig. 9: 1x PDI Builder - CAN GPIO remote configuration

2. Go to Automations menu.

Create a new automation to activate the GPIO using an Output action:

Fig. 10: 1x PDI Builder - Automation configuration

38 Chapter 3. Integration examples

4x PDI Builder, Release 6.12.27

3.2.2 4x PDI Builder side

3. Go to Input/Output menu → CAN Setup panel.

Create the mailbox to receive the message configured in the 1x PDI Builder (ID 40):

Fig. 11: 4x PDI Builder - CAN Setup configuration

4. Go to Input/Output menu → CAN I/O panel → Configuration tab.

Finally, connect an Input filter producer with the right CAN ID to a CAN GPIO consumer.

3.2. GPIO command 39

4x PDI Builder, Release 6.12.27

Fig. 12: 4x PDI Builder - CAN I/O configuration

Fig. 13: 4x PDI Builder - Input filter configuration

40 Chapter 3. Integration examples

CHAPTER

FOUR

TROUBLESHOOTING

4.1 Maintenance mode

The user can simply enter maintenance mode with 4x PDI Builder by clicking on the “Normal mode” button in the
initial menu. Press the same button to return to “normal mode”.

Fig. 1: Enter in maintenance mode

41

4x PDI Builder, Release 6.12.27

Fig. 2: Exit maintenance mode

4.2 Maintenance mode (loaded with errors)

The following error message may appear when trying to save a change or import a configuration.

Fig. 3: Error message

Therefore, the arbiter will be in ‘Maintenance mode (loaded with errors)’:

42 Chapter 4. Troubleshooting

4x PDI Builder, Release 6.12.27

To check what the source of the problem is, the user can simply click on the PDI Error button , which will show
what the PDI Error is in the PDI Errors panel.

In this panel, users can found:

• PDI ID: ID of the PDI Error.

• PDI Error Description: Description of this PDI Error. A list of all PDI Errors can also be accessed in the List
of PDI errors section of the 4x Software Manual.

• Config ID: ID of the configurable (.xml file) containing the data in which the PDI Error has been caused.

• Config Description: Description of the configurable (.xml file) containing the data in which the PDI Error has
been caused.

Clicking the Export button will export a .csv file with the same information shown in this PDI Errors panel.

This is useful while the configuration is in progress, however, if the user encounters this situation during the operation,
it is also possible to look up the cause of the PDI Error directly on the Platform panel of Veronte Ops. For more
information about this panel, see Platform panel section of the Veronte Ops user manual.

Fig. 4: Error message

Then, it will be possible to modify the Arbiter configuration to fix the error.

In addition, the list of PDI Errors can be read in the List of PDI errors section of the 4x Software Manual.

4.2. Maintenance mode (loaded with errors) 43

https://manuals.embention.com/4x-software-manual/en/6.12/variables/index.html#list-of-pdi-errors
https://manuals.embention.com/4x-software-manual/en/6.12/variables/index.html#list-of-pdi-errors
https://manuals.embention.com/veronte-ops/en/6.12/panels/platform/index.html
https://manuals.embention.com/4x-software-manual/en/6.12/variables/index.html#list-of-pdi-errors

4x PDI Builder, Release 6.12.27

4.3 Migrate configuration

Warning: When performing automatic migration from a previous version to the current version of the software,
errors may occur.

It is then the responsibility of the user to check the subsequent result.

44 Chapter 4. Troubleshooting

CHAPTER

FIVE

FAQ

5.1 How to calculate a mask

This section attaches a python program that allows users to easily calculate their mask in standard or extended frame
format by simply entering the CAN Ids as a vector. In addition, this program also converts each Id entered into binary.

maskCalculator.py

An example of the execution of this program is shown below:

Fig. 1: Example of maskCalculator program

45

	Quick Start
	Download
	Installation

	Configuration
	Arbiter
	GPIO
	Initial time
	Status

	Input/Output
	SCI
	I/O Setup
	CAN
	CAN I/O
	Configuration
	Custom message

	CAN Setup

	Communications
	Arbitration
	Config
	Absolute Arbitration Variables
	Relative Arbitration Variables
	Arbitration Example
	Config menu

	CAN Setup

	Integration examples
	Arbitration configuration
	GPIO command
	1x PDI Builder side
	4x PDI Builder side

	Troubleshooting
	Maintenance mode
	Maintenance mode (loaded with errors)
	Migrate configuration

	FAQ
	How to calculate a mask

