
1x PDI Builder
Release 6.8.65

Embention

2023-10-04

CONTENTS

1 Quick Start 3
1.1 Download . 3
1.2 Installation . 3

2 Configuration 7
2.1 Veronte . 7

2.1.1 Unit name . 7
2.1.2 Attitude . 8
2.1.3 Frequencies . 11
2.1.4 Operator position . 12
2.1.5 GPIO . 13
2.1.6 Status . 14

2.2 Connections . 14
2.2.1 ADC . 15
2.2.2 Arbiter . 19
2.2.3 FTS . 20
2.2.4 GPIO . 21
2.2.5 I2C . 24
2.2.6 Others . 25
2.2.7 PWM . 26
2.2.8 Serial . 30
2.2.9 USB . 32

2.3 Sensors . 32
2.3.1 Accelerometer . 32
2.3.2 Gyroscope . 39
2.3.3 Magnetometer . 45
2.3.4 Dynamic Pressure . 52
2.3.5 Static Pressure . 57
2.3.6 RPM . 62
2.3.7 Lidar . 62
2.3.8 Internest . 64

2.4 Input/Output . 65
2.4.1 I/O Setup . 65

2.4.1.1 Tunnel . 68
2.4.1.2 Serial Custom Messages . 70
2.4.1.3 NMEA Parser . 74
2.4.1.4 Unescape port . 75

2.4.2 CAN Setup . 77
2.4.2.1 Configuration . 77
2.4.2.2 Custom Messages . 81

i

2.4.2.3 Mailboxes . 84
2.4.3 Custom Messages types . 85

2.4.3.1 Variable . 85
2.4.3.2 Checksum (CRC) . 87
2.4.3.3 Matcher . 91
2.4.3.4 Skip . 92
2.4.3.5 Parse ASCII . 92
2.4.3.6 Position . 94

2.4.4 Digital Input . 95
2.5 Control . 102

2.5.1 Phases . 102
2.5.2 Envelope . 106
2.5.3 Modes . 110
2.5.4 Arcade axis . 114

2.6 Automations . 116
2.6.1 New automation . 118
2.6.2 Other options . 122

2.6.2.1 Events . 124
2.6.2.1.1 Alarm . 127
2.6.2.1.2 Area . 129
2.6.2.1.3 Button . 130
2.6.2.1.4 Mode . 131
2.6.2.1.5 Phase . 132
2.6.2.1.6 Route . 132
2.6.2.1.7 Timer . 133
2.6.2.1.8 Variable . 135

2.6.2.2 Actions . 136
2.6.2.2.1 Atmosphere Calibration . 137
2.6.2.2.2 Change active sensor . 139
2.6.2.2.3 Command block . 139
2.6.2.2.4 Custom CAN TX . 142
2.6.2.2.5 Custom Serial TX . 143
2.6.2.2.6 DEM calibration . 144
2.6.2.2.7 Enable/Disable Wind Estimation . 145
2.6.2.2.8 Envelope . 146
2.6.2.2.9 FTS Activation . 147
2.6.2.2.10 Feature . 148
2.6.2.2.11 Format SD . 150
2.6.2.2.12 Go to . 151
2.6.2.2.13 Mode . 152
2.6.2.2.14 Navigation . 152
2.6.2.2.15 Obstacle avoidance . 154
2.6.2.2.16 Output . 154
2.6.2.2.17 Periodical . 156
2.6.2.2.18 Phase . 157
2.6.2.2.19 Ports . 158
2.6.2.2.20 Run block program . 158
2.6.2.2.21 Safety Bits . 160
2.6.2.2.22 Select Arcade axis . 161
2.6.2.2.23 Stick priority . 162
2.6.2.2.24 Terrain obstacle . 163
2.6.2.2.25 Track . 164
2.6.2.2.26 User Log . 167
2.6.2.2.27 Variable . 167

ii

2.6.2.2.28 Yaw . 168
2.7 Communications . 169

2.7.1 Ports . 170
2.7.2 4G . 171
2.7.3 Comstats . 173
2.7.4 Iridium . 175
2.7.5 Veronte LOS . 176

2.8 Stick . 177
2.8.1 Transmitter (1-4) . 177

2.8.1.1 PPM . 177
2.8.1.2 Exponential . 179
2.8.1.3 Trim . 180
2.8.1.4 Output . 181

2.8.2 Virtual Stick . 183
2.9 Block Programs . 184

2.9.1 Control blocks . 196
2.9.1.1 PID . 196
2.9.1.2 T-Sched PID . 200
2.9.1.3 Total Energy Control . 203
2.9.1.4 Fuzzy Logic Controller . 205
2.9.1.5 ECU Control . 208
2.9.1.6 Quaternion Control . 211
2.9.1.7 Driver Control Filter . 213
2.9.1.8 System Identification . 215
2.9.1.9 Predictive Control Block . 216

2.9.2 Data Source/Sink blocks . 218
2.9.3 Devices blocks . 219

2.9.3.1 Clock . 219
2.9.3.2 Gimbal . 220
2.9.3.3 Stick . 223

2.9.4 Execution Flow blocks . 226
2.9.5 Guidance blocks . 229

2.9.5.1 Guidance blocks common configuration . 229
2.9.5.2 Climb . 236
2.9.5.3 Cruise . 242
2.9.5.4 Guidance Computation . 244
2.9.5.5 Landing . 244
2.9.5.6 Rendezvous . 249
2.9.5.7 Taxi . 253
2.9.5.8 VTOL . 256
2.9.5.9 Yawing current . 259
2.9.5.10 Yawing heading . 260
2.9.5.11 Yawing north . 261
2.9.5.12 Navigation guidance blocks . 262

2.9.6 Library blocks . 263
2.9.7 Logic blocks . 267

2.9.7.1 AND . 267
2.9.7.2 OR . 267
2.9.7.3 OR . 268

2.9.8 Math blocks . 269
2.9.8.1 f(x) . 269
2.9.8.2 f(x,y) . 270
2.9.8.3 Polynomial . 271
2.9.8.4 Vectors . 271

iii

2.9.9 Mode/AP Selection blocks . 273
2.9.9.1 AP Selection . 274
2.9.9.2 Arcade . 275
2.9.9.3 Arcade Bounce . 277
2.9.9.4 Arcade Extend . 279
2.9.9.5 Manual . 281
2.9.9.6 Mix . 281

2.9.10 Navigation blocks . 282
2.9.10.1 EKF Adapters . 282
2.9.10.2 EKF Split . 296
2.9.10.3 Navigation . 297

2.9.11 Positions blocks . 301
2.9.11.1 Constant Position . 301
2.9.11.2 Move . 302
2.9.11.3 Relative Vector . 302
2.9.11.4 Read Feature . 303
2.9.11.5 Write Feature . 303

2.9.12 Sensors blocks . 304
2.9.12.1 Altimeter . 304
2.9.12.2 GNSS sensor . 306
2.9.12.3 Magnetic Field . 322
2.9.12.4 Magnetometer . 324
2.9.12.5 Relative position . 324
2.9.12.6 SRTM height . 326
2.9.12.7 Static Pressure . 327

2.9.13 Servos blocks . 328
2.9.13.1 Actuator . 328
2.9.13.2 Arc Trim . 336
2.9.13.3 PWM . 337

2.9.14 Signals blocks . 338
2.9.14.1 3D Table Interpolation . 339
2.9.14.2 Bound . 340
2.9.14.3 EWMA Tau filter . 340
2.9.14.4 FFT . 341
2.9.14.5 Hysteresis . 342
2.9.14.6 IIR Filter . 344
2.9.14.7 Interpolation Vector . 345
2.9.14.8 Ramp . 346
2.9.14.9 Rate limiter . 347
2.9.14.10 Signal generator . 348

2.9.15 Type Casting blocks . 351
2.10 Devices . 352

2.10.1 Transponder/ADS-B . 353
2.10.2 Cameras . 355
2.10.3 Board . 359

2.11 Telemetry . 362
2.11.1 Telemetry . 362
2.11.2 Sniffer . 370

2.12 UI . 372
2.12.1 Operation elements . 372
2.12.2 Variables . 373
2.12.3 Geoid . 376

2.13 HIL . 378
2.14 Safety . 380

iv

2.14.1 Checklist . 381
2.14.2 Config Manager . 383
2.14.3 Safety bits . 384

3 Integration examples 391
3.1 AP communication with PC . 391
3.2 ArcTrim Button . 392
3.3 CAN communication . 396
3.4 Data transmission between Veronte 1x Autopilots . 401
3.5 External devices . 403

3.5.1 Altimeters . 403
3.5.1.1 Lidar . 403

3.5.1.1.1 ADC lidar . 404
3.5.1.1.2 I2C lidar . 405
3.5.1.1.3 Using lidar readings . 406

3.5.1.2 Radar . 408
3.5.1.2.1 Ainstein CAN Radar . 408
3.5.1.2.2 Smartmicro CAN Radar . 413

3.5.2 External sensors . 418
3.5.2.1 LM335 with Autopilot 4x . 418
3.5.2.2 Magnetometer Honeywell HMR2300 . 422

3.5.2.2.1 RS-232 . 422
3.5.2.2.2 RS-485 . 426

3.5.2.3 MEX as Magnetometer Honeywell HMR2300 . 427
3.5.2.4 OAT Sensor . 432
3.5.2.5 Vectornav VN-300 . 434

3.5.2.5.1 Vectornav VN-300 configuration . 437
3.5.3 Radios . 438

3.5.3.1 Digi internal radio . 438
3.5.3.1.1 Configuration . 438
3.5.3.1.2 Operational range . 444

3.5.3.2 Microhard internal radio . 444
3.5.3.3 External radios . 446

3.5.4 Servos . 448
3.5.4.1 PWM . 448
3.5.4.2 Serial . 451

3.5.4.2.1 Volz DA26 - RS485 . 452
3.5.5 Stick . 455

3.5.5.1 PPM Stick . 455
3.5.5.1.1 General case: GND unit sends commands directly to the air unit 455
3.5.5.1.2 Simulation case (HIL) . 462
3.5.5.1.3 On-board PPM receiver case . 462

3.5.5.2 USB joystick . 468
3.5.5.3 Virtual Stick . 468

3.5.6 Veronte products . 469
3.5.6.1 Autopilot 4x . 469
3.5.6.2 CEX/MEX . 477
3.5.6.3 MC01 . 486
3.5.6.4 VSE (Veronte Stick Expander) . 491

4 Troubleshooting 493
4.1 Communication lost with internal Digi radio . 493
4.2 Debug serial messages transmission . 494
4.3 Maintenance mode . 497

v

4.4 Maintenance mode (loaded with errors) . 498
4.5 Radios paired but 1x air unit not showing . 499
4.6 Reducing GNC Task frequency . 500
4.7 Trajectory Overshoot . 500
4.8 Unstable communication with CEX/MEX . 501

5 FAQ 503
5.1 What does decimation mean? . 503

vi

1x PDI Builder, Release 6.8.65

1x PDI Builder is an autopilot configuration tool (control laws, flight phases, operation modes, failsafes, etc.) to adapt
it to a specific vehicle.

CONTENTS 1

1x PDI Builder, Release 6.8.65

2 CONTENTS

CHAPTER

ONE

QUICK START

1x PDI Builder is the main configuration tool to adapt a Veronte Autopilot 1x to a specific vehicle, including user-
defined commnication protocols. 1x PDI Builder includes:

• Telemetry: real-time onboard UAV metrics, such as sensors, actuators and control states.

• Configuration: edit vehicle settings, such as servo trim, interface/port management and modes.

• Automations: actions that are automatically executed when a set of configured conditions are accomplished.

• Block Programs: Veronte Autopilot 1x can be programmed (control laws) with a friendly-user programming
language.

Once 1x autopilot has been detected on Veronte Link, install 1x PDI Builder.

1.1 Download

Once the Veronte Autopilot 1x has been purchased, a GitHub release should be created for the customer with the
application.

To access to the release and download the software, read the Releases section of the Joint Collaboration Framework
manual.

1.2 Installation

To install 1x PDI Builder on Windows just execute “1xPDIBuilder.exe” and follow the indications.

1. Click on Next:

3

https://manuals.embention.com/joint-collaboration-framework/en/0.1/releases/index.html

1x PDI Builder, Release 6.8.65

Fig. 1: Windows Installation Step 1

2. Select the desired directory where the software will be installed and click on next.

Fig. 2: Windows Installation Step 2

3. Finally, click on Install (administrator rights are needed):

4 Chapter 1. Quick Start

1x PDI Builder, Release 6.8.65

Fig. 3: Windows Installation Step 3

Warning: If users have any problems with the installation, please disable the antivirus and the Windows firewall.
Disabling the antivirus depends on the antivirus software. To disable the firewall, go to “Control Panel”→ “System
and Security”→ “Windows Defender Firewall” and then, click on “Turn windows Defender Firewall on or off”.

Fig. 4: Windows Defender Firewall

1.2. Installation 5

1x PDI Builder, Release 6.8.65

6 Chapter 1. Quick Start

CHAPTER

TWO

CONFIGURATION

2.1 Veronte

2.1.1 Unit name

Fig. 1: Unit name section

7

1x PDI Builder, Release 6.8.65

• Vehicle name: The user can define the name of the configuration.

• PDI Mode: It can be enabled or disabled. PDI mode allows the user to change the setup if 1x autopilot is not in
INI phase.

Warning:
• Not being in PDI mode, the user cannot do out of the INI phase:

– Reboot 1x autopilot

– Change 1x setup (i.e. save to SD card)

– Enter manually in maintenance mode

• The variable ‘System error’ prevents operation in normal mode (not PDI mode). A list of all errors that can
cause this bit to be set can be found in the Activation system error bits section of the 1x Software Manual.

• If 1x autopilot has ‘sensors errors’ and is in normal mode (not PDI mode), the user will not be able to
switch to another flight phase, it will remain in INI phase.

Tip: It is recommended to use normal mode when the configuration is finished, while PDI mode is useful during the
development process.

2.1.2 Attitude

This menu allows the user to define the orientation of the autopilot with respect to the platform once it is installed.
Aircraft axis are defined according to international aviation convention. 1x autopilot axis are drawn on the autopilot’s
external case as defined in the Hardware Installation.

8 Chapter 2. Configuration

https://manuals.embention.com/1x-software-manual/en/6.8/variables/index.html#activation-system-error-bits
https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html

1x PDI Builder, Release 6.8.65

Fig. 2: Attitude section

1. Distance from the center of mass in aircraft body frame: The autopilot’s distance from the centre of mass
must be defined. This distance is entered in meters and accordingly to aircraft axis.

If the autopilot is not located in the centre of mass, it will measure a non-zero acceleration when turning. Distance
from the center of mass in aircraft body frame will be used to compensate this value. An example is presented
below:

Fig. 3: Distance from the center of mass in aircraft body frame - Example

2.1. Veronte 9

1x PDI Builder, Release 6.8.65

Fig. 4: Distance from the center of mass in aircraft body frame - Example

2. Orientation: It is not compulsory to install the autopilot aligned with the aircraft axis. In order to indicate the
autopilot’s relative position inside the platform, select the advanced option (3). A matrix relating vehicle axis
and autopilot axis is needed to be filled in. The case of a non-orthogonal installation can be covered.

Fig. 5: Advanced orientation

Note: If only a simple rotation is required, for example, a -90º rotation in the Z axis, it is simpler to select the correct
axis directly in the ‘plane’:

Fig. 6: Change orientation

10 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

2.1.3 Frequencies

The frequency of the GNC task refers to the maximum working frequency of the core. In this case, 400 Hz, which is
the maximum possible.

Fig. 7: Frequencies section

Warning: Only 400 Hz can be used for simple configurations, so it is often necessary to reduce the frequency to
250-300 Hz. To find out why the user should reduce the GNC Task frequency, see Reduce GNC Task frequency ->
Troubleshooting section of this manual.

2.1. Veronte 11

1x PDI Builder, Release 6.8.65

2.1.4 Operator position

The operator position is the autopilot position from which the distance allowed by the licence is calculated.

Fig. 8: Operator position section

Tip: In operation, if the air unit does not have the license activated, it is recommended to set in the air unit the
position of the ground unit.

12 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

2.1.5 GPIO

In this tab each individual GPIO behavior can be configured:

Fig. 9: GPIO section

1. Signal: Pin ID as described in Hardware installation - Electrical section of the 1x user manual.
2. GPIOId: GPIO ID of the microcontroller.

3. IO: Define GPIO as an input or ouput.

4. Pull-up: Enable or disable the pull-up resistance.

5. Function: Mux 0: GPIO, Mux 1: PWM, Mux 2, Mux 3, etc. These are the different functionalities that the
GPIO can have, this depends on the multiplexer.

6. Qsel: This is the “input qualification”, it is used to control how the value of a GPIO is evaluated. The available
options are:

• Sync: The value is taken as whatever is present at the time it is checked (synchronously). This is the default
mode of all GPIO pins.

• 3 Samples: The value is checked 3 times and the value is only changed when the 3 times are the same.

• 6 Samples: Same as before, but checking 6 times instead of 3.

• ASync: No checks are performed. It is used when it is not used as GPIO.

2.1. Veronte 13

https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#electrical

1x PDI Builder, Release 6.8.65

2.1.6 Status

This option enables the periodic sending of the status message that Veronte Link uses to recognise the 1x autopilot.

Fig. 10: Status section

• Period: Enter a desired period to send repeatedly the status message.

Note: VCP is the Veronte Communication Protocol. To know more, read the VCP user manual.

2.2 Connections

Here the Input/Output ports of the autopilot can be configured. Depending on the configurable port selected the user
will need to provide different parameters.

Each connection is associated with a specific pin number. For more details see the section Hardware Installation -
Electrical .

14 Chapter 2. Configuration

https://manuals.embention.com/vcp/en/6.8/index.html
https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#electrical
https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#electrical

1x PDI Builder, Release 6.8.65

2.2.1 ADC

ADC stands for Analog-to-Digital Converter. This connection is used by analog sensors. These sensors provide a
voltage readout that needs to be converted into the actual measured vairable, e.g. temperature, fuel volume, etc.

1x autopilot is equipped with 5 connections of this kind. Every ADC connection that is set requires an integer variable
associated where the voltage readout will be stored. The maximum voltage of the ADC connection is 3.3 V.

Fig. 11: ADC menu

To convert the input ADC value to the physical variable it represents the user needs to create a new program. See more
information about programs in the Block Programs section.

Application example
Let us consider a Fuel Level Sensor whose datasheet provides a direct relation of the voltage readout and the fuel
volume (in L) through the polynomial 𝑦 = −0.0498𝑥4 + 0.3002𝑥3 − 0.3083𝑥2 + 1.2423𝑥+ 0.15, where 𝑦 is the fuel
volume and 𝑥 is the sensor voltage.

Creating a new program, the above equation can be reproduced. An example of how to do it is presented below.

2.2. Connections 15

1x PDI Builder, Release 6.8.65

Fig. 12: Create ADC program

When the ADC program is created, a default block program is also created.

16 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 13: ADC default program

Now, the program has to be customised for this application. See more information about programs in the Block
Programs section.

2.2. Connections 17

1x PDI Builder, Release 6.8.65

Fig. 14: ADC conversion for a Fuel Level Sensor

The fuel remaining in the tank is saved in a user variable, which can be used for displaying or warning purposes.

Note:
• The ADC variable is first converted from integer to real, and then the polynomial is applied.

• This program can now be modified by clicking in ‘Setup’ in this menu or in the Block Programs section.

18 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 15: ADC program in Block Programs

2.2.2 Arbiter

Pins 45 and 46 are dedicated pins to allow the UART communication with the Safety micro Controller (SuC). This
microcrollers is in charge of monitoring the state of the main microcontroller and providing the Flight Termination
Signals (FTS).

2.2. Connections 19

1x PDI Builder, Release 6.8.65

Fig. 16: Arbiter menu

2.2.3 FTS

The FTS (Flight Termination System) is a signal that is activated when a sytem error occurs (System Error bit is False).
There’s a group of bits that when failed cause the system error, to see more about the condition that make the system
error happen, go to Activation system error bits section of the 1x Software Manual.

20 Chapter 2. Configuration

https://manuals.embention.com/1x-software-manual/en/6.8/variables/index.html#activation-system-error-bits

1x PDI Builder, Release 6.8.65

Fig. 17: FTS menu

Pins 42 and 43 are related to the FTS:

• Pin 42: Deadman signal from comicro, monitors main MPU encoding its product-level bit. This signal is a
square wave at [100,125] Hz. It can be higher at rebooting (about 300-400Hz) but should never be less than
100Hz.

• Pin 43: !SystemOK Bit. 0 when Ok (no failure detected) and 1 (high, 3.3 V) when an error is detected. This pin
goes high if the deadman signal sent by the MPU (main processor unit) is lower than 63Hz. That means there is
a critical error.

2.2.4 GPIO

Output pins produce PWM or GPIO signals that are used to move the different servos and actuators of the platform.

A GPIO (General Purpose Input/Output) is a generic pin that can be configured as an input or output pin. When this
option is configured as an output pin, the value sent will be different from the one sent if it was a PWM.

GPIO pins admit up to 4 different states:

• ON: A continuous signal of value 1, made by 3.3V.

• OFF: A continuous signal of value 0, made by Ground.

• PULSE ON: A single pulse of value 1, with a width specified in seconds.

• PULSE OFF: A single pulse of value 0, with a width specified in seconds.

2.2. Connections 21

1x PDI Builder, Release 6.8.65

The configuration of the pin output value is done with an Output action in the Automations menu.

Fig. 18: GPIO menu

1x autopilot admits up to 20 I/O PWM/GPIO signals. To configure a pin as GPIO after it has been changed to PWM,
click Add and select GPIO:

22 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

2.2. Connections 23

1x PDI Builder, Release 6.8.65

Fig. 19: Add GPIO

2.2.5 I2C

I2C stands for Inter-Integrated Circuit bus. It is a bus interface connection protocol incorporated into devices for serial
communication. It operates in 2 modes: master and slave.

I2C uses only 2 bi-directional open-drain lines for data communication called SDA and SCL. Both these lines are
pulled high.

• Pin 31 - SCL: Clock line for I2C bus (0.3V to 3.3V), it carries the clock signal.

• Pin 32 - SDA: Data line for I2C bus (0.3V to 3.3V), transfer of data takes place through this pin.

24 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 20: I2C menu

2.2.6 Others

• GND: Ground.

• Power.

2.2. Connections 25

1x PDI Builder, Release 6.8.65

Fig. 21: Others menu

2.2.7 PWM

Output pins produce PWM or GPIO signals that are used to move the different servos and actuators of the platform.

The acronym PWM corresponds to Pulse Width Modulation. 1x sends a pulse with a certain width that is received by
the servo/actuator, and according to the width of such pulse, it changes its behaviour. A wide pulse will correspond to
a big movement and a narrow one to a small movement.

By default, all PWM/GPIO pins are configured as GPIO output. So, to configure them as PWM, it is necessary to click
Add:

26 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 22: Add PWM

Then, select the GPIO pin the user want to change to PWM. As can be seen, pins are interchangeable.

2.2. Connections 27

1x PDI Builder, Release 6.8.65

Fig. 23: PWM change

As shown in the image below, the GPIO 2 output is now missing as it has been changed to a PWM output.

28 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 24: PWM menu

In this menu the following parameters can be configured:

1. Frequency: This option determines the period of the pulses sent by the autopilot. The PWM is built in pairs
inside the autopilot, and that is why the frequency is indicated in pairs, i.e when the frequency of PWM 1
is changed, the one of PWM 2 also changes. The following table shows the PMW pairs as configured in 1x
autopilot.

PWM Pairs
PWM 1 PWM 2
PWM 3 PWM 4
PWM 5 PWM 6
PWM 7 PWM 8
PWM 9 PWM 10
PWM 11 PWM 12
PWM 13 PWM 14
PWM 15 PWM 16
PWM 17 PWM 18
PWM 19 PWM 20

2. Active High: Enable/disable. Polarity high or low.

3. Mode: The options available are Time and Duty cycle. The second option is a a different way of indicating the
pulse width. Now the value indicated is a percentage which corresponds to the relation between the pulse width
over the total period of the sent signal. So a 100% duty cycle will correspond to a signal with a constant value

2.2. Connections 29

1x PDI Builder, Release 6.8.65

of 1, while a 0% duty cycle implies a constant signal with value 0. Between this two extremes, the pulse width
can vary as in the examples shown in the following figure.

Fig. 25: Duty Cycle

4. Min/Max: These parameters are the pulse width values that will make the servo/actuator go to its lowest and
highest position. As an example let’s consider the servo of an aircraft elevator, a pulse sent by 1x autopilot of
0.9 ms will correspond with the lowest point of the servo range (-30 degrees for example). On the other hand, a
pulse of 2.1 ms will make the servo go to its top position (for example 30 degrees).

Summary
A PWM is a signal which consists of a series of pulses having a width determined by a percentage over a range specified
by the parameters Min and Max. On the other hand, the GPIO is a signal with a constant value (1,0) or with a single
pulse (1,0).

2.2.8 Serial

Two serial interfaces are available with 1x autopilot, 1 port RS-232 and 1 port RS-485, however more can be added by
using a CEX. Each one of the serial interfaces is associated with a set of pins.

30 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 26: Serial menu

The following fields can be configured:

• Baudrate: This specifies how fast data is sent over a serial line.

• Length: This defines the number of data bits in each character: 4 to 8.

• Stop: Stop bits sent at the end of every character: 1, 1.5, 2.

• Parity: Is a method of detecting errors in transmission. When parity is used with a serial port, an extra data bit
is sent with each data character, arranged so that the number of 1 bits in each character, including the parity bit.
Disabled, odd or even.

Note: All these settings are already specified for a given device, therefore, 1x autopilot should match with them in
order to be able to communicate.

Compatibility table:

Port name RS-232 RS-422 / RS-485
Transfer type Full duplex Full duplex / Half Full duplex
Maximum distance 15 meters at 9600 bps 1200 meters at 9600 bps
Topology Point to point Point to point / Multi point
Max number of devices 1 1-10 in receive mode / 32

2.2. Connections 31

1x PDI Builder, Release 6.8.65

2.2.9 USB

Fig. 27: USB menu

2.3 Sensors

Sensors section allows to configure any sensor connected or internal from 1x autopilot.

2.3.1 Accelerometer

1x autopilot incorporates 3 Inertial Measurement Units (IMUs) that allows the 1x system to measure different variables
and that are the main navigation data source. From the IMU, the user can configure the Accelerometer and Gyroscope.
The first one is explained below.

The user can choose between 3 types of source for the accelerometer:

• Internal (Secondary/BMI088/ADIS16505-3 Accelerometer): 1x autopilot uses the internal sensor.

Warning: If the user has a 1x autopilot with hardware version 4.5, the Main Accelerometer is
available instead of the ADIS16505-3 Accelerometer, which has the same configurable parameters as the
Secondary Accelerometer.

32 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

• Integer var sensor 1-2: 1x autopilot uses a integer value provided by an external sensor.

• Decimal var sensor 1-2: 1x autopilot uses a decimal value provided by an external sensor.

Suggestion
Depending on the hardware version, the following accelerometer is suggested:

• 4.5 version BMI088 Accelerometer

• 4.8 version ADIS16505-3 Accelerometer

Secondary Accelerometer
This menu displays the posible parameters that can be configured for the internal Secondary Accelerometer.

Fig. 28: Secondary Accelerometer menu

In this menu it is possible to set different options regarding range and filters from the accelerometer. The parameters
that can be modified are:

• Range: Selectable range of forces that the accelerometer can measure, high ranges implies less precision while
small ranges might mean the system saturates. Values allowed are 2g, 4g, 8g and 16g.

• Anatialising filter bandwith: It is the bandwidth of the antialiasing low pass filter. The options available are
50Hz, 100Hz, 200Hz and 400Hz, the greater the value selected the worse the filtering will be.

2.3. Sensors 33

1x PDI Builder, Release 6.8.65

• Enable digital filter sensor: Enables a low pass filter which its cutoff frequency is configured from the options
16.65Hz, 66.6Hz, 133.2Hz and 740.0Hz. This is a hardware filter, included directly in the accelerometer.

• Digital filter: Enables a low pass filter which its cutoff frequency is configured manually, allowing the user to
input any desired value in Hz. It is a software filter, applied after the hardware filter from the point before.

BMI088 Accelerometer
This menu displays the posible parameters that can be configured for the internal BMI088 Accelerometer.

Fig. 29: BMI088 Accelerometer menu

In this menu it is possible to set different options regarding range and filters from the accelerometer. The parameters
that can be modified are:

• Range: Selectable range of forces that the accelerometer can measure, high ranges implies less precision while
small ranges might mean the system saturates. Values allowed are 3g, 6g, 12g and 24g.

• Sampling frequency: That is the frequency at which the measurements are read out. Values allowed are 12.5Hz,
25Hz, 50Hz, 100Hz, 200Hz, 400Hz, 800Hz and 1600Hz. We recommend the highest.

• Low pass frequency: This is a hardware filter, included directly in the accelerometer, which its cutoff frequency
is configured from the options 145Hz, 234Hz (215Hz for Z axis) and 280Hz (245Hz for Z axis).

34 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

• Digital filter: Enables a low pass filter which its cutoff frequency is configured manually, allowing the user to
input any desired value in Hz. It is a software filter, applied after the hardware filter from the point before.

ADIS16505-3 Accelerometer
This menu displays the posible parameters that can be configured for the internal ADIS16505-3 Accelerometer.

Fig. 30: ADIS16505-3 Accelerometer menu

In this menu it is possible to set different options regarding range and filters from the accelerometer. The parameters
that can be modified are:

• Mode 32 bits: Enable or disable. With 32 bits of precision. We recommend enabling it.

• Limit bandwith to 370Hz: Enable or disable. It can only be used without using a Low Pass Filter Stages. We
recommend disabling it.

• Max Non-variation Samples: It is configured manually.

• Low Pass Filter Stages: IMU’s Hardware filter. The options available are:

– No filter

– 1 stage (Cutoff f=364Hz)

2.3. Sensors 35

1x PDI Builder, Release 6.8.65

– 2 stages (Cutoff f=165Hz)

– 3 stages (Cutoff f=80Hz)

– 4 stages (Cutoff f=40Hz)

– 5 stages (Cutoff f=20Hz)

– 6 stages (Cutoff f=10Hz)

We recommend 4 stages (Cutoff f=40Hz) option.

• Digital filter: Enables a low pass filter which its cutoff frequency is configured manually, allowing the user to
input any desired value in Hz.

Warning:
• It is recommended to choose the hardware filter (Low Pass Filter) except if a lower cutoff frequency is

needed (< 10 Hz).

• It is not recommended flying without a filter.

Integer var sensor 1-2
In this menu it is possible to configure integer variables provided by an external sensor.

36 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 31: Integer var accelerometer sensor menu

When Integer var sensor 1 or 2 are selected, the previous panel will be shown. In this panel, the user selects the variable
that has been stored in a user variable (Green Box) and the operations that will be carried on (Red Box). It is possible
to use the signal through a linear or quadratic relation. The following image shows an example of a linear relation:

Fig. 32: Linear relation of 2 variables

2.3. Sensors 37

1x PDI Builder, Release 6.8.65

In addition, users must indicate whether the integer value is with sign or without sign. That is, if the “Signed” box
is:

• Enabled: Integer value with sign.

• Disabled: Integer value without sign.

The process of configuration has to be done using custom messages. This is to be configured in the Custom Messages
menu of the I/O section. The configuration will depends on the device in use and its communication protocol.

Warning: Edit Rotation Matrix brings the position of the accelerometer inside the 1x autopilot, it must NOT be
changed under any circumstance.

Fig. 33: Rotation matrix

Decimal var sensor 1-2
In this menu, the user selects real variables for each axis (X,Y,Z), these do not requiere a signal treatment. The process
of configuration is similar to the one carried out when configuring a Integer Variable.

38 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 34: Decimal var accelerometer sensor menu

2.3.2 Gyroscope

The gyroscope from the IMU can be configured as explained in the menus shown below.

The user can choose between 3 types of source for the gyroscope:

• Internal (Secondary/BMI088/ADIS16505-3 Gyroscope): 1x autopilot uses the internal sensor.

Warning: If the user has a 1x autopilot with hardware version 4.5, the Main Gyroscope is available instead
of the ADIS16505-3 Gyroscope, which has the same configurable parameters as the Secondary Gyroscope.

• Integer var sensor 1-2: 1x autopilot uses a integer value provided by an external sensor.

• Decimal var sensor 1-2: 1x autopilot uses a decimal value provided by an external sensor.

Suggestion
Depending on the hardware version, the following gyroscope is suggested:

• 4.5 version BMI088 Gyroscope

• 4.8 version ADIS16505-3 Gyroscope

2.3. Sensors 39

1x PDI Builder, Release 6.8.65

Secondary Gyroscope
This menu displays the posible parameters that can be configured for the internal Secondary Gyroscope.

Fig. 35: Secondary Gyroscope menu

In this menu it is possible to set different options regarding range and filters from the gyroscope. The parameters that
can be modified are:

• Range: Sets the maximum range of performance, high ranges implies less precision while small ranges might
mean the system saturates. Values allowed are 125°/s, 250°/s, 500°/s, 1000°/s and 2000°/s.

• Digital filter: Enables a low pass filter which its cutoff frequency is configured manually, allowing the user to
input any desired value in Hz. It is a software filter.

BMI088 Gyroscope
This menu displays the posible parameters that can be configured for the internal BMI088 Gyroscope.

40 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 36: BMI088 Gyroscope menu

In this menu it is possible to set different options regarding range and filters from the gyroscope. The parameters that
can be modified are:

• Range: Sets the maximum range of performance, high ranges implies less precision while small ranges might
mean the system saturates. Values allowed are 125°/s, 250°/s, 500°/s, 1000°/s and 2000°/s.

• Sampling: That is the angular velocity at which the measurements are read out. Values allowed are 100°/s filter
at 32 Hz, 200°/s filter at 64 Hz, 100°/s filter at 12 Hz, 200°/s filter at 32 Hz, 400°/s filter at 47 Hz, 1000°/s filter
at 116 Hz, 2000°/s filter at 230 Hz and 2000°/s filter at 532 Hz.

• Digital filter: Enables a low pass filter which its cutoff frequency is configured manually, allowing the user to
input any desired value in Hz. It is a software filter.

ADIS16505-3 Gyroscope
This menu displays the posible parameters that can be configured for the internal ADIS16505-3 Gyroscope.

2.3. Sensors 41

1x PDI Builder, Release 6.8.65

Fig. 37: ADIS16505-3 Gyroscope menu

In this menu it is possible to set different options regarding range and filters from the gyroscope. The parameters that
can be modified are:

• Mode 32 bits: Enable or disable. With 32 bits of precision. We recommend enabling it.

• Limit bandwith to 370Hz: Enable or disable. It can only be used without using a Low Pass Filter Stages. We
recommend disabling it.

• Max Non-variation Samples: It is configured manually.

• Low Pass Filter Stages: The options available are No filter, 1 stage (Cutoff f=364Hz), 2 stages (Cutoff f=165Hz),
3 stages (Cutoff f=80Hz), 4 stages (Cutoff f=40Hz), 5 stages (Cutoff f=20Hz) and 6 stages (Cutoff f=10Hz). We
recommend 4 stages (Cutoff f=40Hz).

• Digital filter: Enables a low pass filter which its cutoff frequency is configured manually, allowing the user to
input any desired value in Hz. We recommend disabling it.

Warning: It is not recommended flying without a filter.

Integer var sensor 1-2

42 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

In this menu it is possible to configure integer variables provided by an external sensor.

Fig. 38: Integer var gyroscope sensor menu

When Integer var sensor 1 or 2 are selected, the previous panel will be shown. In this panel, the user selects the variable
that has been stored in a user variable (Green Box) and the operations that will be carried on (Red Box). It is possible
to use the signal through a linear or quadratic relation. The following image shows an example of a linear relation:

2.3. Sensors 43

1x PDI Builder, Release 6.8.65

Fig. 39: Linear relation of 2 variables

In addition, users must indicate whether the integer value is with sign or without sign. That is, if the “Signed” box
is:

• Enabled: Integer value with sign.

• Disabled: Integer value without sign.

The process of configuration has to be done using custom messages. This is to be configured in the Custom Messages
menu of the I/O section. The configuration will depends on the device in use and its communication protocol.

Warning: Edit Rotation Matrix brings the position of the gyroscope inside the 1x Autopilot, it must NOT be
changed under any circumstance.

Fig. 40: Rotation matrix

Decimal var sensor 1-2

44 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

In this menu, the user selects real variables for each axis (X,Y,Z), these do not requiere a signal treatment. The process
of configuration is similar to the one carried out when configuring a Integer Variable.

Fig. 41: Decimal var gyroscope sensor menu

2.3.3 Magnetometer

1x autopilot incorporates an internal magnetometer that allows the 1x System to measure the magnetic field.

The user can choose between 4 types of source for the magnetometer.

• Internal(LIS3MDL/MMC5883MA/RM3100): 1x autopilot uses the internal sensor.

Warning: If the user has a 1x autopilot with hardware version 4.5, Internal RM3100 Magnetometer is not
available.

• Integer var sensor 1-2: 1x autopilot uses a integer value provided by a no-integrated external sensor.

• Decimal var sensor 1-2: 1x autopilot uses a decimal value provided by a no-integrated external sensor.

• External (HMR2300/LIS3MDL/HSCDTD008A/MMC5883MA/RM3100): 1x autopilot uses the information
from one of the compatible external magnetometers.

For this sensor, it is possible to have more than one selected for the navigation algorithm, so the user will have
redundancy in magnetometer sensor.

2.3. Sensors 45

1x PDI Builder, Release 6.8.65

Suggestion
Depending on the hardware version, the following magnetometer is suggested:

• 4.5 version Internal MMC5883MA Magnetometer

• 4.8 version Internal RM3100 Magnetometer

Note: LIS3MDL and HSCDTD008A Magnetometer are integrated in 1x autopilot with the I2C interface. They are
inside the 1x, but mounted externally to avoid the possible interferences from being close to electronic components.

• Magnetometer LIS3MDL: It is a three-axis magnetic sensor with a very small package.

• Magnetometer HSCDTD008A: It is a three-axis terrestrial magnetism sensor of the digital output.

It is very important to know that address cannot be chosen in the software and must be as follows:

• Magnetometer LIS3MDL: 0x1C.

• Magnetometer HSCDTD008A: 0x0C.

Important: In this section, the user can only modify some configurable parameters, the selection of the magnetometer
and the configuration of the Variance are done in Magnetometer sensor - Block Programs section.

Fig. 42: Magnetometer block

Internal LIS3MDL/MMC5883MA/RM3100
This menu available displays the posible parameters that can be configured for the internal Magnetometer.

46 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 43: Internal Magnetometer menu

In this menu it is possible to modify different options regarding the digital filter:

• Digital filter: Enables a low pass filter which its cutoff frequency is configured manually, allowing the user to
input any desired value in Hz. It is a software filter.

Integer var sensor 1-2
In this menu it is possible to configure integer variables provided by an external sensor.

2.3. Sensors 47

1x PDI Builder, Release 6.8.65

Fig. 44: Integer var magnetometer sensor menu

When Integer var sensor 1 or 2 are selected, the previous panel will be shown. In this panel, the user selects the variable
that has been stored in a user variable (Green Box) and the operations that will be carried on (Red Box). It is possible
to use the signal through a linear or quadratic relation. The following image shows an example of a linear relation:

Fig. 45: Linear relation of 2 variables

48 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

In addition, users must indicate whether the integer value is with sign or without sign. That is, if the “Signed” box
is:

• Enabled: Integer value with sign.

• Disabled: Integer value without sign.

The process of configuration has to be done using custom messages. This is to be configured in the Custom Messages
menu of the I/O section. The configuration will depends on the device in use and its communication protocol.

Warning: Edit Rotation Matrix brings the position of the magnetometer inside the 1x Autopilot, it must NOT
be changed under any circumstance.

Fig. 46: Rotation matrix

Decimal var sensor 1-2
In this menu, the user selects real variables for each axis (X,Y,Z), these do not requiere a signal treatment. The process
of configuration is similar to the one carried out when configuring a Integer Variable.

2.3. Sensors 49

1x PDI Builder, Release 6.8.65

Fig. 47: Decimal var magnetometer sensor menu

External HMR2300
1x autopilot has been designed to have compatibility with this external magnetometer.

50 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 48: External HMR2300 Magnetometer menu

This magnetometer has no filters configurable, only the option Edit Rotation Matrix to set the orientation of it.

On the other hand, the connection to the serial port has to be configured in the I/O Setup section of the I/O menu.

External LIS3MDL/HSCDTD008A/MMC5883MA/RM3100
1x autopilot has been designed to have compatibility with this external magnetometer.

2.3. Sensors 51

1x PDI Builder, Release 6.8.65

Fig. 49: External Magnetometer menu

The user can modify the following parameters:

• Rotation matrix: It must be modified in the case that the axes of the magnetometer do not coincide with those
of the aircraft.

• Digital filter: Enables a low pass filter which its cutoff frequency is configured manually, allowing the user to
input any desired value in Hz. It is a software filter.

2.3.4 Dynamic Pressure

1x autopilot has three pressure input lines, two for static pressure to determine the absolute pressure and one for pitot
in order to determine the dynamic pressure.

This menu allows the user to configure a Dynamic Pressure sensor input in 1x.

The user can choose between 3 types of source:

• Internal: 1x autopilot uses the internal sensor.

• Integer var sensor 1-2: 1x autopilot uses a integer value provided by an external sensor.

• Decimal var sensor 1-2: 1x autopilot uses a decimal value provided by an external sensor.

Navigation
The Navigation menu has 5 parameters that are configured independently from the Dynamic Pressure sensor selected.

52 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 50: Dynamic Pressure menu - Navigation parameters

• Enable: User can choose from Disabled, values from the sensor will be received, but they will not enter the
Navigation Filter, or Custom settings, which will take into account all the following parameters.

• Square Error: Sensor error square, which defined the weight if the measurement into the Navigation filter.

• Decimation: Defines the bunch of data from which 1 value will be stored. For example, if decimation is 10,
every 10 measurements 1 will be taken into account. This procedure is used to reduce the number of samples.

• Minimum pressure: Minimum pressure readable from the sensor.

• Pitot Orientation: Vector defining the Pitot orientation on the platform.

Internal
This menu displays the posible parameters that can be configured for the internal Dynamic Pressure sensor.

2.3. Sensors 53

1x PDI Builder, Release 6.8.65

Fig. 51: Internal dynamic pressure sensor menu

In this menu it is possible to set different options regarding filters.

• Digital filter: Enables a low pass filter which its cutoff frequency is configured manually, allowing the user to
input any desired value in Hz. It is a software filter.

Integer var sensor 1-2
In this menu it is possible to configure integer variables provided by an external sensor.

54 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 52: Integer var dynamic pressure sensor menu

When Integer var sensor 1 or 2 are selected, the previous panel will be shown. In this panel, the user selects the variable
that has been stored in a user variable (Green Box) and the operations that will be carried on (Red Box). It is possible
to use the signal through a linear or quadratic relation. The following image shows an example of a linear relation:

Fig. 53: Linear relation of 2 variables

2.3. Sensors 55

1x PDI Builder, Release 6.8.65

In addition, users must indicate whether the integer value is with sign or without sign. That is, if the “Signed” box
is:

• Enabled: Integer value with sign.

• Disabled: Integer value without sign.

The process of configuration has to be done using custom messages. This is to be configured in the Custom Messages
menu of the I/O section. The configuration will depends on the device in use and its communication protocol.

Decimal var sensor 1-2
In this menu, the user selects a real variable, this does not requiere a signal treatment. The process of configuration is
similar to the one carried out when configuring a Integer Variable.

Fig. 54: Decimal var dynamic pressure sensor menu

56 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

2.3.5 Static Pressure

1x autopilot has three pressure input lines, two for static pressure to determine the absolute pressure and one for pitot
in order to determine the dynamic pressure.

This menu allows the user to configure a static pressure sensor input in 1x.

The user can choose between 3 types of source:

• Internal (HSC/MS56/DPS310): 1x autopilot uses the internal sensor.

• Integer var sensor 1-2: 1x autopilot uses a integer value provided by an external sensor.

• Decimal var sensor 1-2: 1x autopilot uses a decimal value provided by an external sensor.

Important: In this section, the user can only modify some configurable parameters, the selection of the static pressure
sensor and the configuration of the Variance are done in Static Pressure Sensor - Block Programs section.

Fig. 55: Static Pressure sensor block

Atmospheric calibration export
The Atmospheric calibration export allows, in a standard ground-air configuration, to continuously send information
regarding the static pressure configured on the ground platform to the desired air platform. Therefore, it is a
configuration that must be performed on the Veronte Autopilot 1x ground unit.
This function is useful when making long flights as the static pressure varies significantly throughout the day and
therefore the altitude estimation will also vary.

Warning: For correct operation both Veronte Autopilots 1x (ground and air units) must measure the same pressure
at the same height (this must be checked).

This option is configured independently fo the selected the Static Pressure sensor.

2.3. Sensors 57

1x PDI Builder, Release 6.8.65

Fig. 56: Static Pressure menu - Atmospheric calibration export parameters

• Export atmospheric correction: Enables this feature.

This menu has 5 parameters that need to be configured:

• Send to: Points where the correction will be sent. It can be another 1x unit (Address of another 1x autopilot),
Broadcast or App 2.

• Period: Period of time spent between sending each correction.

• Altitude: There are 2 options available for this parameter:

– External: Users can manually enter the altitude if known.

– Computed: By selecting this option, the altitude will be computed by the system.

Warning: When this option is selected, it is necessary to add an automation in the 1x ground unit to
calibrate the atmosphere periodically (see Atmosphere Calibration action), to prevent the MSL from
drifting.

• MSL: Can be entered manually or by a system variable.

Important: This parameter is only enabled when the External option is selected as Altitude.

• OAT: Outside Atmospheric Temperature, to be defined by the user.

58 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Internal Sensor HSC/MS56/DPS310
This menu displays the posible parameters that can be configured for the internal Static Pressure sensors.

1x autopilot has embedded 3 digital static pressure sensors: the DPS310, the MS56 and the HSC. See more information
on the pressure ports in Hardware installation - Electrical.

Fig. 57: Internal Static Pressure sensor menu

In this menu it is possible to set different options regarding filters.

• Sensor filter: Enables a low pass filter which its cutoff frequency is configured manually, allowing the user to
input any desired value in Hz. It is a software filter.

Integer var sensor 1-2
In this menu it is possible to configure integer variables provided by an external sensor.

2.3. Sensors 59

https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#electrical

1x PDI Builder, Release 6.8.65

Fig. 58: Integer var static pressure sensor menu

When Integer var sensor 1 or 2 are selected, the previous panel will be shown. In this panel, the user selects the variable
that has been stored in a user variable (Green Box) and the operations that will be carried on (Red Box). It is possible
to use the signal through a linear or quadratic relation. The following image shows an example of a linear relation:

Fig. 59: Linear relation of 2 variables

60 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

In addition, users must indicate whether the integer value is with sign or without sign. That is, if the “Signed” box
is:

• Enabled: Integer value with sign.

• Disabled: Integer value without sign.

The process of configuration has to be done using custom messages. This is to be configured in the Custom Messages
menu of the I/O section. The configuration will depends on the device in use and its communication protocol.

Decimal var sensor 1-2
In this menu, the user selects a real variable, this does not requiere a signal treatment. The process of configuration is
similar to the one carried out when configuring a Integer Variable.

Fig. 60: Decimal var static pressure sensor menu

2.3. Sensors 61

1x PDI Builder, Release 6.8.65

2.3.6 RPM

1x autopilot can measure RPMs by measuring from up to 6 input sources:

Fig. 61: RPM menu

• Units: Sensor conversion factor. It can be Custom, Radians per pulse or Pulse per cycle.

• Average filter (Measures): It is a filter to avoid voltage spikes.

• Minimum pulse: Minimum time to detect a lap.

• Maximum time without capture: The maximum period of time allowed without capturing.

2.3.7 Lidar

The I2C bus allows the connection of several devices with different addresses to the same line via master-slave
communication. At this moment, 1x autopilot supports the following Lidar devices:

• Garmin LIDAR-Lite v3: Optical distance measurement sensor with a range of 5cm to 40m.

• SF11 Lidar: Long range laser altimeter. Supported SF11/B and SF11/C with a range of maximum 50m and
0.2m to 120m respectively.

• SF20 Lidar: OEM laser altimeter module. Supported SF20/C with a range of 0.2m to 100m.

1x allows up to 5 Lidar devices to be connected to the system at the same time. The configuration menu can be seen
below:

62 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 62: Lidar devices

After enabling the needed number of Lidar devices, configurable parameters are:

• Type of Lidar.

• Address: With an accepted value between 16 - 239, this is the origin address from the Lidar being configured.

• Digital filter: Enables a low pass filter which its cutoff frequency is configured manually, allowing the user to
input any desired value in Hz. It is a software filter.

Warning: I2C address will be different for different devices make sure to define it properly by checking the
manufacturer documentation.

Note: The Lidar number (Lidar 1/5) needs to be kept in order to properly configure the Altimeter later (Altimers
sensors - Block Programs section).

2.3. Sensors 63

1x PDI Builder, Release 6.8.65

2.3.8 Internest

An ultrasound sensor computes Veronte Autopilot 1x position by measuring the time the signal sent out takes to return.
The following panel together with Relative position sensor block (see Relative position sensor - Block Programs section)
allows the user to configure an Internest system with Veronte Autopilot 1x.

This menu allows the user to choose the version of Internest to be used, its range and the rotation matrix:

Fig. 63: Internest menu

• Version: Users must choose the version of the Internest system, the available options are Base and Explore.

• Range: Defines the distance at which Internest values will start to be valid.

• Sensor to base: Matrix to rotate the system to match the Veronte Autopilot 1x coordinate system.

64 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 64: Internest - Rotation matrix

2.4 Input/Output

This section of the manual contains the information about external sensors/devices configuration. These devices are
configured on the different ports available in Veronte Autopilot 1x:

Port/Manager Description
I/O Setup Configuration of serial ports, LOS, Serial Custom Messages, etc.
CAN Setup Configuration of the two CAN buses (A and B), CAN Custom Messages and Mailboxes
Digital Input Configuration of PPM signals, pulses or RPM sensors

As Custom Messages need to be defined for both serial and CAN communication, there will be a specific section for
this after the CAN Setup sect

2.4.1 I/O Setup

In this panel the user can stablish the relationship between a determined signal with a I/O port. This allows users to
configure external sensors, messages between 1x units (Tunnel) and custom messages.

2.4. Input/Output 65

1x PDI Builder, Release 6.8.65

Fig. 65: I/O Setup menu

• Priority: Connections between I/O ports can be marked with high priority with this checkbox. If enabled, they
will run at high frequency: 1000 Hz.

• Producer: Functions for creating and sending messages.

• Consumer: Functions for receiving and parsing messages

66 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 66: I/O Setup consumer options

Firstly, users have to configure the Producer selecting the I/O port or information to use. Later, users have to configure
the Consumer by clicking on an element, a new window will be displayed to select an item. The relationship between
them can be unidirectional (Bind) or bidirectional (Bind Bidirectional), the last enables a port to receive or send
information.

The following I/O ports are available:

2.4. Input/Output 67

1x PDI Builder, Release 6.8.65

Field Description
USB USB Port
Veronte LOS Radio
Veronte LTE 4G Connection
RS232 Serial Port 232
RS485 Serial Port 485
Commgr port COM Manager ports send and receive VCP messages. This is the protocol used by Veronte

products to communicate.
For more information on VCP, read the VCP user manual

Tunnel Creates a bidirectional brigde between two devices, see Tunnel
RS Custom
Message

This allows user to send/receive a serial custom message, see Serial Custom Messages

GPS RTCM This allows the user to send/receive RTK information from GND unit to AIR unit
External
HMR2300
magnetometer

External magnetometer sensor, see External HMR2300 magnetometer

Iridium Iridium communication, see Iridium section
Splitter Used to split a signal into 2
NMEA Parser NMEA 0183 messages parser, see NMEA Parser
Unescape port This allows user to reconstruct a byte stream with an escape logic, see Unescape port
CAN to serial /
Serial to CAN

Serial to CAN sends serial streams over a CAN Bus / CAN to serial undoes the transformation
‘Serial to CAN’

CAN wrapper /
CAN unwrapper

CAN wrapper sends CAN streams over a serial Bus / CAN unwrapper undoes this
transformation

External
ultrasound

External ultrasound sensor, see Internest section

Vectornav VN-
300

Vectornav VN-300 is an external IMU.
For more information, see the Vectornav VN-300 -> Integration examples section of this
manual

More information about some elements can be found in the following sections.

2.4.1.1 Tunnel

It is possible to configure a Tunnel which is a bidirectional bridge between 1x units that communicate to each other
sharing information about an external device connected to the Serial or Digital port.

Imagine that it is desired to have a button connected to the air 1x autopilot to launch a parachute. It is not possible to
physically connect the button because the air autopilot is in the flying platform, so a different option is needed. Here is
where the tunnel becomes useful. The button could be connected through the Serial or Digital port to the Ground 1x
autopilot, and then with the tunnel send the signal to the air one. With this configuration it would be like if the button
were physically connected to the aircraft.

Let’s consider the following image:

68 Chapter 2. Configuration

https://manuals.embention.com/vcp/en/6.8/index.html

1x PDI Builder, Release 6.8.65

Fig. 67: Tunnel configuration

In the image above there is a device connected to the RS232 (Producer) and there is a Tunnel (Consumer) which
sends that information to other 1x autopilot with a determined ID. On the other hand, 1x air unit has to be configured
to receive the signal sent by other device. In that case the Producer will be Tunnel and Consumer will be the port
or destination tunnel where the device is connected.

The options available when configuring Tunnel as Consumer are:

• Veronte ID: Select the address that will receive the information.

– App 2: Veronte Ops address.

– Broadcast: All units on the network. Select this option for a generic configuration.

– Veronte v4.X XXXX: Address of a specific Veronte unit, it can be a 1x, a 4x, a CEX, etc.

• Parser: The user can choose protocol to parse message data. The options available are:

– No protocol

– RTCM3

– CANserial

• Destination tunnel: Number of port is used to avoid mistakes and identify a Tunnel when using more than one,
Tunnel 1, 2 and 3 are available.

• Time between messages.
• Bytes to send: Sets the message size to send.

When configuring Tunnel as Producer (i.e. on the unit that receives the information), no configuration is required. It
is only necessary to connect it to a Consumer, usually to a serial port.

2.4. Input/Output 69

1x PDI Builder, Release 6.8.65

2.4.1.2 Serial Custom Messages

Warning:
• 1x autopilot has a serial limitation of 64 vectors (fieldset) per Custom.

In addition, there is a limit shared with all Customs, including CAN Custom Messages:
– Maximum number of vectors (fieldset): 104
– Maximum number of fields: 2000

It is possible to configure the messages sent/received through the serial port and its conversion to system variables by
selecting the option RS Custom message and configuring the I/O port.

Fig. 68: Serial Custom Messages

In the image above can be seen two possible configurations using a RS Custom Message. The ‘red’ one is configured to
receive a determined message from a RS-232 serial port and the ‘green’ is used to send a RS Custom Message through
a RS-485 serial port. It is also possible to use the same RS Custom Message for both tasks if Bind Bidirectional is used
(the arrow indicates this).

To configure a RS Custom message, the user must follow the next steps:

1. Press the configuration button (icon) and another window will be displayed. In this window press the

icon to add a custom message, the user can choose between System variables or ADSB Vehicle.

70 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 69: Serial Custom Message configuration

Note: The difference between System variables and ADSB Vehicle is that when the user has selected the second
option, only the ADSB variables will appear and not all the ones available in 1x PDI Builder.

2.4. Input/Output 71

1x PDI Builder, Release 6.8.65

72 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 70: ADSB Vehicle Variable custom message

2. When it is already added, the following options are available to configure a custom message:

Fig. 71: Producer RS Custom Message configuration

Fig. 72: Consumer RS Custom Message configuration

• Endianness: Depending on the order in which the device issue the message, it is possible to select:

2.4. Input/Output 73

1x PDI Builder, Release 6.8.65

– Big endian: Set the value from left to right.

– Little endian: Set the value from right to left.

– Mixed endian: Some devices use this format. If users need to configure it, please contact the support
team (create a ticket in the customer’s Joint Collaboration Framework; for more information, see
Tickets section of the JCF manual).

• Period/Time out: This option has a dual role depending on if it is used to transmit or receive data.

– Period - Producer: It is the inverse of the send frequency.

– Time out - Consumer: This is the threshold time between receptions to consider that the message is
not being received correctly.

• Delay/Time to Idle: This option has a dual role depending on if it is used to transmit or receive data.

– Delay - Producer: It is a delay applied before sending the message. This serves to send messages with
the same period without overloading the Serial bus.

– Time to Idle - Consumer: This is the time 1x autopilot waits before discarding partially parsed bytes.

• Bit ID: This option is only available when a message is configured as Consumer. The user bit selected in
Bit ID box will be true if the message is being received correctly.

Warning: Pay attention that the user bit selected in Bit ID is not in use for another task.

3. To create the structure of the message, click on the edit message button (icon) and then press the icon
to add fields to it.

The following type of messages are available to configure a structure: Variable, Checksum, Matcher, Skip,
Parse ASCII and Position.

The configuration of each structure is covered in Custom Messages types section.

Warning: Before configuring any message, user has to know the structure it has to have according to the device that
is connected to the port. Each device may have a different message structure when it sends or receives information.

To check serial messages transmission, see the Debug serial messages transmission -> Troubleshooting section of this
manual.

2.4.1.3 NMEA Parser

NMEA Parser is another way to add an axternal GNSS device. This consumer allows to receive NMEA 0183 messages
and parses them directly. The NMEA Parser configuration menu includes the following parameters:

74 Chapter 2. Configuration

https://manuals.embention.com/joint-collaboration-framework/en/0.1/tickets/index.html

1x PDI Builder, Release 6.8.65

Fig. 73: NMEA Parser configuration

• Time out: Defines the period of incoming information from the external system.

• Feature: Variable extracted from the message defining the GNSS position. Usually Moving Object variables
are used in 1x PDI Builder.

• Utc: Variable extracted from the message defining the UTC.

• Fix: Data provided by the external device which is important to know the status of the positioning.

Once the NMEA message has been parsed, the variables used for Fix and Feature can be selected in the GPS External
configuration of the GNSS block as Fix Bit and GPS Position. For more information about this configuration, see
Sensors blocks section.

2.4.1.4 Unescape port

To understand what unescape is, the user must first understand what an escape byte is.

Let’s consider that there is a protocol that defines a ‘Flag’ as the start and end byte of the frame. In case the flag or
an escape value appears in the frame data, and in order not to misinterpreted the message, an escape byte or the same
value repeated will be added before them so that, at the time of parsing, it will be reconstructed with the original byte.

2.4. Input/Output 75

1x PDI Builder, Release 6.8.65

Fig. 74: Escape byte

In 1x PDI Builder, an Unescape port has been implemented to allows to reconstruct a byte stream with an escape logic.

Fig. 75: Unescape port configuration

Two modes of escapes are supported:

• SkipChar: The unfolding of the value to be escaped, the byte to escape has been repeated in the message.

• SkipAndXOR: In this case, the escape byte is entered first and then the value to escape (i.e. the value to escape
XOR escape byte).

In addition to this, two more options are available in this pop-up window:

• Escape byte: Escape byte added.

76 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

• XOR value: Only available when ‘SkipAndXOR’option is selected.

2.4.2 CAN Setup

A CAN (Controller Area Network) Bus is a robust vehicle bus standard widely used in the aviation sector. 1x autopilot
is fitted with two CAN buses that can be configured independently.

The structure of a CAN message can be seen in the following image:

Fig. 76: CAN message structure

Only the ID is introduced in the system, the rest of the message layout is already coded. The data field is the one build
by the user to send, and parsed when received.

The baud rate of both CAN buses can be configured in the Mailboxes section.

The steps to be followed from the moment a CAN message arrives at or is sent from the 1x autopilot are described in
the CAN communication -> Integration examples section.

2.4.2.1 Configuration

This menu allows the configuration of communications between different devices.

2.4. Input/Output 77

1x PDI Builder, Release 6.8.65

Fig. 77: CAN configuration section

In this menu, the user can find the same ‘columns’ (Priority, Producer and Consumer) as in the I/O Setup menu.

Warning: In CAN, in Low state the specified period is not guaranteed but in High state it is.

However, only those messages that are critical for external devices should be set as high priority, as this may
disrupt the proper functioning of Veronte Autopilot 1x.

On the one hand, 1x autopilot has the producers shown below:

• Serial to CAN: Serial messages over CAN output, it has to be connected to I/O Setup consumer. It can be

configured in the configuration button (icon), a pop-up window will appear:

Warning: For correct communication, mark it as High priority (with the Priority checkbox).

78 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 78: Serial to CAN configuration

– Id: CAN Id must be set and it is used to identify messages. The value set has to be decimal format.
– Extended: If enabled, the frame format will be this, ‘Extended’, i.e. with a 29-bit identifier. Otherwise,

the frame format ‘Standard’ (11-bit identifier) is set by default.

– Time out: This is the threshold time between receptions to consider that it is not being received correctly.

• CAN custom message: CAN custom messages transmission. They are configured in the next section, see Custom
Messages.

• Input filter: CAN input filters. Those CAN messages received in one filter can no longer be received in

subsequent filters. Input filter must be configured in the configuration button (icon), a pop-up window
will appear:

Fig. 79: Input filter configuration

– Port: It is required to configure the CAN bus from which it listens, the user can choose between CAN A,
CAN B or BOTH.

– Id: CAN Id must be set and it is used to identify messages. The value set has to be decimal format.
– Mask: Here a CAN Id mask can be set to filter messages. The mask defines the bits that should match.

– Filter type: The options available are Standard, Extended and Both.

Attention: Make sure that the mask is set properly to be able to receive the desired CAN messages.

• CAN unwrapper: This undoes the ‘CAN wrapper’ action, it has to be connected to I/O Setup consumer.

• CAN GPIO remote: CAN messages to GPIO peripherals such as CEX and Arbiter. It can be configured in the

configuration button (icon), a pop-up window will appear:

2.4. Input/Output 79

1x PDI Builder, Release 6.8.65

Fig. 80: CAN GPIO remote configuration

– Period: It is the period of sending messages.

– Id of the generated CAN message: CAN Id must be set and it is used to identify messages. The value set
has to be decimal format.

– Extended: If enabled, the frame format will be this, ‘Extended’, i.e. with a 29-bit identifier. Otherwise,
the frame format ‘Standard’ (11-bit identifier) is set by default.

– Destination: Here the user select the destination CEX pins.

– Value: The user must select the 1x pin to be connected to the CEX pin.

On the other hand, the consumers are the following:

• CAN to serial: This undoes the ‘Serial to CAN’ action, it has to be connected to I/O Setup producer.

Warning: For correct communication, mark it as High priority (with the Priority checkbox).

• Custom message: CAN custom messages reception. They are configured in the next section, see Custom
Messages.

• Output filter: CAN output filters. The user can choose between CAN A, CAN B or BOTH in the configuration

button (icon).

Fig. 81: Output filter configuration

• CAN wrapper: CAN messages over serial output, it has to be connected to I/O Setup producer.

80 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

2.4.2.2 Custom Messages

In the custom message tabs (there are 3 available), the user chooses the variables to be sent/received over the CAN
buses. The following elements can be configured:

• TX Ini: Used to configure transmitted messages that are only sent once at the beginning of the operation (sent
when the autopilot boots up). They can be used to initialize some devices.

• TX: Used to configure transmitted messages.

• RX: Used to configure the reception messages (where they are stored).

Warning:
• The maximum capacity of a CAN message is 64 bits (8 bytes), so to send more information it must be

divided into several messages.

• 1x autopilot has a CAN limitation of 40 TX messages per Custom, 40 TX Ini messages per Custom and 80
RX messages per Custom.

In addition, there is a limit shared with all Customs, including RS Custom Messages:
– Maximum number of vectors (fieldset): 104
– Maximum number of fields: 2000

Fig. 82: CAN Custom Message section

2.4. Input/Output 81

1x PDI Builder, Release 6.8.65

TX Messages

Fig. 83: CAN Custom Message - TX

In order to add a new custom message the user needs to press and a new element will be added into the panel.

1. Period: This is the time in seconds between TX messages delivery.

2. Endianness: The endianness of the message must be configured, which indicates how the bytes that it contains
are sent/read:

• Big endian: Set the value from left to right.

• Little endian: Set the value from right to left.

• Mixed endian: Some devices use this format. If users need to configure it, please contact the support
team (create a ticket in the customer’s Joint Collaboration Framework; for more information, see Tickets
section of the JCF manual).

3. Can ID: 11-bits (Standard) or 29-bits (Extended) ID used to identify TX messages. The value set has to be
decimal format.

4. EXT: Enables the frame format with a 29-bit identifier (Extended).

5. Edit message button (icon): Displays the menu to configure how the bits/bytes of the message are divided
and sent.

There are six different options that can be added when setting up a custom message: Variable, Checksum,
Matcher, Skip, Parse ASCII and Position.

82 Chapter 2. Configuration

https://manuals.embention.com/joint-collaboration-framework/en/0.1/tickets/index.html
https://manuals.embention.com/joint-collaboration-framework/en/0.1/tickets/index.html

1x PDI Builder, Release 6.8.65

The explanation of how to configure these different types of custom messages is detailed in the following section
⇒ Custom Messages types.

RX Messages
The procedure is similar to the one followed in TX messages.

Fig. 84: CAN Custom Message - RX

The options and parameters to configure here are almost the same as those described in TX Messages above, except for
one:

• Can ID: The custom message needs to have the expected ID with which the external device/sensor is going to
be sending information.

Attention: It is important to configure a mailbox for every single reception ID. See Mailboxes for more
information.

Also, unlike TX messages there are two additional variables per message:

• Time out: This is the threshold time between receptions to consider that it is not being received correctly. For
example, if time out is set to 1s and it passes more than 1s since the last reception, the bit ID will be set to false.

• Bit ID: The user bit selected in Bit ID box will be true if the message is being received correctly.

2.4. Input/Output 83

1x PDI Builder, Release 6.8.65

Warning: Pay attention that the user bit selected in Bit ID is not in use for another task.

The custom message structure needs to match the reception data-format. User variables (real - 32 bits , integer - 16
bits or boolean - 1 bit) need to be used to store that data.

2.4.2.3 Mailboxes

Here the user can modify the mailboxes from the selected CAN bus (CAN A or CAN B).

When 1x autopilot is going to receive data on the CAN Bus, it is mandatory to configure a certain number of mailboxes.
However, it is also necessary to have at least 1 mailbox for transmission (TX).

In order to add a mailbox, press the icon.

Fig. 85: Mailboxes section

Mailboxes are required to store the data received until 1x autopilot reads it and it is necessary at least one mailbox
per RX message. 1x PDI Builder allows up to 32 mailboxes.

Warning: Do not use all 32 mailboxes for RX, leave at least one free for TX.

The configurable parameters when adding a new mailbox are:

84 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

1. Mailboxes: Number of mailboxes assigned to that ID.

2. Extended: Select this option for 29-bit IDs.

3. ID: 11-bits (Standard) or 29-bits (Extended) ID used to identify RX messages. The value set can be defined in
different units, this is configured in (5).

4. Mask: This filter is configured for reception messages; received data will be stored on mailboxes where message
ID coincides with mailbox ID.

Mask adds some flexibility on the reception, when comparing message with mailbox data, only the value of
binary digits configured as 1 on the mask will be taken into account. The value set can be defined in different
units, this is configured in (6).
For example, for a configuration mask: 11 000 and ID: 10 110 all incoming messages addressed to 10 XXX will
be received in this mailbox.

5. Units ID: Units available are Decimal, Hexadecimal or Binary.

6. Units Mask: Units available are Decimal, Hexadecimal or Binary.

7. Baudrate: CAN Baudrate can be configured here.

Warning: If any mailbox is full and another message arrives, the new message is discarded.

2.4.3 Custom Messages types

There are six different options that can be added when setting up a custom message: Variable, Checksum, Matcher,
Skip, Parse ASCII and Position.

2.4.3.1 Variable

Used to store certain bits in a system variable (RX) or to send a certain variable (TX).

2.4. Input/Output 85

1x PDI Builder, Release 6.8.65

Fig. 86: Variable configuration - CAN Custom Message

The following parameters are configurable:

• Variable: Here the user select the desired system variable.

• Compression: The first step is to configure which kind of compression will be used for this variable:

– Uncompress: The variable is taken in its full length, with no value modification.

– Uncompress - 64 bits: Uncompress from 32 to 64 bits (TX). In RX, uncompress from 64 to 32 bits.

Warning: Be careful! This transformation implies a loss of precision in both directions.

– Compress - Decimals: The variable is compressed according to the number of decimals specified and
the range specified (max and min values). The resultant compression (number of bits) follows the relation
(𝑚𝑎𝑥−𝑚𝑖𝑛) · 10𝑑𝑒𝑐𝑖𝑚𝑎𝑙𝑠, which yields the encoding of the maximum value of the range (and the number
of bits necessary for that). The range needs to be specified on the Encode - Min/Max field.

– Compress - Bits Signed: Specify the number of bits to be compressed to (negative values accepted). It
is necessary that the user configures Encode/Decode options.

– Compress - Bits Unsigned: Specify the number of bits to be compressed to (no negative values accepted).
It is necessary that the user configures Encode/Decode options.

• Encode/Decode: These values are used to apply a scaling factor after the transformation from binary to decimal
value, or before the transformation from decimal to binary value.

Note: If no compression is desired, the same values must be set in min/max Encode and min/max Decode. For
example, Encode min=0 / max=1 and Decode min=0 / max=1.

86 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

In the example shown below, a real user variable (32 bits) is being used to receive data from an external device. This
data corresponds to the heading angle of the aircraft (which goes from 0 to 359 degrees). The device is sending this
information in a 16-bit data frame and the angle value times 100 (hence why the Decode section goes from 0 to 35900).
This needs to be saved in 1x PDI Builder in the user variable in the range 0 to 359 (Encode).

Fig. 87: Variable configuration example

2.4.3.2 Checksum (CRC)

Sometimes, control codes are needed for preventing random errors in transmission, where a bits frame is operated
and the result is sent to the receiver to check it. To do so the CheckSum option is used.

Fig. 88: Checksum configuration - CAN Custom Message

• Type: User can choose the type of CRC that will be applied.

– Polynomial: Polynomial algorithm for CRC. Select from a list of predefined Embention CRC (CRC-Preset
option). This is the most used type.

– sum8: The CRC-8 algorithm (sum8) calculates an 8-bit checksum, which is used for error detection
purposes.

Basically, it processes the sum of all bytes from a sequency, and then performs a bitwise division by 255 to
retrieve the CRC result code.

2.4. Input/Output 87

1x PDI Builder, Release 6.8.65

– sumMod: The CRC module (sumMod) is a process to calculate a checksum, which is used for error
detection purposes.

It processes the sum of all bytes from a sequency, and uses a euclidian division by the module parameter
to obtain the CRC result code.

– Mavlink: Embention has implemented the Mavlink checksum, used only for Mavlink protocol
communications.

– 8-bit sagetech checksum: It is an owned checksum algorithm from Sagetech, that is used by Sagetech devices
for error detection purposes. It is based on Fletcher checksum.

The following parameters must be set independently of the type of checksum selected:

• Endianness: The endianness of the message must be configured, which indicates how the bytes that it contains
are sent/read:

– Big endian: Set the value from left to right.

– Little endian: Set the value from right to left.

– Mixed endian: Some devices use this format. If users need to configure it, please contact the support
team (create a ticket in the customer’s Joint Collaboration Framework; for more information, see Tickets
section of the JCF manual).

• Back From: Indicates that the CRC will be computed from the indicated byte (inclusive).

• Back To: Indicates that the CRC will be computed to the indicated byte (exclusive).

Explanation
– Byte 0 it is referred to the first byte of the Checksum block.

– The range of calculation of the CRC is defined by the ‘Back to’ and ‘Back from’ parameters. They define,
respectively, a number of bytes as an offset from the position of the CRC.

Fig. 89: Back to/Back from explanation

• Drop-down menu: User can choose the mode in which the CRC will be output:

– Binary mode
– ASCII as hexadeciaml values
– ASCII as deciaml values

88 Chapter 2. Configuration

https://manuals.embention.com/joint-collaboration-framework/en/0.1/tickets/index.html
https://manuals.embention.com/joint-collaboration-framework/en/0.1/tickets/index.html

1x PDI Builder, Release 6.8.65

The specific parameters for each checksum type, will be described below:

Polynomial type

Fig. 90: Checksum configuration - Polynomial example

In addition to the ‘general’ parameters described above, one further parameter must be configured for this type of CRC:

• CRC - Preset: List of predefined Embention CRC, where fields nº Bits, Polynomial, Start Value, Final XOR,
Reflect In and Out are defined.

The last option is Custom, where all the above mentioned fields can be defined by the user. Check Polynomial
CRC online for more information.

– Bits: This defines the width of the result CRC value (n bits).

– Polynomial: Used generator polynomial value.

– Start Value: The value used to initialize the CRC value / register.

– Final XOR: The Final XOR value is xored to the final CRC value before being returned. This is done after
the ‘Result Output’ step. Obviously a Final XOR value of 0 has no impact.

– Reflected Input: If this is enabled, each input byte is reflected before being used in the calculation.
Reflected means that the bits of the input byte are used in reverse order. So this also means that bit 0 is
treated as the most significant bit and bit 7 as least significant.

– Reflected Output: If this is enabled, the final CRC value is reflected before being returned. The reflection
is done over the whole CRC value, so e.g. a CRC-32 value is reflected over all 32 bits.

sum8 type

Fig. 91: Checksum configuration - sum8 example

In addition to the ‘general’ parameters described above, 3 further parameters must be configured for this type of CRC:

• Bits: This defines the width of the result CRC value (n bits).

• CRC Extra: Extra CRC added at the end of the message, it will be required by the communication protocol
used.

• Reflected Output: If this is enabled, the final CRC value is reflected before being returned. The reflection is
done over the whole CRC value, so e.g. a CRC-32 value is reflected over all 32 bits.

2.4. Input/Output 89

http://www.sunshine2k.de/coding/javascript/crc/crc_js.html

1x PDI Builder, Release 6.8.65

sumMod type

Fig. 92: Checksum configuration - sumMod example

In addition to the ‘general’ parameters described above, 3 further parameters must be configured for this type of CRC:

• Bits: This defines the width of the result CRC value (n bits).

• Module: This value is the dividend of the operation carried out.

• Direct:
– If enable, sumMod retrieves the result code directly from the remainder of the division.

The mathical operation done is: 𝐶𝑅𝐶 %𝑚𝑜𝑑𝑢𝑙𝑒.

– If disable, sumMod keeps the subtraction of the remainder of the division.

The mathical operation done is: 𝑚𝑜𝑑𝑢𝑙𝑒− (𝐶𝑅𝐶 %𝑚𝑜𝑑𝑢𝑙𝑒).

Mavlink type

Fig. 93: Checksum configuration - Mavlink example

In addition to the ‘general’ parameters described above, one further parameter must be configured for this type of CRC:

• CRC Extra: Extra CRC added at the end of the message, it will be required by the Mavlink protocol.

8-bit sagetech checksum

90 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 94: Checksum configuration - 8-bit sagetech checksum example

In addition to the ‘general’ parameters described above, 2 further parameters must be configured for this type of CRC:

• Bits: This defines the width of the result CRC value (n bits).

• CRC Extra: Extra CRC added at the end of the message, it will be required by the communication protocol
used.

2.4.3.3 Matcher

This option is used to send a constant value through the bus in TX or wait for a particular value in RX.

Fig. 95: Matcher configuration - CAN Custom Message

• Value: Sent/received value for the nº of bits defined below.

• Bits: Number of bits in which the matcher is performed.

• Mask: It is automatically set when the nº of bits is assigned.

For example, a matcher of 8 bits with a value of 9 will be reading/sending: 00001001.

2.4. Input/Output 91

1x PDI Builder, Release 6.8.65

2.4.3.4 Skip

This option is used to discard a certain number of bits from the message (the maximum number of bits that can be
skipped with a single “Skip” are 32).

This tool can be used when there are variables incoming that are from no interest for the user, not loading unnecessary
information into the system.

Fig. 96: Skip configuration - CAN Custom Message

2.4.3.5 Parse ASCII

Parsing ASCII is used when the protocol required is of this kind.

92 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 97: Parse ASCII configuration - CAN Custom Message

ASCII protocol is used for transforming a character array into decimal values. For such task, the user needs to
define the following parameters:

• Variable:

– If used as TX, this variable is where the ASCII will be saved (“uncompress”).

– If used as RX, this is the read variable to be tranformed into ASCII (“compress”).

• Char in inter part: The number of characters in the integer part.

• Char in decimal part: The number of characters in the decimal part.

• Division char: This is the division character (’.’, ‘,’, etc.)

2.4. Input/Output 93

1x PDI Builder, Release 6.8.65

2.4.3.6 Position

Position is used to input/output a data set with a particular format. When created, the user can only choose from
Features variables.

Fig. 98: Position variables

The window display below is the configurable menu. The information stored is the WGS84 coordinates in the following
order: Latitude, Longitude and Height. All of them are stored with double precision.

94 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 99: Position configuration - CAN Custom Message

• Feature: User can select from Features variables.

• Units: Units available are Radians, Degrees, Gradians and Custom.

• Factor: As radians are the unit that 1x PDI Builder works with, if another unit is selected, the conversion factor
between this unit and radians is automatically calculated.

2.4.4 Digital Input

GPIO pins can work as Digital Input or Output as well as PWM. In order to configure some custom sensors such as
a Stick PPM, Pulse sensor or RPM sensor pins are reserved, which correspond to pins 55-58. These pins can also be
used as Digital I/O.

Sensors using a Digital Input are configured in this menu.

2.4. Input/Output 95

1x PDI Builder, Release 6.8.65

Fig. 100: Digital Input section

The process to configure a device can be done as follows:

1. Select and configure a Producer. There are 6 possible producers: CAP 1 - 6.

Press on the configuration button (icon) and a new pop-up window will show.

96 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 101: Digital Input - Producer

In the pop-up window, users can check:

• That this producer is enabled.

• Which pin this CAP is associated and, therefore, to which device is connected. It is possible to select
these pins. Pins available are GPIO 1 to 16, and EQEP A, B, S and I. When using the harness provided by
Embention the transmitter Digital Input is connected to the pin 55 (EQEP_A) with pin 49 as Ground.

2.4. Input/Output 97

1x PDI Builder, Release 6.8.65

Fig. 102: Digital Input - CAP

• How the pulses are read and transformed into a digital signal (how they are processed). That can be
configured with the Edge detection option.

By clicking on the drop-down menu, the following options can be selected:

Fig. 103: Digital Input - Edge detection option

– First rising edge: With this option, when the rise of the pulse is detected, the data will start to be
stored. Recommended when consumer is PPM or Pulse.

– First falling edge: With this option, when the fall of the pulse is detected, the data will start to be
stored.

Note: By clicking on the arrows, it can also be configured as desired. For example, if the user has selected the ‘First
rising edge’ option, but clicking on the arrows gets the arrow scheme of the ‘First falling edge’ option, the name of the
edge detection will not be ‘First rising edge’, but will become ‘First falling edge’.

Fig. 104: Digital Input - Edge detection option

98 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

2. Click on the Bind button to select the type of Consumer, it is possible to choose among a PPM 1-4 (Stick PPM),
RPM 1-6 (RPM sensor) or Pulse 1-4 (Pulse).

Fig. 105: Digital Input - Consumer

• PPM 1-4 selected: PPM is configured in the Stick menu.

• RPM 1-6 selected: The variables in which the information read here is stored are ‘RPM 1-6’. For more
information on the configuration of RPM, see the RPM section.

• Pulse 1-4 selected: The variables in which the information read here is stored are ‘Captured pulse 1-4’.

It is possible to configure it clicking on the configuration button (icon):

2.4. Input/Output 99

1x PDI Builder, Release 6.8.65

Fig. 106: Digital Input - Pulse

In the pop-up window, users will find the following options for configuration:

– Mode:

∗ Positive pulse duration: The period of the pulse is obtained. It takes the time in ‘High’ state.

∗ Negative pulse duration: The period of the pulse is obtained. It takes the time in ‘Low’ state.

Fig. 107: Positive/Negative pulse duration

∗ Positive duty cycle: The duty cycle. It takes the time in ‘High’ state.

∗ Negative duty cycle: The duty cycle. It takes the time in ‘Low’ state.

100 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 108: Positive/Negative duty cycle

– Time out: This defines the time to consider that no signal is received.

– Function: Here the user can customise a function to handle the values. Normally, a function is set
with the points [0,0] and [1,1], so no transformation is applied, input = output. However, the user can
configure it as desired.

Example
Let’s imagine that First rising edge has been selected as the edge detection option in Producer and the pulse that 1x
has to read is a square signal with a period of 2 seconds and a duty cycle of 25% (see image below).

Fig. 109: Signal generated

On the other hand, if Positive pulse duration is selected as Consumer and it is configured as in the previous image
(Digital Input - Pulse), the value obtained in the variable Captured pulse (Captured pulse 1 in the following example)
will be 0.50s, this is because it is the period of the “Positive pulse” of that pulse.

However, if Positive duty cycle is selected as Consumer, the value obtained in the variable Captured pulse (Captured
pulse 2 in the following example) will be 0.25, this is because it is the positive duty cycle of that pulse.

2.4. Input/Output 101

1x PDI Builder, Release 6.8.65

Fig. 110: Digital Input example

2.5 Control

In this panel all the parameters related to the control of the platform can be found. There are 4 sections, each one
showing a different menu of configuration.

2.5.1 Phases

In this section are created (defined but not configured) the Flight Phases that will control the aircraft at different stages
of the operation.

102 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 111: Phases menu

To create a new phase click on Add, and select Phase.

2.5. Control 103

1x PDI Builder, Release 6.8.65

Fig. 112: Add phase

The user can select a phase already created or create a new one.

104 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 113: Create phase

In addition, by right clicking on the phase, the user can rename, copy or remove it:

2.5. Control 105

1x PDI Builder, Release 6.8.65

Fig. 114: Phase options

Note: The configuration of the phases (guidance and control commands) is done in the Block Programs section.

2.5.2 Envelope

Menu to configure the flight envelope of the aircraft. Here the limits that will not be exceeded during the operation are
set.

These limits are respected by the guidance and depend on how the control is implemented.

Warning: Although the acceleration has been limited here, if the control is configured so that the pilot in manual
mode can control the pitch angle, this acceleration limit will have no effect.

Envelope

106 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 115: Envelope menu

1. Envelope name

2. VTOL: If this option is enabled, when the vehicle reaches the last waypoint of its route (and it is an open path),
a hover is done instead of a loiter point.

3. Airspeed Limits: Limit for the indicated airspeed (IAS). The value indicated here has effect over the “Cruise”
guidance, but is overrided if there is a Hold command on the IAS, so the user must be careful with the velocity
commands.

4. Ground Speed Limits: Minimum and maximum ground speed of the platform. In case of strong wind, these
parameters set the minimum GS that the aircraft can reach, for lower values than this one the thrust will be
automatically increased to gain speed and avoid a point where the platform is stopped in the air.

5. Vertical Speed Limits: Similar to the previous limit. It sets the minimum and maximun value for the vertical
speed of the platform.

6. Flight Path Limits: Maximum and minimum values for the flight path angle (angle of climb or descent).

It’s possible to insert multiple envelopes (useful for hybrid configurations) by clicking in Add. The change between
envelopes can be performed using Automations.

Acceleration limit
In this second tab there are more options to fix the limits (positive and negative direction) of acceleration and jerk in
SI units.

Acceleration limits are applied in any phase with position guidance. They modify the desired velocity. The algorithm
compares the current desired velocity with thatstored in previous step. There are six values to define.

2.5. Control 107

1x PDI Builder, Release 6.8.65

Fig. 116: Acceleration limit menu - Spherical frame

The configurable options in this menu are:

1. Enable/Disable the acceleration limit.

2. Type: User can choose between Cartesian Body and Spherical.
Cartesian Body is normally used for multicopters or aircraft that allow 3-dimensional movement, while the
Spherical type is used for conventional aircraft.

3. Enable/Disable angular rates: The user also can selected directly angular rates option which allows him set
limits in Y body rate and Z body rates.

4. Axes:
• In Cartesian Body the axes refer to the body frame (X Body Axis, Y Body Axis, Z Body Axis).

• In Spherical type, the algorithm internally applies limits in module, inclination and azimuth to maintain
the limits set by the user in body frame (body frame limits will be turn into spherical limits).

5. Positive direction: The limit for acceleration. If desired velocity has the same sign as in the previous step, and
it is lower (in absolute value) this limit is applied.

For example, if a multicopter is flying in negative X direction, and it has to increase desired velocity in same
direction this limit will be applied.

6. Negative direction: The limit for deceleration. In the case positive direction limit is not used.

The second derivative of velocity (Jerk) imposes another limit in acceleration. It modifies the behaviour of the vehicle.

108 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Depending on values, it’s possible to get more smoothness during guidance. Algorithm ensures that when desired
velocity is reached the acceleration value is near 0. As acceleration limits, user can set 6 values (3 for positive direction
limit and 3 for negative direction limit).

Fig. 117: Acceleration limit menu - Cartesian frame

The effects of these limitations are explained below.

First, the acceleration limits are disabled. The stick that controls Thrust is moved and desired velocity change according
to this stick command. In Desired velocity chart we can see this effect and in bottom acceleration chart is shown how
acceleration is not limited (hight values reached).

Fig. 118: Only velocity limit (Thrust)

Now, a limit in acceleration bottom axis is set to 0.1. Now the desired speed grows with a lower slope due to the
imposed limitation. Also in the acceleration bottom chart we can see how the value oscillates within the imposed limit.

Fig. 119: Acceleration limit (Thrust)

To compare acceleration and jerk, roll axis is chosen. In the first gif below only the first limit is applied.

Fig. 120: Acceleration limit (Cartesian frame)

2.5. Control 109

1x PDI Builder, Release 6.8.65

When the jerk limit is also enabled we can see how acceleration (in Y Body axis) does not show peaks, and changes in
desired velocity are smoother.

Fig. 121: Acceleration limit (Cartesian frame)

2.5.3 Modes

Modes
This menu allows the creation of custom flight modes. The flight modes determine who is in charge of controlling each
one of the aircraft control channels.

There are 5 different control modes and it is possible to combine them to create custom flight modes.

Fig. 122: Modes menu

The options available are:

• Automatic: The control channel is controlled totally by the autopilot.

• RC: The control is totally carried out manually. The movements on the pilot stick imply directly movements on
the servo linked to that control channel.

• ARC: The autopilot aids the radio controller during the flight, i.e it could be considered as a mix between
automatic and manual. The movements on the pilot stick are the input values on the control system, so the

110 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

pilot commands a desired pitch, roll, IAS, heading and so on, and is the control system who is in charge of
making the platform follow those commands.

• Mix: In this mode, it is possible to select in which step of the controller will enter the pilot command.

Example
For example, the pitching of an aircraft is commonly controlled with 3 PID being: flight path angle, pitch and
pitch rate. In the arcade mode the pilot command will be a desired flight path angle that enters as input of the
whole control system, but in the Mix mode is possible to select where we want the command to enter, so the pilot
command could be pitch (entering in the second PID directly) or pitch rate (entering directly on the third PID).

The control system will take this input as a disturbance that it wants to discard because the final objective is to
match the input of the first PID (a desired flight path angle in this case), so the Mix mode can be used to make
small corrections when the aircraft is following a route for example, where we want it to move slightly towards
a certain direction by introducing a value directly on the roll PID.

To change any of this options, click on the cell the user would like to change and the next option will be set.

Warning:
• The name of the mode does not have to correspond to the configuration of the mode.

For example, the user can name the mode as Auto but set the channels as rc (manual):

Fig. 123: Modes configuration

• Moreover, although the mode is set “sensefully” here, in the block configuration (Block Programs) the control
does not have to correspond to this.

For example, if a channel is configured as manual (rc) here but then the control is configured so that the stick
input does not control the channel, it will be auto control even though manual is specified. See the following
example, where for consistency, the blocks in the ‘True’ and ‘False’ cases should be inverted:

2.5. Control 111

1x PDI Builder, Release 6.8.65

Fig. 124: Modes configuration in blocks

So, it is the user’s responsibility to build the configuration correctly. In case of having any questions, the
user should contact the support team (create a ticket in the customer’s Joint Collaboration Framework; for
more information, see Tickets section of the JCF manual).

4x Veronte
This section allows the user to configure the Autopilot 1x to operate in an Autopilot 4x.

By adding the arbiter address, Veronte Ops will recognise it as part of a 4x unit group, and it will also be possible to
do HIL simulations (with Veronte HIL Simulator) with this 4x group.

Note: If the arbiter address is set to 999, there is no arbiter.

112 Chapter 2. Configuration

https://manuals.embention.com/joint-collaboration-framework/en/0.1/tickets/index.html

1x PDI Builder, Release 6.8.65

Fig. 125: 4x autopilot menu

To allow the output to be overwritten, the checkbox must be checked.

By enabling it, a table can be created in which columns correspond to each 1x Autopilot and rows to the different
channels. For each channel and autopilot, a variable should selected.

This option must work in conjunction with the AP Selection block. In this block, the output “Value” will be the variable
associated to the selected channel and autopilot.

In the “Selected” field, the selected variable is 4xV Veronte selected, which indicates which Autopilot 1x is selected.
This information is received from the status message from the arbiter (for more information on the this status message,
see CAN Bus protocol section) of the 4x Software Manual.
An example configuration is presented below:

2.5. Control 113

https://manuals.embention.com/4x-software-manual/en/6.8/can%20bus%20protocol/index.html

1x PDI Builder, Release 6.8.65

Fig. 126: 4x autopilot menu - Example of use

2.5.4 Arcade axis

The Arcade Axis menu enables the option of changing the center of the system axes. This option is used to create axis
systems referred to a certain point or direction, for example, it is uselful when the pilot wants all movement to be made
with respect him (Ground axes). In this way, if the pilot command a turn right, the aircraft will turn to the right of the
pilot, instead the right of the aircraft (Body axes).

114 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 127: Arcade axis menu

It is possible to add as many axes system as desired, being able to choose between the following types:

• Body: Fix the axes in the UAV. It is standard for the pilot.

• Ground: Fix the axes in the 1x GND unit.

• Point: Fix the axes in a point that user defines.

• Heading: Fix the axes in the the heading defined.

• Desired heading: Fix the axes in the desired heading.

• Tangent direction: Fix the axes in the tangent direction of the designed path.

• Desired yaw: Fix the axes in the desired yaw.

An automation can be used to select an Arcade Axis in flight, see Actions in Automations section.

2.5. Control 115

1x PDI Builder, Release 6.8.65

2.6 Automations

Automations are actions that are carried out when a combination of events happen, i.e when the events are accomplished
the action is done. An example of what an automation could be a change of phase when reaching a certain altitude and
speed, moving a servo when a button is clicked and many other possible combinations.

In this section all the possible events and action will be explained in detail, so the user can combine them to create the
automations that best suit their needs.

The following figure shows the layout of the automations menu, with a column for the events and another for the actions
linked to these events.

Fig. 128: Automations menu

All the automations that have been created (red) are a combination of events (blue) and actions (green). All actions
will be performed on event or an event combination triggering.

There are some parameters that can be configured in the events and actions menu and which are applicable
independently of the type of event/action configured.

116 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 129: Automations parameters

• Compliance time: It is a value related to the automations. It indicates how much time the event has to be
accomplished in order to trigger the action.

• Delay: It is the time between the triggering of the event and the beginning of the action.

• Periodical: This menu is used to configure actions to take place periodically during the time that the events are
active. The action can be configured to take place each certain:

– Distance: When using distance, the option Vector allows to measure that distance along a direction
specified by that vector.

Fig. 130: Periodical distance menu

– Time

2.6. Automations 117

1x PDI Builder, Release 6.8.65

Fig. 131: Periodical time menu

The two Modes available for both time and distance are fixed delay and fixed period. In order to explain the difference
between them, the following figure is presented as an aid to the user.

Fig. 132: Periodical modes

Let’s consider that the system evaluates the automations each second (black line), and the automation that contains the
periodical option is wanted to execute each 1.5 seconds (red line). In that case, the first action will be triggered at the
second 1.5 but will be evaluated at second 2. The second time that the action is evaluated will depend on the mode,
if it is selected:

• Fixed delay, the evaluation of the action will be done 1.5 seconds after it was evaluated the first time, so that
will be at second 3.5.

• Fixed period, the action will be evaluated 1.5 seconds after the first triggering (not evaluation) so that would
be at the second 3.

In the real praxis, the evaluation time for the automation is much lower than 1 second so the difference between the
modes is much smaller.

2.6.1 New automation

Warning: It is important to know that there is a limit of 500 events, 120 actions and 100 automations.

To create a new automation press New Automation and a new window will be displayed. Users can select a previous
one (if exists) or Create new.

118 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 133: New automation

To add an action to the automation, press “+” icon and a new window will be displayed. Users can select previous one
(if exists) or Create new.

2.6. Automations 119

1x PDI Builder, Release 6.8.65

Fig. 134: New action

When an automation is created, the following options are available:

120 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 135: New automation options

1. The user can rename the automation with the name of his choice.

2. Use existing button (icon): Select an action or event from the available in the system. When modifying an
action or event it will be modified in all automations where it is in use.

3. Clone button (icon): Clone an existing action or event creating a new one with same parameters configured
on the start point.

By right clicking on an automation it is possible to remove it, clone it or change it of group. When a group is created,
the rest of automations that the user wants to add to the group can be done by drag and drop.

2.6. Automations 121

1x PDI Builder, Release 6.8.65

Fig. 136: Automations groups

Warning: When a clone of an automation is created, the changes made in the event panel will be applied to the
other one and vice versa, while the actions can be different in each automation.

2.6.2 Other options

In the figure below, the user can see 2 additional options:

122 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 137: Automations options

1. By clicking here, a phase transition table will appear:

Fig. 138: Phase transition table

In this table, the transitions between each phase can be visualised.

In addition, by clicking on a cell, it is possible to see which automation (and the events) makes the transition

2.6. Automations 123

1x PDI Builder, Release 6.8.65

between the two phases posible.

Fig. 139: Phase transition table - automation

2. Delete unused events and actions: This option deletes those events or actions that has been created but are not
in use in any automation.

2.6.2.1 Events

An event is something that has to be accomplished to trigger the actions. All the events can be combined to create a
custom event, using the boolean operations provided by the software (AND, OR, NOT).

124 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 140: Events options

The following table depicts the meaning of each one of the boolean operators.

Logics Description
AND All events grouped on an AND should be accomplished simultaneously in order to activate the automation.
OR One of the events in the group should be accomplished for activating the automation.
NOT The event will be active meanwhile the event or event group is not accomplished.

When there is only one event, clicking on the boolean command will create another event linked to the other one
according to that operation. By right clicking on an event and selecting Wrap in allows the creation of an operation as
if it was inside brackets, i.e it will be evaluated first. Let’s consider the following event group as an example.

Fig. 141: Events wrapped

2.6. Automations 125

1x PDI Builder, Release 6.8.65

The first operation that is evaluated is the NOT, then the OR between Event2 and the result of the NOT, and finally the
AND between Event1 and the result of the OR.

When createring a new event it is possible to choose from one of the previously created on the system or to create a
new one.

Fig. 142: New event

The user can also rename the event with the name of his choice.

126 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 143: New event - name

Below are present the different types of events that can be created.

2.6.2.1.1 Alarm

This kind of automation allows the user to add any bit of the system as an alarm. Depending on the mode in which it
is configured, it will be activated in one way or another.

2.6. Automations 127

1x PDI Builder, Release 6.8.65

Fig. 144: Alarm event

The two possible modes are the following:

• Fail one: it is triggered when one of the bits is set to false.

• All ok: it is triggered when all bits are set to true.

A common alarm event is the Position not fixed in fail one mode, which is triggered when there is not GPS signal in
the autopilot.

128 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

2.6.2.1.2 Area

The event is triggered when the aircraft is inside or outside an area defined in the mission. For more information on
mission creation, take a look at the Veronte Ops manual.

Fig. 145: Area event

• Type: Inside or Outside.

• Object of interest: The user has to select which object is the one that should fulfill the event.

• Selected areas: To select an area, first define the desired areas (polygons or circles) in the Operation elements
section of the UI menu.

When the event has been labeled (“Event area” in this case) and saved, it is possible to link it to an area drawn on the
map with the Operation panel (see more about this at the Veronte Ops manual) .

2.6. Automations 129

https://manuals.embention.com/veronte-ops/en/6.8/index.html
https://manuals.embention.com/veronte-ops/en/6.8/index.html

1x PDI Builder, Release 6.8.65

2.6.2.1.3 Button

This option creates a button that will trigger the event when it is clicked.

Fig. 146: Button event

The following options are available:

• Icon: The user can select the most appropriate icon for the event from a list of icons provided by the software.

• Time Control: This option is used to trigger the action when the button is being pushed during the time specified
in this option.

• Confirmation: A pop-up window asking for confirmation will be display after pushing the button, so it is a
safety measure.

• Range variable and range colors options are used to make the button change its color according to the value of a
variable. To do that, select a variable and then indicate as many points as desired, each one with its corresponding
value and color.

Warning: For the buttons to be colored, it is necessary that the chosen variables have been added to the
mandatory telemetry, adding it to the completmentary telemetry is not sufficient.

Note:

130 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

• If a button event triggers an action that consists of a change to a determined phase, the button will be the one of
the Veronte Panel with the name of that phase on it.

– To create the button for changing to a determinated phase, it is only needed to create the button with the
same name as the phase.

• If the button event is linked to a different action (servo movement, variable, etc.), it will appear at the top of the
Veronte Panel, as an ‘action button’, with the icon selected by the user.

2.6.2.1.4 Mode

The event is triggered when the aircraft is in one of the modes selected.

Fig. 147: Mode event

These modes have been created previously. See section Modes, for more information about creating modes.

The compliance time option could be interesting in this type of event.

2.6. Automations 131

1x PDI Builder, Release 6.8.65

2.6.2.1.5 Phase

The event is triggered when the aircraft is in the phases selected by clicking on the “+” button, being in any of them
will trigger the action.

Fig. 148: Phase event

These phases have been created previously. See section Phases, for more information about creating phases.

2.6.2.1.6 Route

This event is related with the patches and marks defined by the user in the Operation elements section of the UI menu
and to those created in the mission (in Veronte Ops, see more about the creation of marks and patches in the Veronte
Ops manual).

132 Chapter 2. Configuration

https://manuals.embention.com/veronte-ops/en/6.8/index.html
https://manuals.embention.com/veronte-ops/en/6.8/index.html

1x PDI Builder, Release 6.8.65

Fig. 149: Route event

The following options are available:

• Activation: The user can choose between two modes in this event.

– Fly to waypoint: Triggers the action when the platform is flying towards that waypoint (patch).

– Mark achieved: Triggers the action when the vehicle has reached the selected mark.

• Selected marks/points: To select a mark/waypoint (patch), first define it in the Operation elements section of
the UI menu.

• Icon and color: It is possible to change the appearance of the waypoint, selecting an icon from the icon list and
a color, so the user can identify easily the waypoint linked to that automation.

2.6.2.1.7 Timer

This event will check the status of the timer selected in the menu. That timer should have been configured previously
on the action side of another automation (action type Periodical).

2.6. Automations 133

1x PDI Builder, Release 6.8.65

Fig. 150: Timer event

In Timer is selected the number that identifies the timer (previously created with the periodical action) that is evaluated
in this event.

For example, if it is desired to take a photo 10 seconds after the takeoff, two automations are required:

1. The first automation should have the event of Phase Take Off, with the correspondent Periodical action that
will start a timer that lasts 10 seconds.

2. The second one should have a Timer event with the timer previously created and then an action to take a photo
when the timer event is triggered.

134 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

2.6.2.1.8 Variable

This event is triggered when a variable selected is between a range established.

Fig. 151: Variable event

• Variable: The user can select the variable to be evaluated.

• Max/Min: Maximum and minimum values of the threshold are established here. Custom threshold can be

established by clicking on the icon.

• Invert range: This option will change the interval (the blue area will be gray, and the gray one will be blue).

As an example consider the event of the figure. With that parameters, the event is triggered when the IAS is between
5 and 20 meters per second. If the invert range option is unchecked, the event will be triggered when the IAS is lower
that 5 m/s or greater than 20 m/s.

2.6. Automations 135

1x PDI Builder, Release 6.8.65

2.6.2.2 Actions

An action is something that will be performed when the event (or group of events) has been accomplished. The actions
box contains all the actions created.

The user can also rename the event with the name of his choice.

Fig. 152: Actions menu

When creating a new event it is possible to choose from one of the previously created on the system or to create a
new one.

136 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 153: New action

Below are present the different types of actions that can be created.

2.6.2.2.1 Atmosphere Calibration

This action allows the atmosphere calibration in the same way as shown in the Operational panel of Veronte Ops (for
more information about atmosphere calibration click Veronte Ops manual).

2.6. Automations 137

https://manuals.embention.com/veronte-ops/en/6.8/index.html

1x PDI Builder, Release 6.8.65

Fig. 154: Atmosphere Calibration action

The following options can be configured:

• Altitude: Actual MSL altitude. The user must choose between entering this value manually or selecting a system
variable.

• User current pressure: By enabling it, the static pressure will be read from the static pressure sensor during the
specified time (Time to acquire mean).

• Static pressure: If the above option is not enabled, the actual static pressure should be specified manually.

• Temperature (OAT): Outside air temperature.

138 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

2.6.2.2.2 Change active sensor

This option allows the change of the actual sensor used as accelerometer, gyroscope and dynamic pressure.

Fig. 155: Change active sensor action

2.6.2.2.3 Command block

This action allows the user to configure gimbal or trim the radio controller.

Note: This action is disabled by default when 1x autopilot is started. To activate it, the user have to create a gimbal
block or an arctrim block (see more information about it in Block Programs).

2.6. Automations 139

1x PDI Builder, Release 6.8.65

Fig. 156: Command block action

Gimbal
When this action is triggered, the gimbal control is enabled. There are several control modes that are explained below.

140 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 157: Command block action - Gimbal

• Commandable Id: Id of the commandable Gimbal block (users can look up this Id in the block to be commanded,
in Block Programs section).

• NED: Control using NED axis, defining the initial position through azimuth and elevation.

• Vector: This control uses aircraft body axis. The initial position is defined through roll and tilt.

• Vector NED: In this case the axis should have been defined in Arcade Axis.

• Location: The gimbal will point towards the projection on the ground at the specified point.

• Command mode: Gimbal control is done externally, e.g. via VCP commands.

ArcTrim
This action trims the radio controller, i.e sets as zero the current sticks positions.

2.6. Automations 141

1x PDI Builder, Release 6.8.65

Fig. 158: Command block action - ArcTrim

• Commandable Id: Id of the commandable ArcTrim block (users can look up this Id in the block to be
commanded, in Block Programs section).

• Update the arcade trim values: If this option si enabled, the stick is trimmed but not saved in the configuration.
This means that if 1x autopilot is restarted the trimming is lost.

• Save the arcade trim values calculated: Trim values are stored for future flights.

2.6.2.2.4 Custom CAN TX

When this action is triggered, a previously configured CAN message is sent through the CAN bus. The message has to
be configured in CAN Custom messages section of the Input/Output menu.

Warning: As this automation is used to send a single message on demand, in its configuration in Custom
Messages, the user has to set its period to -1. This way, this message will only be sent when this action is
triggered.

142 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 159: Custom CAN TX action

The two parameters to configure in this action are:

• Producer: The user has to specify where the custom message is located: CAN custom message 1, 2 or 3.

• Custom message: The number of the custom messages that will be sent.

2.6.2.2.5 Custom Serial TX

When this action is triggered, a previously configured serial message is sent through the serial port (RS232 or RS485).
The message has to be configured in Serial custom messages section of the Input/Output menu.

Warning: As this automation is used to send a single message on demand, in its configuration in Custom
Messages, the user has to set its period to -1. This way, this message will only be sent when this action is
triggered.

2.6. Automations 143

1x PDI Builder, Release 6.8.65

Fig. 160: Custom Serial TX action

The two parameters to configure in this action are

• Producer: The user has to specify where the custom message is located: RS custom message 1, 2 or 3.

• Custom message: The number of the custom messages that will be sent.

2.6.2.2.6 DEM calibration

This option allows the calibration of the digital elevation model by setting the actual AGL value in the same way
as shown in the Operational panel of Veronte Ops (for more information about DEM calibration click Veronte Ops
manual).

144 Chapter 2. Configuration

https://manuals.embention.com/veronte-ops/en/6.8/index.html
https://manuals.embention.com/veronte-ops/en/6.8/index.html

1x PDI Builder, Release 6.8.65

Fig. 161: DEM calibration action

2.6.2.2.7 Enable/Disable Wind Estimation

This action allows the user to enable or disable the wind estimation.

2.6. Automations 145

1x PDI Builder, Release 6.8.65

Fig. 162: Enable/Disable Wind Estimation action

The following parameters can be configured:

• Enable Wind Estimation: Enabled/Disabled.

• Init: By enabling it, an initial wind vector can be set to a faster convergence of the estimation.

– North, East, Down: Inital wind vector.

2.6.2.2.8 Envelope

This action is used to change the envelope during the flight mission. Envelopes are created in the Control Menu, see
section Envelope.

146 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 163: Envelope action

This is useful with a hybrid platform, being possible to change the envelope when the aircraft changes its configuration.
Envelopes are selected from those created previously.

2.6.2.2.9 FTS Activation

This action activate the flight termination system (FTS) bit.

2.6. Automations 147

1x PDI Builder, Release 6.8.65

Fig. 164: FTS Activation action

In a 4x autopilot, when two or more autopilots activate their FTS the arbiter can activate a safe system such as a
parachute.

2.6.2.2.10 Feature

When this action is triggered, a position is stored in the desired variable. This position can be absolute or relative (in
the figure below the current position of the aircraft would be saved):

148 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 165: Feature action

The following options should be configured:

• Value: Specified the position to be stored, this position can be absolute or relative.

– Absolute: The coordinates can be set in UTM, MGRS, Decimal Degrees or Degress º ” ‘. They are
indicated through the latitude, longitude and altitude (being possible to define this last one with respect
to the ellipsoid, WGS84, to the sea level, MSL or to the ground, AGL).

– Relative: In this case, the position of the point is relative to another point. That point could be any platform
fitted with a 1x autopilot.

• Save value in: The position has to be saved in an ‘Inflight Reference Point’.

• Types: There are 2 types of features:

– Fixed: Once the point has been generated it remains fixed.

– No change: If the point has been created relative, it remains relative all the time.

Note: This option only appears when the position has been previously defined as Relative.

This action is very useful for storing the take-off point for later landing at the same place.

2.6. Automations 149

1x PDI Builder, Release 6.8.65

2.6.2.2.11 Format SD

Warning: This action will have irreversible effects on your 1x autopilot. Formatting the SD card will delete
important and mandatory files for the correct functioning of 1x autopilot. In order to recover a formatted, please
contact the support team (create a ticket in the customer’s Joint Collaboration Framework; for more information,
see Tickets section of the JCF manual).

This action will format the SD card, deleting the configuration and flight logs from it.

Fig. 166: Format SD action

150 Chapter 2. Configuration

https://manuals.embention.com/joint-collaboration-framework/en/0.1/tickets/index.html

1x PDI Builder, Release 6.8.65

2.6.2.2.12 Go to

This action is used to make the aircraft go to a patch created by the user with the mission toolbar of Veronte Ops. For
more information about the mission toolbar, take a look at the Veronte Ops manual.

Fig. 167: Go to action

In this action two parameters can be configured:

• Select Point: To select point (patch), first define it in the Operation elements section of the UI menu.

• Icon and color: It is possible to change the appearance of the point, selecting an icon from the icon list and a
color, so the user can identify easily the point linked to that automation.

Once the action is triggered, the vehicle will go to that patch. If the patch is on a route, the vehicle will follow the
selected patch and then it will continue the route going to its adjacent.

2.6. Automations 151

https://manuals.embention.com/veronte-ops/en/6.8/index.html

1x PDI Builder, Release 6.8.65

2.6.2.2.13 Mode

The flight mode is changed to the one specified in this option.

Fig. 168: Mode action

These modes have been created previously. See section Modes, for more information about creating modes.

2.6.2.2.14 Navigation

This action is used to change the navigation mode used by the aircraft.

By default, the UAV uses an Internal sensor fusion algorithm, but for example, if the GPS fails, the 1x autopilot switches
to inertial navigation. Since in this type of navigation, the estimation of position and velocity diverges over time, if
that happens, it is advisable to switch to another type of navigation (External).

Note: This behaviour is not specific to Veronte Autopilot 1x, it is common to all inertial navigations.

The navigation without GPS will make the aircraft fly stable but it will not be possible to command a path to follow
during that time, so this action can be used as a safety mode to avoid a malfunction of the system when the GPS signal
is lost.

152 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 169: Navigation action

The options available are:

• Internal: Uses internal data for navigation. Data (position, attitude, etc.) is processed into 1x unit from sensor
measures.

• External VCP: Uses external data for navigation. Data (position, attitude, etc.) is provided by Veronte
Communication Protocol (VCP).

• External Var: Uses external data for navigation. Data (position, attitude, etc.) is provided by Var.

• Vectornav VN-300: Uses external data for navigation. Data (position, attitude, etc.) is provided by Vectornav
VN-300. For more information, see the Vectornav VN-300 -> Integration examples section of this manual.

2.6. Automations 153

1x PDI Builder, Release 6.8.65

2.6.2.2.15 Obstacle avoidance

This action enables avoidance of any obstacle previously created in Veronte Ops (for more information, see Veronte
Ops manual).

Fig. 170: Obstacle avoidance action

Three types of obstacles can be enabled:

• Designated on map: Those obstacles that appear on the map, obstacle zones and aircraft received by ADS-B.

• Range sensor: Obstacles previously defined in Veronte Ops.
• Detection sensor: Obstacles previously defined in Veronte Ops.

2.6.2.2.16 Output

This action is used to set an output value in a GPIO pin. The output pin must have been configured as a GPIO output
(visit section GPIO).

154 Chapter 2. Configuration

https://manuals.embention.com/veronte-ops/en/6.8/index.html
https://manuals.embention.com/veronte-ops/en/6.8/index.html

1x PDI Builder, Release 6.8.65

Fig. 171: Output action

The user can select, in the drop-down menu, between a GPIO output or a virtual output. The virtual option works like
a normal GPIO output, but physically this output is not in the autopilot. It is used, for example, with a CEX.

There are four possible output signals:

• Off : Provides continuous 0V output.

• On: Provides continuous 3.3V output.

• Pulse: Provides 3.3V for the specified time and after that 0V.

• Pulse off : Provides 0V for the specified time and after that 3.3V.

2.6. Automations 155

1x PDI Builder, Release 6.8.65

2.6.2.2.17 Periodical

This action is used to set a timer during a flight operation.

Fig. 172: Periodical action

The following parameters are configured:

• Timer: This parameter is an identifier for the timer, so it can be used in an event for another automation.

• Run: The timer will start.

• Stop: The timer will be stopped. Another automation should be created to run it again.

• Reset: When this action is active, the timer is reset to zero before starting to measure.

– Stop + Resert: The timer will be stopped and set back to zero.

• Type: These available options have been explained in Automations.

• Mode: The difference between fixed delay and fixed period has been explained in Automations.

For a better understanding of this action, a set of examples are detailed below with possible combinations of the different
options.

• Run + Distance/Time + Continuous: When the action is triggered, the timer will be started and will measure
distance/time from that instant until the moment when the autopilot is turned off (or until another automation
acts on the same timer).

156 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

• Run + Distance/Time + Fixed Delay/Period: Once the action has been triggered, the timer will start to measure
a distance/time. Each time the value indicated in Period is reached, the event linked to this timer (in another
automation) will be triggered.

For example, if the user wants to take a photo each 25 meters, in a first automation, the timer should have Distance
in the Type option and 25 meters in Period, then in the second automation, an event of type Timer is created (and
linked with the timer before created), so each time the timer reaches 25 meters the event will be triggered and
the action will be carried out.

• Distance + Vector: The distance is measured in the direction indicated by the vector.

2.6.2.2.18 Phase

The flight phase is changed to the one selected in this action.

Fig. 173: Phase action

These phases have been created previously. See section Phases, for more information about creating phases.

2.6. Automations 157

1x PDI Builder, Release 6.8.65

2.6.2.2.19 Ports

This action allows the user to switch between 4 pre-set configurations defined in the Ports section of the Communication
menu.

Fig. 174: Ports action

2.6.2.2.20 Run block program

When this action is triggered, the block program specified in the “Execute” label is executed.

158 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 175: Run block program action

This action can run those programs that have the lightning icon in grey color as those programs with the lightning icon
in black color run continously. For more information about programs, see section Block Programs.

2.6. Automations 159

1x PDI Builder, Release 6.8.65

Fig. 176: Grey lightning icon

2.6.2.2.21 Safety Bits

This action selects a predefined safety bits list.

160 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 177: Safety Bits action

This list must be configured previously. For more information about this, see section Safety bits.

2.6.2.2.22 Select Arcade axis

The axes system of the aircraft is changed to one that has been previously created, see section Arcade Axis of the Control
menu.

2.6. Automations 161

1x PDI Builder, Release 6.8.65

Fig. 178: Select Arcade axis action

2.6.2.2.23 Stick priority

The user can switch between the two priority tables of the Stick block (for more information about the stick block, see
Block Programs section). By default priority table 0 is selected when 1x autopilot starts.

162 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 179: Stick priority action

2.6.2.2.24 Terrain obstacle

This option is used to make the aircraft climb when is reaching an altitude of zero meters, for example, when flying
towards a mountain. This option can’t be activated all the time because it will not allow the aircraft to land.

2.6. Automations 163

1x PDI Builder, Release 6.8.65

Fig. 180: Terrain obstacle action

• Distance: Establish how the aircraft will climb, it can be said to be a repulsion value. High values made the
platform ascent quickly. This effect is more noticeable when the aircraft is close to the ground.

2.6.2.2.25 Track

This action is used to configure a hover/loiter route (depending if it is a multicopter or an airplane) for the platform.
Besides, there exists an option to follow a moving object.

There are 3 different options for the Track action, selecting Disabled no action will have effect on the guidance. The
others are explained below.

Position
The aircraft will loiter/hover in a selected point.

164 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 181: Track action - Position

The following options are available:

• Location:

– Selecting Current will make the platform to hover over the position that the vehicle has when this action
is triggered, or loiter around that point in a circular route.

– The box Longitude, Latitude allows the user to select the point where the hover/loiter will be performed.

• Loiter: It is also possible to select the direction of the loiter (Auto, Clockwise and Anticlockwise).

• When Hover is selected the option Direct can be enabled.

– If direct is enabled, the autopilot will calculate the control actions to reach the desired point based on the
position error with that point.

– If direct is disabled, the autopilot will trace a path to the desired point and calculate the necessary control
actions for this ‘new route’.

• Distance:

– Distance + Loiter: In this case, distance indicate the radius of the loiter circular route.

– Distance + Hover: This option allows the user to define an acceptance radius around the position of the
hover centre. If the UAV position is inside this circle, then 1x autopilot considers it is hovering correctly
and will keep the position. If the centre of the hover changes its position and the UAV position is out of the
hovering area, 1x will fly to the hovering centre, and once it is inside the circle, the hover will start.

2.6. Automations 165

1x PDI Builder, Release 6.8.65

Follow Leader
The platform will follow a moving object.

Fig. 182: Track action - Follow Leader

In this action the following parameters can be configured:

• Leader: Here is selected the object to follow, e.g. Moving Object.

• Distance to leader: Distance to leader over trajectory.

• Distance between points: Leader route is generated by points separated by the distance specified here.

• Offset: User can establish offset parameters related to trajectory in Body or NED coordinates.

Note: To configure correctly this automation, user has to follow the next steps:

• Configure Telemetry in Air and Ground units.

• Configure the automation as desired.

166 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

2.6.2.2.26 User Log

An entry, previously configured in User Log -> Telemetry section, is added to the on-board log.

Fig. 183: User Log action

2.6.2.2.27 Variable

This action allows the user to select variables and save them in user variables.

2.6. Automations 167

1x PDI Builder, Release 6.8.65

Fig. 184: Variable action

2.6.2.2.28 Yaw

When this action is triggered the actual yaw can be commanded.

168 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 185: Yaw action

This action is useful when flying without a magnetometer, as the user can establish the current yaw value when it is
known.

2.7 Communications

2.7. Communications 169

1x PDI Builder, Release 6.8.65

2.7.1 Ports

Ports configuration allows the user to configure which communication ports (Commgr Ports in I/O setup) will be used
for communication. When using the Route feature, 1x autopilot can be configured to route VCP messages for an
external Veronte device with a known address (ID) through a given port.

Fig. 186: Ports menu

Each of the different ports can be configured as either of the following options:

• Forward: Any messages generated by this unit (i.e. Telemetry or response messages to certain commands) will
be sent through these ports.

• Route: Any messages received at any Commgr Port with the defined address will be re-sent through the defined
port. It is possible to route several addresses through the same port, but is not possible to route the same address
through several ports. Only the first configured port will be used. Routing also applies to messages generated by
the unit for the defined address.

Note: The same port cannot be used as Forward and Route at the same time.

It is possible to define up to 4 routing setups, which can be switched unsing the Ports action of the Automations menu.
Routing 1 will always be selected by default when booting 1x autopilot.

Application example
A practical example of the use of this menu are 1x Ground unit configurations. These configurations will have

170 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

configured a Routing of Address 2 (1x PDI Builder) through Port 1. This way, any messages that are received through
a Commgr Port (i.e. through Veronte LOS), will be re-routed through Port 1 (USB) and received by 1x PDI Builder
Software, including any messages generated by 1x Ground unit itself.

Warning: An incorrect Port configuration can disable USB communication. If this happens, 1x will not be able
to be detected through Veronte Link software. If this is the case, please visit Maintenance mode - Troubleshooting
section.

2.7.2 4G

Checking the Enable box will enable the use of 4G communication through the Veronte LTE Consumer/Producer in
the I/O setup.

ESIM
The embebed ESIM in 1x autopilot allows the user to send and receive telemetry using a commercial data provider.

The connection between the air unit and the ground station is stablished through the Veronte Cloud server. To connect
with Veronte Cloud the following parameters have to be set:

• Host: rt.utm.systems

• Port: 3114

Host and Port can be changed if the used server differs from Veronte Cloud, but the communication protocol does not
change.

2.7. Communications 171

1x PDI Builder, Release 6.8.65

Fig. 187: ESIM menu

Note: In order to use the embedded SIM card, the contract with the data supplier needs to be done through Embention.
Please contact sales@embention.com for more information on availability, coverage, suppliers and prices in your
country.

SIM
If needed it is also possible to install a custom SIM card on 1x autopilot. PIN number and APN (Access Point Name)
of the SIM card provider must be defined before enabling the 4G communication

172 Chapter 2. Configuration

mailto:sales@embention.com

1x PDI Builder, Release 6.8.65

Fig. 188: SIM menu

Warning:
• Introducing the wrong PIN number may block the SIM card.

• The installation of the SIM card must be done by Embention during the production of the unit. Please make
sure to indicate the interest on using a Custom SIM card when ordering new 1x units.

2.7.3 Comstats

The Comstats feature allows 1x autopilot to make an estimation of the overall quality of the communication channel.

1x will send periodically (If enabled) a message with its current communication statistics (Packets sent and received
per second). Then, any other 1x unit can receive this information and compare against its own statistics to estimate the
average amount of packets lost in the communication.

The results of this estimation can be monitored in variables RX Packet Error Rate (ID 2000) and TX Packet Error
Rate (ID 2001). These variables can be used to enable, for example, failsafe actions in case of degradation or loss of
communications.

2.7. Communications 173

1x PDI Builder, Release 6.8.65

Fig. 189: Comstats menu

It is possible to configure the source or destination of the statistics, as well as the frequency at which the Comstats
message is sent:

• RX Auto: Enabling this option will use the first remote AP found. If this option is disabled, the user must choose
manually the address of the unit used for Comstats calculation.

• TX: When enabled, the unit will periodically send its Comstats message (set the period). Select the address to
which the message should be sent:

– App 2: Veronte Ops address.

– Broadcast: All units on the network.

– Veronte v4.X XXXX: To a specific unit.

Note: Enabling Tx will enable autopilot to send its Comstats message, but in order to compute Packet Error rate it’s
necessary to receive the TX message from a different unit.

Warning: Packet error rate is a good indicator of the status of the communication, but it is not representative
of the radiolink status. For monitoring the status of the radiolink RSSI Variables (820-822) shall be used instead.
Depending on the configuration it is posible to have bad Error rates with good RSSI (overloaded radiolink) or
good Error rates with bad RSSI (degraded communication with low load on radiolink). For the best results, it is
recommended to use a combination of both statistics for failsafe automations.

174 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

2.7.4 Iridium

Checking the Enable box will enable the use of Iridium communication through the Iridium Consumer/Producer in
the I/O setup.

Warning: Before using the module, the user will have to register both of them (sender/receiver) in the RockBlock
website. Please find more information about the registration process in this link: https://docs.rockblock.rock7.com/
docs/rockblock-management-system.

Fig. 190: Iridium menu

In this menu the following parameters have to be set:

• Synchronization time: This is the transmission period, i.e., the time between 2 consecutive messages. This is a
parameter that the user should configure taking into consideration its mission.

• Destination address: SN (Serial Number) of the destination Iridium module.

Note: To configure the syncronization time, it would be advisable to think about how the user want to use the Iridium
communication. The user will pay for credits, and each credit means one message. Each individual message has to be
paid, so the syncronization time can be configured in order not to run out of credits.

2.7. Communications 175

https://docs.rockblock.rock7.com/docs/rockblock-management-system
https://docs.rockblock.rock7.com/docs/rockblock-management-system

1x PDI Builder, Release 6.8.65

2.7.5 Veronte LOS

In this section, the serial port that communicates from the microcontroller to the internal radio is configured.

Warning: If the user changes the baudrate on the internal radio, it is also required to change it here and vice versa.

Fig. 191: Veronte LOS menu

• Baudrate: This specifies how fast data is sent over a serial line.

• Length: This defines the number of data bits in each character: 4 to 8 bits.

• Stop: Number of stop bits sent at the end of every character: 1, 1.5, 2.

• Parity: Is a method of detecting errors in transmission. When parity is used with a serial port, an extra data bit
is sent with each data character, arranged so that the number of 1 bits in each character, including the parity bit.
Disabled, odd or even.

Note: All these settings are already specified for a given device, therefore, 1x autopilot should match with them in
order to be able to communicate.

176 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

2.8 Stick

In this section, the stick configuration on 1x PDI Builder is explained.

This allows the user to set up to four transmitters and one virtual stick. The autopilot’s capabilities allows it to
receive information from four different transmitters at the same time plus transforming some values into a virtual stick.

The content presented in the next menus covers:

• Setting of the transmitter’s parameters.

• Definition of exponential response-curves for the desired channels.

• Trimming of the channels’ neutral position.

• Setting of the data receiving port on the autopilot.

• Definition of a virtual stick.

2.8.1 Transmitter (1-4)

The wired connected transmitters are configured through the following tabs.

2.8.1.1 PPM

This tab provides the options to configure a Pulse Postion Modulation (PPM) radio controller to control the platform
fitted with the autopilot.

2.8. Stick 177

1x PDI Builder, Release 6.8.65

Fig. 192: Stick - PPM menu

• Brand, Model and Channels: 1x PDI Builder has been configured to provide the user with the expected
parameters to configure different transmitters models.

Brand Models Channels
Futaba 8J/10J/12K/14SG 8

12K/14SG 12
T18SZ 8

Jeti DC 16/DC 24 16
FrSky Taranis X9D 8

Horus X12S 8
TBS Croosfire 8
Embention Stick Expander 16
Custom - -

– Custom: If the user’s transmitter is not among those mentioned above, choose this option and replace the
parameter values with the appropriate ones.

• Pulse polarity: Indicates the pulse polarity:

– Positive: Default signal is low and goes up to high.

– Negative: Default signal is high and goes down to low.

• Sync time: Minimum time on the PPM output till the next frame. It tells the receiver to reset its channel counter.

• Minimum/Maximum pulse: Pulse length, it depends on the system and it is a constant value (usually 0.2-0.5

178 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

ms).

• Position
– Minimum/Maximum accepted: Pulse length accepted for each channel. Standard for R/C servos uses a

pulse of 1 ms for the maximum position at one end, 1.5 ms for the midpoint and 2 ms for the maximum
position at the opposite end.

– Minimum/Maximum encoded: If there is noise and the signal is varying around the minimum/maximum
values accepted, 1x autopilot will encode those values to the ones set here. For instance, a pulse length
between 0.8-0.9 ms will be considered as one of 0.9 ms.

– Channels: Sets the number of channels accepted. Besides, it is possible to Disable/Enable/Filter each
channel individually.

• Non linear low pass filter
– Minimum/Maximum delta: Default parameters are recommended.

– Minimum/Maximum delta alpha: Default parameters are recommended.

The figure below shows the PPM signal that arrives to Veronte Autopilot 1x:

Fig. 193: PPM signal

2.8.1.2 Exponential

The second tab allows the user to define an exponential stick response for every channel.

The allowed inputs range from 0 to 1 and there is a graph showing the generated response curve, as can be seen in the
figure below.

2.8. Stick 179

1x PDI Builder, Release 6.8.65

Fig. 194: Stick - Exponential menu

The X axis of the graph corresponds to the stick input and the Y axis is the result of applying the exponential function
to that stick input.

2.8.1.3 Trim

The third tab available is the Trim option.

180 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 195: Stick - Trim menu

By enabling the Avanced option, the user can set the expected trim values manually. The user should have a deep
knowledge on its transmitter if this option is selected.

Finally, on the right hand side, the Reset button puts every parameter back to 0.

2.8.1.4 Output

In this menu the user sets the receiving port and process the incoming commands. Once the stick has been configured,
the commands that arrive at the ground autopilot have to be sent to the air unit.

2.8. Stick 181

1x PDI Builder, Release 6.8.65

Fig. 196: Stick - Output menu

In this menu, the following parameters can be configured:

• Enable.

• Initial Channel at destination: The user indicates to which channel of the air autopilot will be sent the first
channel received in the ground unit. The channels arrive at the platform in order and without spaces between
them.

For example, if at the GND channels 6,7,8,9 and 10 are enabled, the AIR will receive channels 1,2,3,4 and 5.
Therefore channel 6 of the stick will be channel 1 in the AIR configuration.

• Port: If more than one transmitter is configured, each transmitter must be configured on a different port. This
has to match the port set on the air unit.

• Remote: It has to be enabled if the user wants to allow the delivery of the commands to the platform.

– UAV: The address of the UAV that receive the commands has to be indicated. The following options are
available:

∗ App 2: Veronte Ops address.

∗ Broadcast: The commands are sent to all units on the network. We recommend this option.

∗ Veronte v4.X XXXX: The address of a specific air unit.

– Min period: As the period is the inverse of the frequency, this is the maximum frequency. Therefore, to
give the pilot more control, this is the frequency that is set when the stick is commanding. We recommend
0.02s.

182 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

– Max period: As the period is the inverse of the frequency, this is the minimum frequency. Thus, to free
up bandwidth, this is the frequency that is set when the stick is idle. We recommend 0.2s.

– Delta: This parameter determines whether the frequency is set to the minimum or maximum period set
above.

If 1x Autopilot detects a change above the delta value, the frequency goes to the maximum frequency
(minimum period). While if the changes are less than this value, it switches to the minimum frequency
(maximum period). We recommend 10.

Note: An example of the Stick integration can be found in the Integration examples section.

2.8.2 Virtual Stick

In this menu a virtual stick can be defined. It can be useful when:

• Testing the autopilot configuration (not flight tests).

• Using a USB stick. Please find more information about this in the USB -> Integration examples section.

• The information of a stick is received through a different channel than PPM, so that the virtual stick will process
that information and input it into the system.

Fig. 197: Virtual stick menu

In this menu the user can configure:

2.8. Stick 183

1x PDI Builder, Release 6.8.65

• Enable Virtual Stick
• Input variables: Place here the variables containing the stick information. It is not necessary when using a USB

stick or simply virtual stick.

• Update Period: Configure the period required. We recommend 0.02 s.
In addition, a virtual stick widget must be configured in Veronte Ops. Please find more information in the Stick ->
Widgets section of the Veronte Ops manual.

The tabs Trim and Output are the same as the Transmitter ones, so refer to the Transmitter menu for more information.

Note: An example of the Virtual stick integration can be found in the Integration examples section.

2.9 Block Programs

Block programs are the core of 1x autopilot. In this menu, all flight control algorithms can be found, divided in
different independent programs with different functions. All programs are executed at GNC (Guidance-Navigation-
Control) time.

A Program is a custom algorithm executed by 1x autopilot. While their main purpose is the control of the aircraft,
Programs can be used to develop a wide variety of applications, from simple math operations to complex estimation
filters.

Block programs provide the user with a block programming interface that 1x will then execute at core frequency.
The fact that it is designed in this way gives it a high versatility, unlimited freedom and mimo control capabilities. This
high versatility is thanks to this block programming interface, as they are easily manageable and highly customisable
blocks, so that each customer can perfectly define their control algorithms regardless of the vehicle and the target they
have.

184 Chapter 2. Configuration

https://manuals.embention.com/veronte-ops/en/6.8/panels/workspace/inputs/index.html#stick-widget
https://manuals.embention.com/veronte-ops/en/6.8/panels/workspace/inputs/index.html#stick-widget

1x PDI Builder, Release 6.8.65

Fig. 198: Block Programs menu

1. State: There are two types of programs, those with a black lightning symbol and those with a grey lightning symbol.
The black ones are programs that are executed periodically, at core frequency. While those with grey lightning are
only “active” when they are executed using an automation (Run Block Program, see Actions section of this manual).

2. Step: This number determines the oder of execution of the programs.

3. Blocks: This indicates the number of blocks in each program.

4. Size (words): This is the memory taken up by each program.

5. Name: Program name, it is set by the user.

6. Memory in use: It is the operation performed to calculate memory in use.

7. Launch Editor: Click here to start configuring a program. A new window will appear:

2.9. Block Programs 185

1x PDI Builder, Release 6.8.65

Fig. 199: Block Programs tabs

• Scheduler: In this tab users can configure the frequency (in Hz) at which each program is executed.

By default the GNC frequency is defined for all programs, however, the user can modify it by pressing the
‘+’ and ‘-’ buttons next to the frequency.

186 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 200: Block Programs - Scheduler

If the user reduces the frequency of a program, it is possible to move it so that the the programs run in
different slots:

2.9. Block Programs 187

1x PDI Builder, Release 6.8.65

Fig. 201: Block Programs - Scheduler slots

Important: If the program is not executed periodically (grey lightning symbol), it will not appear in the
Scheduler tab.

• Library: Here the user can create custom blocks. This tab is explained in more detail in Library blocks
section.

• Programs: All Block Programs are created and configured in this tab:

188 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 202: Programs options

A. Move to error : When there are errors or warnings, the number of errors/warnings is displayed here
and by clicking on them, 1x PDI Builder takes the user to the program with that error.

Fig. 203: Move to error

B. Change name : Rename a selected program.

C. Move up/down : Use them to determine the order of execution of a selected program. Programs
are executed from top to bottom.

D. Copy program : Copy a selected program.

E. Remove program : Remove a selected program.

F. Add program : Add a new empty block program.

G. State and name of program. Clicking on icon will toggle the execution mode.

H. Memory in use: Estimation of the remaining memory available. If no more memory is available, no new
blocks will be allowed to be created. The allocated memory for each block depends on the block type.

Attention:
• User must be aware that each block has its own size, so the larger the size of a block, the more

space it will take up.

2.9. Block Programs 189

1x PDI Builder, Release 6.8.65

• Thus, the more programs are created, the more space is occupied.

• In addition, there is information stored as metadata about the organisation and position of each
block in the diagram that also represents part of this space.

Tip: To optimise memory, it is better to use more but smaller blocks than one large block.

I. Add block: By clicking here, a new column menu will appear where the user can choose the block he wants
to add.

Fig. 204: Add block menu

J. Hierarchy: By clicking here, a new column menu will appear where the user can see “information” about
the existing blocks on the selected program.

190 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 205: Hierarchy menu

a. Expand All: By clicking on it, all menus that are collapsed will be expanded, e.g. in programs that
have Switch blocks.

2.9. Block Programs 191

1x PDI Builder, Release 6.8.65

Fig. 206: Expand All

b. Collapse All: By clicking on it, all menus that are expanded will be collapsed, e.g. in programs that
have Switch blocks.

Fig. 207: Collapse All

c. Show blocks with errors:

192 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 208: Show blocks with errors

d. Show blocks that read from variables:

Fig. 209: Show blocks that read from variables

e. Show blocks that write in variables:

Fig. 210: Show blocks that write in variables

2.9. Block Programs 193

1x PDI Builder, Release 6.8.65

f. Show blocks that can be commanded:

Fig. 211: Show blocks that can be commanded

Blocks
• To add a block:

1. Click on ‘Add Block’.

2. Search and select a block. When a block is selected, its description is displayed.

3. Click and drag it to import into the program.

• By right clicking on a block, the user can:

– Edit: This options opens its configuration menu. It is also possible to open the configuration by double
clicking on the block.

– Remove block: Remove the selected block.

– Copy: Copy the selected block.

– Paste: Paste the block that has been copied.

– Change variable: User can change the selected variable, e.g. to be read or written.

• To re-locate blocks, just click and drag them.

Fig. 212: Adding blocks

Block inputs and outputs use a colour code in order to indicate variable types:

• : 32-bit Real variables.

• : BIT Boolean variables.

• : Feature variables.

• : 16-bit Integer variables.

• : Position measurement data.

194 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

• : Guidance data.

• : Sensor data for EKF.

Note: Connectors can also be Arrays of variables.

An input and an output can be linked directly with the mouse and unlinked by right clicking on the input/output:

Fig. 213: Linking blocks

Note:
• An input and output with different variable types cannot be linked without a Type Cast block. For more

information on this block, see Type Casting blocks section.

Fig. 214: Type Casting block

• All inputs of each block must be connected, otherwise 1x PDI Builder will report an error. Outputs do not
need to be linked.

Fig. 215: Errors in blocks

• An exeception of the previous rule are translucid inputs , which are optional. These inputs will have a default
value if not linked.

The different types of blocks available in Block programs are:

• Control: Control-related blocks (PID Static, Tsched PID, ECU control etc.).

• Data Source/Sink: Input/Output blocks. Programs can have access to any variable available within 1x autopilot
system. Results can then be stored in User Variables for display, use as a different program input, feedback, etc.

• Devices: These blocks allow to configure devices connected to the autopilot.
• Execution Flow: Programming-like blocks for operation flow control. These blocks allow to alter parts of a

program depending on a condition (If-Else, Integer Case, Phase Case, etc.).

• Guidance: In these blocks the guidance of the flight phases is configured.

• Library: Blocks created manually combining already defined blocks. They are created in the ‘Library’ tab
which can be accessed on the left hand side of this menu.

• Logic: Logical gates to operate with boolean variables (AND, NOT and OR).

• Math: Mathematical blocks, which include a variety of mathematical operators: basic (sum, multiply, square
root, etc.), trigonometric (sine, cosine, tangent, etc.), vectors (norm, dot product, rotations, etc.).

• Mode/AP Selection: Blocks that allow to interact with flight modes and redundancy (4x autopilot).

• Navigation: These blocks allow the autopilot navigation to be configured.

2.9. Block Programs 195

1x PDI Builder, Release 6.8.65

• Positions: Blocks for operating with position-type variables (create psotition, read position, relative position,
etc.).

• Sensors: In these blocks, some of the sensors are configured.

• Servos: Blocks related to servos configuration.

• Signals: Blocks for signal processing (IIR filter, rate limiter, etc.).

• Type Casting: Blocks for variable conversion (Real to BIT, Integer to real, etc.).

2.9.1 Control blocks

Control blocks are those related to the creation of control loops:

2.9.1.1 PID

PID Static block allows the user to build a PID (Proportional, Integral and Derivative) controller with fixed gains.

Fig. 216: PID block

As can be seen in the figure above, PID Static block has 2 buttons (which are like ‘wifi icons’) that enable or disable
the block to be commanded from the 1x PDI Tuning software.

196 Chapter 2. Configuration

https://manuals.embention.com/1x-pdi-tuning/en/6.8.53/index.html

1x PDI Builder, Release 6.8.65

Fig. 217: PID block - Command buttons

The first button is for activating ‘Command PID’ and the second one is for the ‘Autotune’ command. For more
information on these commands, please refer to the Tuning section of the 1x PDI Tuning user manual.

Each command button has a different ID that allows the user to identify it during the command.

Note: To avoid disabling a block by mistake, the following warning message appears when disabling it:

Fig. 218: Warning message when disabling the command

• The PID mathematical implementation in Veronte Autopilot 1x is the following:

𝐶 = 𝐾𝑝 +
1

𝑇𝑖
· 𝐼𝐹 (𝑧) +

𝑇𝑑

𝜏 + 𝐷𝐹 (𝑧)

Where:

𝐷𝐹 (𝑧) = 𝑇𝑠 ·
𝑧

𝑧 − 1
; 𝐼𝐹 (𝑧) =

𝑇𝑠

2
· 𝑧 + 1

𝑧 − 1
; 𝐿𝑃𝐹 (𝑠) =

1

𝜏𝑠 + 1

• Inputs

yc: Target value, desired set-point of the controlled variable.

y: Closed loop, value of the controlled variable.

(Optional) dy: Derivative of the controlled variable (computed numerically from ‘y’ if not connected).

2.9. Block Programs 197

https://manuals.embention.com/1x-pdi-tuning/en/6.8.53/operation/tuning/index.html

1x PDI Builder, Release 6.8.65

(Optional) usat: Previously applied control action after saturation (used for anti-windup and respect). If not
connected a value of zero is assumed.

(Optional) ff : Feed-forward control, this value is added to the ‘u’ output before applying the output limits. If
not connected a value of zero is assumed.

(Optional) respect: When TRUE the output ‘u’ is equal to the input ‘usat’ and the integral component is
estimated with the information in ‘y’ and ‘yc’. When FALSE the PID works as usual. If not connected a value
of FALSE is assumed.

(Optional) enable integral: When TRUE the the PID works as usual. When FALSE the integral is
exponentially discharged. If not connected a value of TRUE is assumed.

• Outputs

u: Control output after applying PID limits.

p: Proportional part of the output before the PID limits are applied.

i: Integral part of the output before the PID limits are applied.

d: Derivative part of the output before the PID limits are applied.

• Configuration menu:

Double click on the block to open its configuration menu.

198 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 219: PID block configuration

1. yc: Input variable.

2. y: Feedback variable.

3. Invert: Apply a -1 gain .

4. Wrap: Perform a [-pi, pi] wrap.

5. Parallel/Standard: In parallel mode, PID gains are independent. In standard mode, I & D gains are scaled
by P gain.

6. KP: Proportional gain.

7. 1/TI: Integral gain.

8. Imax: Maximum value for integral term. Value must be possitive and the limit applied is symmetrical
([-Imax, Imax]).

2.9. Block Programs 199

1x PDI Builder, Release 6.8.65

9. tau: Time constant for the derivative term first order LPF.

10. TD: Derivative gain.

11. TA: Anti-windup gain. Recommended value around x10 KI. Unloads integral term if output is saturated.

12. Uf : Output offset. Feedforward value is also applied at this point.

13. Min/Max: Output limits.

14. u: PID output.

15. On focus respect: If respect is enabled, when the PID is first executed, an initial I value will be applied so
that ‘u’ = ‘usat’ for the first iteration.

16. Proportional/Derivative Beta: yc scaling for proportional and derivative terms. Unless necessary, value
should always be 1.

17. Integral disable: Disables integral term if (yc - y) > Error limit.

Tip: Remember to always use ‘wrap’ for direction controllers, such as ‘Heading’ or ‘Yaw’ PIDs. This will
allow the UAV to always turn in the right direction.

2.9.1.2 T-Sched PID

TSched PDI block is a PID (Proportional, Integral and Derivative) controller with table scheduled parameters. It
allows to scale most PID parameters using an external variable, usually the speed (Ground speed or IAS).

Fig. 220: TSched PID block

It works in a very similar way to the PID Static block, except that in that block the gains are fixed and in the TSched
block they are adjusted for different values of the input variable.

For this reason, the inputs and outputs are the same, but in this block an additional input is added:

• Input

var: Scaling variable for gain scheduling used to interpolate in the table to obtain the PID parameters.

200 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

• Configuration menu
Double click on the block to open its configuration menu.

Fig. 221: TSched PID block configuration

In this block, the PID gains for the different values of the input variable must be entered in the table above instead
of in the diagram. To add more values, simply click on the “+” icon and to remove them, click on the “-” icon.

If the variable is outside the limits, the values of the closest point will be applied. Values between points are
linearly interpolated.

In addition, clicking on “Table Generator” will bring up another configuration menu:

2.9. Block Programs 201

1x PDI Builder, Release 6.8.65

Fig. 222: TSched PID block configuration - Table Generator

This is another option to enter the PID gains for different values of the input variable, instead of manually entering
all the gains, the Table Generator will generate them according to the parameters to be configured:

– Type: Depending on the type of function selected, the gains are calculated differently.

∗ Inverse: It will calculate the different gains with an inverse function.

∗ Proportional: It will calculate the different gains with a proportional function.

∗ Quadratic: It will calculate the different gains with a quadratic function.

Result (𝐾𝑝)
Inverse 𝐾𝑝𝑖

𝑉
𝑉𝑖

Proportional 𝐾𝑝𝑖

𝑉𝑖

𝑉

Quadratic 𝐾𝑝𝑖

𝑉 2
𝑖

𝑉 2

∗ Reference cow: Users must select the reference values from which the other values will be calculated.

∗ Range: The minimum and maximum values of the input variable between which the gains have to be
calculated have to be defined.

Then just click on “Apply” and the maximum number of points that the table allows will be generated.

Example

Fig. 223: Example of Table Generator

202 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

2.9.1.3 Total Energy Control

Total Energy Control block has been designed for the decoupling of the control of the speed and FPA in fixed-wing
aircrafts. This block uses the internal navigation estimation.

It will provide two errors that must be minimized in order to obtain the desired speed and flight path:

• Energy Distribution Error: Distribution of sistem energy between kinetical and geopotential energy. This error
shall be used to control the aircraft’s pitch or FPA.

• Energy Rate Error: Rate of change of the Total System Energy. This error accounts for the necessary increase
or decrease in thrust.

Fig. 224: Energy Control block

• Inputs

FPAc: Desired FPA (Flight Path Angle) set-point.

Vc: Desired velocity set-point. Depending on the block configuration the velocity can be IAS or Ground
Speed.

• Outputs

EdistEr: Energy distribution error for pitch control.

ErateEr: Energy rate error for thrust control.

• Configuration menu:

Some parameters of the Energy algorithm can be modified by double clicking on the block:

2.9. Block Programs 203

1x PDI Builder, Release 6.8.65

Fig. 225: Energy Control block configuration

1. Proportional gain for acceleration: This is an indication of how aggresive the algorithm is when trying
to gain speed. The higher the value, the faster the algorithm will try to ‘dive’ in order to gain speed.

A typical recommended value is around 0.1-0.3. Higher values are only recommended for fast
maneuvering platforms.

2. Desired speed: The user must choose between IAS and GS (Ground Speed) for reference. The use of GS
is not recommended unless Airspeed measurement is not available.

3. K_STALL: Stall correction coefficient. If 1, energy control is balanced for altitude and speed. If 0 only
speed control is taken into account.

4. IAS/V_STALL: Speed/Stall ratio. Ratio between current speed and minimum speed.

5. Stall correction interpolation function: Defines how the relationship between the stall correction
coefficient and the Speed/Stall ratio works. The default configuration (as shown in the figure above)
is recommended.

Note: The Stall correction coefficient is a Safety tool that can be used to sacrifice altitude control in order to
improve speed control when speed gets close to the minimum speed selected in the Envelope section.

204 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

2.9.1.4 Fuzzy Logic Controller

The Fuzzy Logic Controller (FLC) block implements the Fuzzy Logic algorithm allowing users to perform robust
control of any system.

Fig. 226: Fuzzy Logic Controller block

A FLC has to be embedded in a closed-loop control system.

Plant output is designed by 𝑢(𝑡), its inputs are denoted by 𝑦(𝑡), and reference input to the FLC is denoted by 𝑦𝑐(𝑡). So,
FLC will have 𝑦(𝑡) and 𝑦𝑐(𝑡) as controlled and commanded inputs, respectively, and 𝑢(𝑡) as control output.

• The FLC mathematical implementation in Veronte Autopilot 1x is the following:

– The controller try to minimise the value of error, denoted by:

𝑒𝑘 = 𝑦𝑘 − 𝑦𝑐𝑘

– And it gets the value of change in error (derived from the error) 𝑐𝑒(𝑡) to do the fuzzy set:

𝑐𝑒𝑘 = 𝑒𝑘 − 𝑒𝑘−1

– Once is defined error and change in error, its values have to be pass to fuzzy values scaling it with its gains
𝑘𝑒 and 𝑘𝑐𝑒 :

𝑒𝑛𝑘 = 𝑘𝑒 · 𝑒𝑘
𝑐𝑒𝑛𝑘 = 𝑘𝑐𝑒 · 𝑐𝑒𝑘

– When these values are updated, the Membership Functions have to be defined as desired. Although their
shapes could be any function (trapezoidal waveform, Gaussian waveform, etc.), they are usually triangular
waveform.

Fig. 227: Example of membership functions of error and change in error

2.9. Block Programs 205

1x PDI Builder, Release 6.8.65

– The exact values of the 2 last equations are used to get the weights [𝜇+
𝑒 , 𝜇

0
𝑒, 𝜇

−
𝑒] and [𝜇+

𝑐𝑒, 𝜇
0
𝑐𝑒, 𝜇

−
𝑐𝑒] . These

values are obtained from error and change in error membership functions.

– Then, those outputs must be arrange into a table, called the lookup table.

Fig. 228: Example of Fuzzy Logic look up table

– On the other hand, it is necessary to apply the fuzzy logic by this table, so it is checked the sign of 𝑒𝑛𝑘 and
𝑐𝑒𝑛𝑘 , and the result is the membership function of the output to apply ∆𝑢.

Fig. 229: Example of membership function of output

– Once the six values of weights [𝜇+
𝑒 , 𝜇

0
𝑒, 𝜇

−
𝑒] and [𝜇+

𝑐𝑒, 𝜇
0
𝑐𝑒, 𝜇

−
𝑐𝑒] are obtained, they must be combined in the

nine possible combinations, selecting the minimum between both and getting its respective value of ∆𝑢 in
the output membership function.

– The final value of output is obtained with the Center of Gravity method:

∆𝑢 =

∑︀9
𝑖=1 ∆𝑢𝑖 · 𝜇𝑖∑︀9

𝑖=1 𝜇𝑖

– Finally, the real output value must be integrated in time and converted from fuzzy variables to real variables
with its gain value 𝑘𝑢 :

𝑢𝑘 = 𝑢𝑘−1 + 𝑘𝑢 ·∆𝑢 ·∆𝑡

• Inputs

yc: Desired set-point of the controlled variable.

206 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

y: Value of the controlled variable.

u_resp: Value of the output to do respect.

g: Vector of controller gains.

• Output

u: Control output after controller.

• Configuration menu:

Fig. 230: Fuzzy Logic Controller block configuration

These figures represent, respectively from left to right, the error membership function, the change in error
membership function and the output membership function that have been explained above.

The user can configure these functions as desired by adding or deleting points.

Note: The default configuration is already designed for control.

2.9. Block Programs 207

1x PDI Builder, Release 6.8.65

2.9.1.5 ECU Control

The ECU Control block allows to control the winding speed of the microjets and to ensure safe motor operation based
on PID control and shaft speed for the microjets.

Fig. 231: ECU Control block

• The ECU Control mathematical algorithm is based on a PID scheduler, this PID control has been used because
the dynamics of the motor changes with RPM so it is very different at low and high speed. For more information
on PID Scheduler control, see T-Sched PID section of this manual.

– First, the PLA magnitude is converted in commanded speed based in a look-up table. This information
must be provided by engine producer.

– To protect from a common problem of engines the commanded speed is limited. For this, first, the maximum
speed is limited to the configurable parameter 𝑁𝑚𝑎𝑥 to ensure mechanical integrity.

Then, engine acceleration is limited to protect from compressor surge, so the maximum speed rate is limited
to a configurable parameter in block, �̇�𝑚𝑎𝑥.

Finally, engine deceleration is limited to protect from blow out, so the minimum speed rate is limited to a
configurable parameter in block, �̇�𝑚𝑖𝑛.

– If EGT is less than the maximum value (configurable), the error magnitude in speed is minimized with
a PID scheduler: 𝑒 = 𝑦 − 𝑦𝑐 = 𝑁 −𝑁(𝑃𝐿𝐴).

And the control output of this block is the FPV commanded to engine.

– If EGT measurement is higher than maximum temperature (configurable 𝐸𝐺𝑇𝑚𝑎𝑥), a protection
protocol is initiated and the fuel injected is zero.

208 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 232: ECU Control aglorithm

• Inputs

n_msd: Measured Speed from sensor.

egt_msd: Exit Gas Temperature from sensor.

pla: Power Level Angle demanded from pilot (value from sensor).

fpv_resp: Fuel Pump Voltage to do respect.

mode: Mode of execution:

0⇒ Off: all variables set to zero.

1⇒ Checking: starter engine is commanded to max to check if engine is okay.

2⇒ Starting: pilot has total control with PLA once engine is runnning.

V: Voltage to Engine.

• Outputs

fpv: Fuel Pump Voltage to supply.

tmp_prot: Boolean to active temperature protection.

P: Proportional part of controller.

I: Integral part of controller.

D: Derivative part of controller.

main_v: Voltage to main valve.

ign_v: Voltage to Igniter valve.

igniter: Voltage to igniter.

starter: Voltage to starter engine.

2.9. Block Programs 209

1x PDI Builder, Release 6.8.65

• Configuration menu:

Fig. 233: ECU Control block configuration

– All parameters to be configured in the left column of the panel configuration constitute the engine
characterization and must be filled in with the user’s engine specifications.

– PID configuration: Users must configured the PID scheduler here. For more information on its
configuration, check T-Sched PID section of this manual.

– PLA / RPM: Users can enter the percentage of throtlle with respect to RPMs.

– MSL / 𝑢𝑓 : Because atmospheric pressure decreases with altitude (MSL), a feed forward (𝑢𝑓) is configured
as a function of altitude in order to improve control at high MSL.

210 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

2.9.1.6 Quaternion Control

Quaternion Control block for fixed multirotor aircraft.

Fig. 234: Quaternion Control block

• The Quaternion Control mathematical implementation in Veronte Autopilot 1x is the following:

– The quaternion control algorithm calculates the desired direction and magnitude of the thrust vector of a
multicopter in order to achieve the desired NED velocities, these generate a three-component acceleration
vector in NED coordinates, which is compared with the actual direction of the thrust vector to obtain a
quaternion representing the rotation from the actual to the desired thrust.

The error is applied to a control law determined by a time constant that provides the body angle rates to
achieve the desired acceleration.

– In addition, the algorithm is divided in two quaternion calculations depending on the yaw being controlled
or not:

∗ Reduced: Only the crucial angles of the thrust desired vector are considered. The yaw is not controlled
directly.

∗ Full: Both the pointing direction of the vector and the yaw is controlled.

• Inputs

(Optional) attmode: Flag for velocity (hover) or angle (hold) control. If true only the angles will be
controlled, if false or not connected the velocity of the aircraft will be controlled.

(Optional) vnc: Desired north velocity (only used if velocity mode is active). Assumed zero if not connected.

(Optional) vec: Desired east velocity (only used if velocity mode is active). Assumed zero if not connected.

vdc: Desired down velocity.

yawc: Desired yaw.

(Optional) pitchc: Desired pitch (only used if angle mode is active). Assumed zero if not connected.

(Optional) rollc: Desired roll (only used if angle mode is active). Assumed zero if not connected.

(Optional) thr_sat: Saturated thrust from previous step. Used for respect and antiwindup.

2.9. Block Programs 211

1x PDI Builder, Release 6.8.65

• Outputs

rrc: Desired roll rate.

prc: Desired pitch rate.

yrc: Desired yaw rate.

thr: Desired thrust.

• Configuration menu:

Fig. 235: Quaternion Control block configuration

As this block is mainly constituted by 3 PID controllers (fore more infromation, see PID block), only some
relevant parameters are detailed below:

1. PID to transform desired velocities into desired accelerations in NED.

2. PID to transform the vertical velocity into desired acceleration.

3. MAX INCLINATION: Maximum inclination allowed to the aircraft.

212 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

4. TAU: Time constant of the system. It is also the gain used for the feedback controller.

Recommended values between 0.1 and 0.25 seconds.
5. P: Reduction factor indicating how the yaw is to be controlled compared to pitch and roll.

The idea is that the “yaw control power” is lower in a multicopter as it is controlled by angular momentum
difference between motors while pitch and roll is controlled by thrust difference.

By default, it is configured to 30%.

Furthermore, the thrust is assumed to be between 0 and 1. In case the user has other values for the thrust, it is
recommended to use an Interpole block at the input and output to adjust the range between 0 and 1.

2.9.1.7 Driver Control Filter

Fisrt, it is presented how the Adaptive-Predictive control algorithm has been implemented in blocks.

The part of the algorithm that tries to estimate the system transfer function (System Identification), the part that acts as
a filter for the system output (Driver Control Filter) and the control part (Predictive control) are separated.

Therefore, Driver Control Filter block works together with the System Identification and the Predictive Control blocks
for the Adaptative-Predictive control algorithm.

An example of use is shown below:

Fig. 236: Adaptive-Predictive control blocks example

This example corresponds to the integration of a simulation. Therefore, an IIR Filter block and a Signal generator
block have been added to simulate a real physical system, i.e. these blocks would not be needed in a real scenario:

• IIR Filter simulates how the output responds to the input.

• Signal generator simply simulates a desired input function.

Driver Control Filter block gives a vector with variables set points (SP) using a second order filter.

2.9. Block Programs 213

1x PDI Builder, Release 6.8.65

Fig. 237: Driver Control Filter block

It acts as a 2-order filter with optimal coefficients for the Adaptive-Predictive control algorithm. These coefficients are
calculated from the configurable parameters of the block.

• Inputs

yc: Desired system output (Set Point).

y: Measured system output.

• Output

Yr: Projected desired trajectory vector.

• Configuration menu:

Fig. 238: Driver Control Filter block configuration

The following parameters must be set:

– Prediction interval (𝜆): Number of future instants (Prediction Horizon), how many samples are taken from
the vector.

– Shape: Depending on whether it is enabled or disabled, the paramters to be entered are different. Users
can enable or disable it depending on the data available to them:

∗ 𝜁: Damping ratio.

∗ 𝑤𝑜: Natural frequency.

∗ Mp: Maximum overshoot.

∗ Ts: Settling time (2% criteria).

214 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Note: The relationships between the different parameters are:

𝑀𝑝 = exp

(︃
−𝜁 · 100 · 𝜋√︀

1− 𝜁2

)︃

𝑇𝑠 =
4

𝜁 · 𝑤0

2.9.1.8 System Identification

System Identification block gives the coefficients of the transfer function at Z-domain,

𝑇 (𝑧) =
𝐵(𝑧)

𝐴(𝑧)

• Where, 𝐴 and 𝐵 are polynomials in 𝑧.

Fig. 239: System Identification block

This blocks works together with the Driver Control Filter and the Predictive Control blocks for the Adaptative-
Predictive control algorithm, as explained above.

• Inputs

y: System output. This is the measurement.

u: System input. This is the control action.

• Outputs

NUM: System coefficients numerator.

DEN: System coefficients denominator.

• Configuration menu:

2.9. Block Programs 215

1x PDI Builder, Release 6.8.65

Fig. 240: System Identification block configuration

• Forgetting factor (𝜆): Determines how many inputs and outputs are taken into account for the estimation.

Recommended values between 0.98 and 0.995.

• 𝛿0: Initial value of covariance matrix.

• Noise (𝛾): From this noise threshold, the RLS (Recursive Line Square) is not calculated.

• Input/Ouput delay: Given the input/output size, a delay is applied to the sample vector size.

2.9.1.9 Predictive Control Block

Predictive Block Controller gives the optimal control output given a dynamic model as a result of the system
identification block.

Fig. 241: Predictive Control block

This blocks works together with the Driver Control Filter and the System Identification blocks for the Adaptative-
Predictive control algorithm, as explained above.

216 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

• Inputs

yc: Desired system output (SP) or trajectory.

NUM: Numerator coefficients of system model plant.

DEN: Denominator coeffcients of system model plant.

yprev: Previous system output.

uprev: Previous system input.

• Output

u: Control output.

• Configuration menu:

Fig. 242: Predictive Control block configuration

The following parameters must be set:

– Prediction interval (𝜆): Number of future instants (Prediction Horizon), how many samples are taken from
the vector.

– Optimal: Depending on whether it is activated or deactivated, the following parameters are auto-calculated
or not.

∗ f : If this factor is greater than 1, the past measurements have greater weight.

∗ r0 : If this factor is grater than 1, there is a more aggresive follow-up of the reference, on the contrary
it is smoother.

– Output Limits: Maximum and minimum limits for the controller output (for the control signal 𝑢).

2.9. Block Programs 217

1x PDI Builder, Release 6.8.65

2.9.2 Data Source/Sink blocks

• Source blocks allow to import into the program any variable available in the system. Additionally the Const
Real/Vector allows to create a constant variable or vector.

• Sink blocks allow to overwrite any variable in the system. Variables that can be written using Sink blocks
are:

– User Variables

– Desired variables (variables whose name starts with ‘Desired’)

Fig. 243: Source/Sink blocks

Warning:
• Desired variables are naturally written by Guidances algorithms. If an active Guidance is writting a certain

Desired variable, writting it with a Sink block should be avoided.

• Using Sink blocks to overwrite System Variables usually results in the change not taking effect, but in some
cases could end up causing 1x autopilot to malfunction.

• Avoid using Sink blocks to write any variable that does not belong to one of the groups listed above.

218 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

2.9.3 Devices blocks

Devices connected to 1x autopilot and a clock can be configured with these blocks.

2.9.3.1 Clock

Clock block computes the time elapsed since the last reset or since the last step execution (depending on the block
configuration).

Fig. 244: Clock block

• Input

(Optional) Reset: The clock is reset when the input value is TRUE. Assumes FALSE if unconnected.

• Output

Time: Computed time in seconds.

• Configuration menu:

Fig. 245: Clock block configuration

– Reset when on focus: If enabled, the clock will be reset the first time it is executed.

– Compute Time Since: The available options are:

∗ Last reset: The block acts as a ‘normal clock’, counting the time since it was started/restarted.

∗ Last step: Time elapsed since the program, in which the block is added, was executed.

2.9. Block Programs 219

1x PDI Builder, Release 6.8.65

2.9.3.2 Gimbal

Gimbal block is a gimbal device controller that uses current navigation estimation.

It allows users to configure a Gimbal Camera by defining the movements the system has (from predefined combinations
of Pan, Tilt and Roll), its logic and a distance vector.

Fig. 246: Gimbal block

• Inputs

(Optional) fixed: Mode of operation:

– If TRUE the gimbal is in absolute orientation mode and uses the inputs ‘Az’, ‘El’ and ‘Ro’.

– If FALSE the gimbal is in arcade mode and uses the inputs ‘Azr’, ‘Elr’ and ‘Ror’.

– If not connected assumes FALSE.

(Optional) Az: Desired azimuth. This input is only used when ‘fixed’ input is TRUE. Assumes zero if not
connected.

(Optional) El: Desired elevation. This input is only used when ‘fixed’ input is TRUE. Assumes zero if not
connected.

(Optional) Ro: Desired roll. This input is only used when ‘fixed’ input is TRUE. Assumes zero if not
connected.

(Optional) Azr: Desired azimuth rate. This input is only used when ‘fixed’ input is FALSE. Assumes zero
if not connected.

(Optional) Elr: Desired elevation rate. This input is only used when ‘fixed’ input is FALSE. Assumes zero
if not connected.

(Optional) Ror: Desired roll rate. This input is only used when ‘fixed’ input is FALSE. Assumes zero if
not connected.

• Outputs

in_cmd: Has a value of TRUE when the gimbal block is being externally commanded, FALSE otherwise.

j0: Gimbal joint 0 angle in radians. This is the desired Pan angle.

220 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

j1: Gimbal joint 1 angle in radians. This is the desired Tilt angle.

j2: Gimbal joint 2 angle in radians. This is the desired Roll angle.

pos: Position in the surface of the Earth where the gimbal is pointing to.

• Configuration menu:

Fig. 247: Gimbal block configuration

The following parameters must be configure:

– Type: Defines the angles that the Veronte Autopilot 1x will control from the payload system from a
combination of Pan (Z-axis, same as Yaw), Tilt (Y-axis, same as Pitch) and Roll.

The three options available are:

∗ Pan & Tilt
∗ Pan, Roll & Tilt
∗ Roll & Tilt

– Logic: Defines the kind of payload system configured:

∗ Conventional gimbal: This option writes over the variables Joint 1-3 of Gimbal 1-3 which are used
later to configure camera control and stabilization from Autopilot 1x.

∗ Self-stabilized gimbal: The payload system only needs movement inputs and the variables
mentioned will have no output.

– Base to gimbal X/Y/Z: Defines the vector linking Veronte Autopilot 1x controlling the payload system and
the payload system itself, on Veronte body axes.

2.9. Block Programs 221

1x PDI Builder, Release 6.8.65

– Edit Rotation Matrix: Matrix to rotate the system to match the aircraft coordinate system.

Fig. 248: Gimbal block configuration - Rotation Matrix

– Center Limit Yaw [0, 2pi]/Pitch/Roll: Center of the range of movement.

– Delta Limit Yaw [0, pi]/Pitch/Roll: That is how much the gimbal can move in positive and negative from
the center defined above.

Note: This part of limit is because there are some gimbals that cannot make a full turn on some axis.

– Roll/Pitch rate Gain: Gains to compensate for roll rate or pitch rate inputs.
An example of use is given below:

Fig. 249: Gimbal block - Example of use

222 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 250: Gimbal block - Configuration example

2.9.3.3 Stick

Stick block is a stick reader, with it the user can configure the stick parameters for manual and arcade modes.

Fig. 251: Stick block

Warning: This block is mandatory for the use of the transmitter. For more information on the stick configuration,
see the Stick -> Integration examples section of this manual.

• Outputs

Raw data: Raw stick channels.

Y data: Stick channels after transformation (matrix and offset).

Status: TRUE if the stick is read without timeouts, FALSE otherwise.

2.9. Block Programs 223

1x PDI Builder, Release 6.8.65

RXrate: Stick update frequency rate (Hz).

• Configuration menu:

– Sources: In this tab the user can set multiple transmitter inputs with the respective priority, from top to
bottom.

Fig. 252: Stick block configuration - Sources

∗ Priority table: By default, one priority table is set. The user can configure a second one.

· Priority: Use arrows to determine the priority of the selected source. Priority is set from top to
bottom.

· Add: An already defined source can be added to the priority table.

∗ Edit sources: New sources can be defined in this menu.

224 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 253: Edit sources menu

· Source: It is the order in which sources are created in this menu. This does not set the priority.

· Address: This defines the source of where the stick information is taken from. The following
options are available:

· App 2: Means that the information is coming from the virtual stick of Veronte Ops.
· Local: Represents the actual selected autopilot (i.e. the transmitter is connected to it).

· Any: The information comes from all linked autopilots.

· Veronte v4.X XXXX: Means the information is coming from a particular autopilot, which needs
to be visible in Veronte Link.

· Port: From each source it is posible to have more than one stick information, e.g. two transmitters
can be connected to the same autopilot. The port is an identifier to distinguish them.

· Time Out: This defines the time to consider the source inactive. Therefore the incoming stick
information will be always the one from the source with higher priority and active. Once it is
considered inactive the following active source will send its stick information. The lower this
value, the more frequent the stick will be lost. We recommend a value of 0.4 s.

– Data: In this tab the user can configure 𝑀𝑖𝑥𝑀𝑎𝑡𝑟𝑖𝑥,𝑅𝑎𝑤 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 and 𝑂𝑓𝑓𝑠𝑒𝑡.

The movement that the pilot makes on the stick produces variations on a vector called (𝑅𝑎𝑤 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) of
length 𝑛, where 𝑛 goes from 1 to the total number of employed transmitter channels. The values reached
by the components of (𝑅𝑎𝑤 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) are limited between 0 and 1. These stick movements need to be
processed to produce the input signals that will go into the control algorithm, in the case of arcade mode;
or directly into the servos for manual mode.

The process begins by mapping each one of the sticks inputs to PWM signals into a vector called 𝑂𝑢𝑡𝑝𝑢𝑡
of length 𝑚, where 𝑚 goes from 1 to the total number of actuators.

The full definition of 𝑂𝑢𝑡𝑝𝑢𝑡 is 𝑂𝑢𝑡𝑝𝑢𝑡 = (𝑀𝑖𝑥𝑀𝑎𝑡𝑟𝑖𝑥)(𝑅𝑎𝑤 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) + 𝑂𝑓𝑓𝑠𝑒𝑡, where:

∗ (𝑀𝑖𝑥𝑀𝑎𝑡𝑟𝑖𝑥) is a matrix that transforms raw stick inputs (𝑅𝑎𝑤 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) to PWM signals𝑂𝑢𝑡𝑝𝑢𝑡.

∗ 𝑂𝑓𝑓𝑠𝑒𝑡 is an offset vector, which corrects the 𝑂𝑢𝑡𝑝𝑢𝑡 vector.

2.9. Block Programs 225

1x PDI Builder, Release 6.8.65

Fig. 254: Stick block configuration - Data

2.9.4 Execution Flow blocks

Execution Flow blocks allow to switch sections of a program during its execution among a set of pre-configured
options.

226 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 255: Execution flow blocks

Execution flow blocks are divided into 2 different types of blocks:

• On focus block: The On Focus block outputs a boolean value, which is only True the first time the block is
executed.

Fig. 256: On focus block

– If used inside a Switch Block, the value will be True each time the case is selected.

– On Focus can be used to trigger actions or initialize variables whenever a case is switched.

The following example would initialize User Variable 01 to 7 whenever Landing phase is selected:

Fig. 257: On focus block example

• Swith blocks
– If-Else Switch block: Choose between two cases based on the state of a boolean variable.

Fig. 258: If/Else switch block

It is possible to swap the blocks of each case (False/True) by simply right-clicking inside an if/else switch
block and selecting ‘Invert’.

2.9. Block Programs 227

1x PDI Builder, Release 6.8.65

Fig. 259: Invert created blocks

– Integer Switch block: Choose a case based on the value of an integer variable.

Fig. 260: Integer switch block

Right click on the Integer switch block to access the configuration options:

∗ Add Case: Create a new empty case.

∗ Copy Case: Create a copy of the current case.

∗ Delete Case: Delete the current case.

∗ Add Entry: Add a new entry to the current case. An entry is a condition under which the case will
be selected. The same entry can on only be in one case at a time. Adding an entry that already
exists will move said entry to the current case.

∗ Delete Entry: Remove an entry from the current case.

∗ Set as Default case: The Default case will be executed whenever the switch condition does not match
any of the existing entries.

– Phase Switch block: Same as Integer Switch, but using Flight Phases as the switch condition.

Fig. 261: Phase switch block

Warning: Phase Switch and Integer Switch Blocks will report a ‘PDI ERROR’ if they don’t have at least 1
case with entries.

Use of switch blocks
• Add blocks inside: Right-click inside a Switch block to insert a new block into it.

Fig. 262: Create a block inside a switch block

• Input/Output: Right click inside a Switch block and select add Input/Output. To remove them, right click
and select Remove Input/Output.

228 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 263: Add/Remove an input/output of a switch block

Note: The size of a switch block depends on the blocks it contains. A switch block will always have the size of the
biggest of its existing cases.

2.9.5 Guidance blocks

When defining a guidance system, we refer to a set of commands sent to the platform controller in order to make it
carry out a certain task. This task could be follow a line, climb, land, hold one of its states at a certain value and so on.

In 1x PDI Builder, it is possible to combine a series of guidances to create custom flight phases that will make the
aircraft perform in a given way.

Each Guidance block contains a set of parameters to be configured. All of them are presented as follows.

Name Description
Climb Makes the aircraft climb from the start of the phase to another altitude.
Cruise Makes the aircraft follow a determined route created by the user.
Landing Creates the route that the airplane will follow to land.
Rendezvous Used to create a meeting point where the Air unit will approach a second unit (either Air or

Ground) within a determined offset.
Taxi Creates a linear path along the runway that is followed by the aircraft.
VTOL Vertical take-off and landing.
Yaw
current/heading/north

Indicates the behaviour of the platform in the yaw axis.

2.9.5.1 Guidance blocks common configuration

All the guidance blocks presented below, have the same inputs and outputs, and some common configuration
parameters.

Fig. 264: Common guidance blocks

• Inputs

(Optional) fv: First component of desired ‘hover here’ arcade velocity in the horizontal plane. The actual
direction of this speed depends on the selected arcade axis.

2.9. Block Programs 229

1x PDI Builder, Release 6.8.65

(Optional) lv: Second component of desired ‘hover here’ arcade velocity in the horizontal plane. The actual
direction of this speed depends on the selected arcade axis.

(Optional) dv: Down (vertical) ‘hover here’ desired arcade velocity.

(Optional) spd: Arcade cruise speed increment.

(Optional) hvar: Scale variable for the T-Sched PID of the horizontal guidance.

(Optional) vvar: Scale variable for the T-Sched PID of the vertical guidance.

• Output

Pin 0: Guidance data for the Guidance Computation block.

Warning: To produce a guidance computation, these blocks must be connected to the Guidace Computation
block via this output.

• Configuration menu:

230 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 265: Common guidance blocks configuration

All the parameters that define the guidance are detailed:

1. Patch: This option allows the user to select the first path to be flown by the aircraft. The user should first
enable this option and then select the desired path to bo the first-of-the-route.

2. Set height mode: Height mode indicates how the aircraft will perform the defined path. There are three
possible height modes:

– 2D mode: If this mode it is selected, the platform will follow the predifined route without taking into
account the altitude of the waypoints, it will keep the altitude that it has at the moment it enters in
the guidance.

– 2.5D mode: The vehicle will follow a 3D trajectory that connects both waypoints. However, it will
give priority to horizontal guidance. 1x autopilot will try to adjust its position and altitude to
the path (both horizontally and vertically), but if for any reason it cannot reach the altitude of the
final waypoint, it will considered that it has been reached if its position matches the position of the
waypoint.

– 3D mode: The vehicle will follow a 3D trajectory that connects both waypoints. In this case,
horizontal and vertical guidance have the same priority level. This means that 1x autopilot will

2.9. Block Programs 231

1x PDI Builder, Release 6.8.65

not consider that a waypoint has been reached until its position and altitude match the waypoint’s
ones. As this type of guidance may result in a vertical flight, it is reserved for multicopters or
hybrid platforms.

3. Arcade position/speed transition: In Arcade mode the trajectory generated (position) is not followed and
instead the aircraft moves according to the commanded speed.

The Horizontal and Vertical speed parameters serve as the upper thresholds for when the aircraft
guidance should be based on position, even in Arcade mode. This parameters are mainly useful for
platforms like multicopters.

4. Set speed: This option sets the speed that the vehicle will have during the manoeuvre.

– Cruise: Lets the user set the velocity modulus of the guidance. This velocity can be slightly modified
by the autopilot control algorithms.

– Waypoint: If enable, it indicates the speed at which the platform will reach the waypoints of the
path, i.e. it will travel along the path with the speed indicated in the option Cruise and then it will
decelerate or accelerate to the speed indicated here.

– Type: Defined speed. Can be IAS (Indicated Airspeed) or Ground speed. Normally, IAS is used
for airplanes and Ground speed for multicopters.

– Deceleration: This can only be configured when Waypoint option is enabled. Maximum allowed
acceleration/deceleration to meet the desired velocity.

5. Guidance control: These PIDs are defined to guarantee stability of guidance loop, they are used to
calculate the Desired Speed Vector based on the current position error.

Then, the resulting vector, along with the Guidance parameters, will be used to generate the Desired
variables (ID 100 - 258 Rvars) that can be used as inputs for the control loops.

For both Horizontal and Vertical guidance, the user can choose the type of control between PID or
T-Sched PID.

Besides, by clicking on the icon of both guidance, a pop-up window will appear where the control
parameters should be entered, for more information on the latter check Control blocks.

In the horizontal-position PID (see image below), North-East current position of the aircraft is compared
to the desired position. The output of the PID controller is going to be a ground speed in the North-East
plane, which translates into a desired lateral and front ground speeds in body axes. The same logic applies
for the vertical-position PID.

232 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 266: Horizontal Position PID

However, the algorithm is more complex than this simple PID.

For tuning, it is usual to use only proportional term in the PID:

– A high proportional will converge faster to the desired position but with overshoot.
– A lower proportional will make the arrival to the desired position slower but it is a smooth

convergence.

Next figures shows this behaviour with 𝐾𝑝 = 0.2 and 𝐾𝑝 = 0.02.

2.9. Block Programs 233

1x PDI Builder, Release 6.8.65

234 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 267: PID Proportional gains

Guidance-generated Variables
The guidances contained within Veronte autopilot 1x generate a series of variables that are later used in the control
loops as the input of the PIDs. Generally, variables named as Desired are used in this Guidance.

The list of variables is the following:

• Desired position.

• Track position.

• Track state (current patch, last patch).

• Desired latitude, desired longitude, desired WGS84, desired MSL, desired AGL.

• Desired velocity.

• Desired front groundspeed, desired lateral groundspeed, desired velocity down.

• Desired tangential acceleration.

• Desired IAS.

• Guidance north error.

• Guidance east error.

• Guidance down error.

2.9. Block Programs 235

1x PDI Builder, Release 6.8.65

• Desired body velocities.

• Desired velocities north, east, down.

• Desired heading, FPA and bank.

• Route-guidance distance - tangential component.

• Route-guidance distance - horizontal component.

• Route-guidance distance - perpendicular component.

2.9.5.2 Climb

Climb guidance is used to make the aircraft climb from the start of the phase to another altitude. Commonly, this
guidance is used after the take-off to fly from the ground to cruise altitude through a loiter point, but it can be employed
for other purposes.

Climbing guidance generates a three-dimensional trajectory.

Fig. 268: Climb block

Warning: In order to produce a guidance computation this block has to be connected to the Guidace Computation
block.

• Configuration menu:

The climbing path is automatically generated and is not directly shown to the user until the aircraft enters this
phase. This is due to the algorithm recalculating the path each time to take into account the aircraft’s actual flight
conditions and the user’s indicated parameters

236 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 269: Climb block configuration

Below, the parameters shown above are going to be described. Later, a brief description of the algorithm and its
behavior in different possible situations will be presented:

1. Patch: This is detailed in the common guidance block parameters, described at the beginning of this
section in Guidance blocks common configuration.

2. Set height mode: This is detailed in the common guidance block parameters, described at the beginning
of this section in Guidance blocks common configuration.

2.9. Block Programs 237

1x PDI Builder, Release 6.8.65

3. Arcade position/speed transition: This is detailed in the common guidance block parameters, described
at the beginning of this section in Guidance blocks common configuration.

4. Set speed: This is detailed in the common guidance block parameters, described at the beginning of this
section in Guidance blocks common configuration.

5. Guidance control: This is detailed in the common guidance block parameters, described at the beginning
of this section in Guidance blocks common configuration.

6. Runway and Loiter position: Here the user can define the loiter and runway positions and direction.
However, the default option is to define them in the Runway option of Veronte Ops (for more information,
see Veronte Ops manual).

If the Advanced option is chosen, then the user can define these parameters. By clicking on or
different options will be displayed:

Fig. 270: Runway and Loiter Position Options

– Loiter point: Defines the loiter point. The two available options are:

∗ icon selected: By default, this point is the runway’s loiter. But the user can select in the drop-
down list any other previously defined point. This includes waypoints defined in the Mission (in
Veronte Ops), among many others.

∗ icon selected: Alternately, the user can manually define the Loiter point. Then it can be
configured in two ways:

· Relative: In this case, the position of the point is relative to another point. That point could
be any platform fitted with a 1x autopilot.

· Absolute: The coordinates can be set in UTM, MGRS, Decimal Degrees or Degress º ” ‘.
They are indicated through the latitude, longitude and altitude (being possible to define this
last one with respect to the ellipsoid, WGS84, to the sea level, MSL or to the ground, AGL).

238 Chapter 2. Configuration

https://manuals.embention.com/veronte-ops/en/6.8/index.html

1x PDI Builder, Release 6.8.65

– Direction: Defines the runway direction. Again, there are two available options:

∗ icon selected: By default, it is the same as the selected runway. It can be also chosen from
a list of options including runway direction, tailwind direction, etc.

∗ icon selected: Alternately, it can also be defined as an angle with respect to the magnetic
north.

– Loiter pos is center: If this box is enabled, the defined loiter point will be the center of the loiter
circular trajectory. In case of not, the circular loiter trajectory will pass through that point.

Fig. 271: Climb route top and front views with parameter identification

7. Route: Here is where the user can set some of the the climbing path parameters (those highlighted in red
on the above diagram).

First, the user-defined parameters are described and then, some considerations on the behaviour of the
climb algorithm are explained:

– Taxi extension: This parameter does not apply to this algorithm.

2.9. Block Programs 239

1x PDI Builder, Release 6.8.65

– Horizontal extension (dxy): Absolute ground distance of the first path, 𝐿4 . From the start of the
climb to the start of the turn that faces the loiter path.

This distance will remain fix always and it will also fix 𝐿4 path’s final point height, 𝐻4 . More
information below.

– Radius Head Turn (R3): Radius of the turn to head the platform towards the loiter.

– Radius loiter (R1): Radius of the ascending helix path to reach the loiter height.

– Flight Path Angle: The 𝐹𝑃𝐴 (𝛾4) is the angle at which the aircraft will climb. Before the algorithm
execution, all Flight Path Angles, 𝛾𝑖 , are equal: 𝐹𝑃𝐴 = 𝛾4 = 𝛾2,3 = 𝛾1 . The algorithm can modify
𝛾2,3 and 𝛾1 . In that case, the Flight Path Angle option will serve as the upper threshold.

Note: The rest of the parameters shown in the figure above are calculated automatically by the algorithm

(𝐿1, 𝐿2, 𝐿3, 𝐻1, 𝐻2, 𝐻3, 𝛾1, 𝛾2,3).

Each of these parameters can be entered manually or linked to an Operation Guidance defined by the user

clicking on or .

Climbing guidance parameters behavior
The climbing track is not fix, the algorithm recalculates the paths each time to take into account the aircraft position
and the user’s parameters. The trajectory usually has 4 paths, excluding the final loiter path:

• General trajectory description:

– 𝐿4 is the first path. The user can set the horizontal length, 𝑑𝑥𝑦 , the direction (in Runway direction) and
the path’s final point height, 𝐻4 with the defined Flight Path Angle. This is very relevant, as seen later.
The path length can not be zero.

𝛾4 = 𝐹𝑃𝐴

𝐻4 = 𝑑𝑥𝑦 tan(𝛾4)

– 𝐿3 : Circular turn to head the platform towards the loiter. The user can set the radius, 𝑅3 . It is possible

to set this path to zero clicking on . The FPA, 𝛾2,3 , can be modified by the algorithm.

– 𝐿2 : Straight path that reaches the climbing loiter point. This path is completely automatic generated.
Its FPA, 𝛾2,3 , can be modified by the algorithm.

– 𝐿1 : Ascending helix path to reach the loiter height. The user can set the radius, 𝑅1 .

• Loiter height effect: Loiter height’s, 𝐻𝑐 , modifies the algorithm general behavior. Depending on whether 𝐻𝑐

is bigger or smaller than 𝐻2 or smaller than 𝐻4 the algorithm will modify some parameters, in particular the
flight path angles:

1. 𝐻2 < 𝐻𝑐 : This is the general case, in this situation no corrections will be applied as shown below and
𝛾2,3 = 𝛾1 = 𝐹𝑃𝐴.

240 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 272: Climbing heights when 𝐻2 < 𝐻𝑐

2. 𝐻4 < 𝐻𝑐 < 𝐻2 : In this case, the algorithm will compute a new 𝛾2,3 to avoid surpassing the loiter’s
height and 𝛾1 will be zero.

Fig. 273: Climbing heights when 𝐻4 < 𝐻𝑐 < 𝐻2

3. 𝐻𝑐 < 𝐻4 : In this case, the algorithm will force 𝐻𝑐 = 𝐻4 . So 𝐻4 will be the new loiter height keeping
𝛾4 = 𝐹𝑃𝐴 and the other flight paths angles equal to zero, 𝛾2,3 = 𝛾1 = 0.

2.9. Block Programs 241

1x PDI Builder, Release 6.8.65

Fig. 274: Climbing heights when 𝐻𝑐 < 𝐻4

2.9.5.3 Cruise

This phase is used to make the aircraft follow a position-based route created by the user in Veronte Ops (for more
information, see Veronte Ops manual). This is the principal use of this guidance algorithm, but it can also be used to
make the aircraft go to a certain location (e.g, a waypoint) without indicating the complete route, thus being a guidance
used to command a movement by position.

Cruise guidance generates a three-dimensional trajectory.

Fig. 275: Cruise block

242 Chapter 2. Configuration

https://manuals.embention.com/veronte-ops/en/6.8/index.html

1x PDI Builder, Release 6.8.65

Warning: In order to produce a guidance computation this block has to be connected to the Guidace Computation
block.

• Configuration menu:

Fig. 276: Cruise block configuration

All the parameters that define the cruise guidance are detailed.

1. Patch: This is detailed in the common guidance block parameters, described at the beginning of this
section in Guidance blocks common configuration.

2. Set height mode: This is detailed in the common guidance block parameters, described at the beginning
of this section in Guidance blocks common configuration.

3. Arcade position/speed transition: This is detailed in the common guidance block parameters, described
at the beginning of this section in Guidance blocks common configuration.

4. Set speed: This is detailed in the common guidance block parameters, described at the beginning of this
section in Guidance blocks common configuration.

5. Guidance control: This is detailed in the common guidance block parameters, described at the beginning
of this section in Guidance blocks common configuration.

2.9. Block Programs 243

1x PDI Builder, Release 6.8.65

2.9.5.4 Guidance Computation

Guidance Computation block takes the configuration and arcade data from a given type of guidance and computes the
guidance parameters. It is always necessary to add it with these Guidance blocks: Climb, Cruise, Landing, Rendezvous,
Taxi and VTOL.

Fig. 277: Cruise block

• Input

Pin 0: Guidance configuration.

2.9.5.5 Landing

Landing guidance is used to generate the flying path the aircraft will follow when landing on a certain runway.

Landing guidance generates a three-dimensional trajectory.

Fig. 278: Landing block

Warning: In order to produce a guidance computation this block has to be connected to the Guidace Computation
block.

• Configuration menu:

The generated path is not directly indicated by the user as in cruise guidance (which is defined in Veronte Ops),
instead a trajectory is generated based on the parameters detalied later in this section, as in climb guidance.

Below, find all the information to be defined by the user together with the corresponding Figures showing the
location of these parameters in the menu.

244 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 279: Landing block configuration

1. Patch: This is detailed in the common guidance block parameters, described at the beginning of this
section in Guidance blocks common configuration.

2. Set height mode: This is detailed in the common guidance block parameters, described at the beginning
of this section in Guidance blocks common configuration.

3. Arcade position/speed transition: This is detailed in the common guidance block parameters, described
at the beginning of this section in Guidance blocks common configuration.

4. Set speed: This is detailed in the common guidance block parameters, described at the beginning of this
section in Guidance blocks common configuration.

5. Guidance control: This is detailed in the common guidance block parameters, described at the beginning
of this section in Guidance blocks common configuration.

6. Runway and Loiter position: Here the user can define the loiter and runway positions and direction.
However, the default option is to define them in the Runway option of Veronte Ops (for more information,
see Veronte Ops manual).

2.9. Block Programs 245

https://manuals.embention.com/veronte-ops/en/6.8/index.html

1x PDI Builder, Release 6.8.65

If the Advanced option is chosen, then the user can define three parameters. By clicking on or
different options will be displayed:

Fig. 280: Runway and Loiter Position Options

– Touch point: Defines the touch point of the runway. The user can configure it in 2 different ways:

∗ icon selected: By default, this point is the runway’s touch point. But the user can select in
the drop-down list any other previously defined point. This includes waypoints defined in the
Mission (in Veronte Ops), among many others.

∗ icon selected: Alternately, the user can manually define this point. Then it can be configured
in two ways:

· Relative: In this case, the position of the point is relative to another point. That point could
be any platform fitted with a 1x autopilot.

· Absolute: The coordinates can be set in UTM, MGRS, Decimal Degrees or Degress º ” ‘.
They are indicated through the latitude, longitude and altitude (being possible to define this
last one with respect to the ellipsoid, WGS84, to the sea level, MSL or to the ground, AGL).

– Loiter point: Defines the loiter point. The two available options are:

∗ icon selected: By default, this point is the runway’s loiter. But the user can select in the drop-
down list any other previously defined point. This includes waypoints defined in the Mission (in
Veronte Ops), among many others.

∗ icon selected: Alternately, the user can manually define the Loiter point. Then it can be
configured in two ways:

246 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

· Relative: In this case, the position of the point is relative to another point. That point could
be any platform fitted with a 1x autopilot.

· Absolute: The coordinates can be set in UTM, MGRS, Decimal Degrees or Degress º ” ‘.
They are indicated through the latitude, longitude and altitude (being possible to define this
last one with respect to the ellipsoid, WGS84, to the sea level, MSL or to the ground, AGL).

– Direction: Defines the runway direction. Again, there are two available options:

∗ icon selected: By default, it is the same as the selected runway. It can be also chosen from
a list of options including runway direction, tailwind direction, etc.

∗ icon selected: Alternately, it can also be defined as an angle with respect to the magnetic
north.

– Loiter pos is center: If this box is enabled, the defined loiter point will be the center of the loiter
circular trajectory. In case of not, the circular loiter trajectory will pass through that point.

7. Trajectory distances: Here the user defines some of the trajectory distances. This distances match the
trajectory patches lengths 𝐿 or are proportional to them. See the explanation below for more information
on every patch.

– Taxi extension: Distance from touchdown to where the aircraft is brougth to a full stop.

– Horizontal extension (dxy): Distance before the head of the runway. At the end of this length,
touchdown is expected.

– Radius Head Turn (R3): Radius of the last turn in order to face the runway direction (𝐿3 ∝ 𝜋𝑅3).

– Radius loiter (R1): Radius of the descending loiter for the aircraft to reach an altitude suitable to
perform the landing manoeuvre (𝐿1 ∝ 𝜋𝑅1).

Each of these parameters can be entered manually or linked to an Operation Guidance defined by the user

clicking on or .

Note: Some patches don’t have an associated user-defined distance, and are automatically calculated
by the landing guidance algorithm, as they depend on some of the above distances and other parameters
defined below.

8. Trajectory flight path angles: Here the user defines the desired trajectory flight path angles for each of
the patches of the trajectory. See the explanation below for more information on every patch.

– Initial maximum (absolute): Desired flight path angle 𝛾0 of patch 0.

– Loiter: Desired flight path angle 𝛾1 of patch 1.

– Aim: Desired flight path angle 𝛾2,3 of patches 2 and 3.

– DXY: Desired flight path angle 𝛾4 of patch 4.

9. Trajectory velocities: Here the user defines the desired trajectory velocities for each of the patches of the
trajectory. See the explanation below for more information on every patch.

– Initial: Desired velocity 𝑣0 of patch 0.

– Loiter: Desired velocity 𝑣1 of patch 1.

– Aim: Desired velocity 𝑣2,3 of patches 2 and 3.

– DXY: Desired velocity 𝑣4 of patch 4.

2.9. Block Programs 247

1x PDI Builder, Release 6.8.65

Each of these parameters can be entered manually or linked to an Operation Guidance defined by the user

clicking on or .

The generated trajectory of the landing guidance defines the route that the aircraft follows from the point when the
phase with this guidance is entered, to the point where it touches the ground, see the Figure below. The landing route
has two parts, being decomposed into 6 patches:

• First part: Descending loiter used to descend from the cruise altitude to an altitude where the heading manoeuvre
towards the runway can be performed.

– Patch 0: This patch is generated from the point the landing phase is entered to where the loiter is located.
Variables that influence this patch are 𝛾0, 𝑣0 , altitudes 𝐻0 and 𝐻1 , and Loiter point position.

– Patch 1: The patch length (𝐿1) will depend on the amount of loops on the loiter. The latter can go from 0
to more than 1 loop, depending on the altitude necessary to descend/ascend. Variables that influence this
patch are 𝛾1, 𝑣1, altitudes 𝐻1 and 𝐻2 , and Radius loiter (R1).

The loiter exiting point altitude is computed so that patches 2 to 5 can be performed following their desired 𝑣
and 𝛾. So it exists the possibility of starting the landing manoeuvre at a lower altitude thant the exiting point of
the loiter. In that case, the loiter would be used to ascend.

If the aircraft starts the landing phase at an altitude similar to the one of the loiter (defined in point 7), then the
loiter patch is simplified into a turn (during the turn the altitude can still be adjusted) and the turn’s length will
depend on the latter.

• Second part: Final approach of the landing, which consists on turning, facing the runway and touchdown.

– Patch 2: Patches 3 and 4 need to match the distances defined above. Patch number 2 will conect the exit
of the loiter patch with the beginning of patch 3. Variables that influence this patch are 𝛾2,3, 𝑣2,3 , altitudes
𝐻2 and 𝐻3, Loiter point and Touch point positions.

– Patch 3: Turning of the aircraft to face the runway. Variables that influence this patch are 𝛾2,3, 𝑣2,3 ,
altitudes 𝐻3 and 𝐻4 and Radius Head Turn (R3).

– Patch 4: At the end of the patch the aircraft lands. Variables that influence this patch are 𝛾4, 𝑣4 , altitude
𝐻4 and Horizontal extension (dxy).

– Patch 5: Taxi extension for the aircraft to slow down.

248 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 281: Landing route top and front views with parameter identification

2.9.5.6 Rendezvous

Rendezvous guidance is used to create a meeting point where the 1x air unit will approach a second unit (either another
air or base) within a determined offset.

This guidance updates constantly the vehicle attitude in order to track, with the shortest path, the position of the second
unit (named as Base hereafter). This guidance works for both static and moving Base.

Rendezvous navigation is ready for taking Internest input to improve the precision from its guidance, being the most
suitable kind for Internest integration.

2.9. Block Programs 249

1x PDI Builder, Release 6.8.65

Fig. 282: Rendezvous block

Warning: In order to produce a guidance computation this block has to be connected to the Guidace Computation
block.

• Configuration menu:

All the parameters that define the rendezvous guidance are detailed.

250 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 283: Rendezvous block configuration

1. Patch: This is detailed in the common guidance block parameters, described at the beginning of this
section in Guidance blocks common configuration.

2. Set height mode: This is detailed in the common guidance block parameters, described at the beginning
of this section in Guidance blocks common configuration.

3. Arcade position/speed transition: This is detailed in the common guidance block parameters, described
at the beginning of this section in Guidance blocks common configuration.

4. Set speed: This is detailed in the common guidance block parameters, described at the beginning of this
section in Guidance blocks common configuration.

2.9. Block Programs 251

1x PDI Builder, Release 6.8.65

5. Guidance control: This is detailed in the common guidance block parameters, described at the beginning
of this section in Guidance blocks common configuration.

6. Relative position: For both Docking and Rendezvous the axes are set according to 1x autopilot orientation
(for more information about 1x orientation visit Hardware installation - Orientation section of 1x user
manual).

– Rendezvous relative position: 3D point used to configure the meeting point for the 1x air unit.
This point will be tracked by the vehicle and, once reached, it will start travelling to Docking relative
position. For VTOL, X and Y components must be equal.

– Docking relative position: 3D point used to configure the offset for the approaching vehicle to
the Docking base. This will be the difference from GNSS position that defines the landing point.

Warning: Usually, the docking relative position is set by slightly overlapping the ‘Docking
base’ in order to ensure that the 1x air unit reaches it, as can be seen in the figure below.

7. Base yaw, pitch & roll: Defines the attitude from the Base body. These values affect the navigation by
orienting the air unit to be equal to the attitude from the Base unit. To be configured with telemetry
(example below).

8. Docking base: Defines the position of the GNSS antenna connected to the Base unit. If the guidance is
being configured for a ‘moving’ Base, a Moving Object must be assigned to it.

9. Use Internest: As Rendezvous navigation is prepared to take Internest input, here the user can enable its
use and configure a Timeout.

The following figure gives an overview of some parameters introduced (note that the negative Z-coordinate is due to
the 1x autopilot axes convention):

Fig. 284: Rendezvous guidance parameters

252 Chapter 2. Configuration

https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#orientation

1x PDI Builder, Release 6.8.65

In order to know how to configure the Moving Object, which is assigned to Docking Base and the Base attitude, see
Data transmission between Veronte 1x Autopilots -> Integration examples section of this manual.

Finally, in order to see the Moving Object position in the Veronte Ops interface, in the 1x Air unit:
1. Go to Telemetry menu→ Telemetry section→ Data link to VApp.

2. Add Moving Object to the list of variables.

2.9.5.7 Taxi

Taxi guidance is used to create a linear path along the runway that is followed by the aircraft. This command is normally
used in the take-off phase, where the airplane is wanted to keep the direction of the runway while is accelerating until
the lift-off point.

Fig. 285: Taxi block

Warning: In order to produce a guidance computation this block has to be connected to the Guidace Computation
block.

• Configuration menu:

2.9. Block Programs 253

1x PDI Builder, Release 6.8.65

Fig. 286: Taxi block configuration

All the parameters that define the taxi guidance are detailed.

1. Patch: This is detailed in the common guidance block parameters, described at the beginning of this
section in Guidance blocks common configuration.

2. Set height mode: This is detailed in the common guidance block parameters, described at the beginning
of this section in Guidance blocks common configuration.

3. Arcade position/speed transition: This is detailed in the common guidance block parameters, described
at the beginning of this section in Guidance blocks common configuration.

4. Set speed: This is detailed in the common guidance block parameters, described at the beginning of this
section in Guidance blocks common configuration.

5. Guidance control: This is detailed in the common guidance block parameters, described at the beginning
of this section in Guidance blocks common configuration.

6. Runway: Here it is selected a runway previously configured, see the Runway option of Veronte Ops for
more information.

254 Chapter 2. Configuration

https://manuals.embention.com/veronte-ops/en/6.8/index.html

1x PDI Builder, Release 6.8.65

Besides, it is possible to use the Advanced mode and select a different end point or direction. By clicking

on or different options will be displayed:

Fig. 287: Runway parameters

– End point: Defines the end point of the runway. The two available options are:

∗ icon selected: By default, this point is the end of the runway. But the user can select in
the drop-down list any other previously defined point. This includes waypoints defined in the
Mission (in Veronte Ops), among many others.

∗ icon selected: Alternately, the user can manually define the End point. Then it can be
configured in two ways:

· Relative: In this case, the position of the point is relative to another point. That point could
be any platform fitted with a 1x autopilot.

· Absolute: The coordinates can be set in UTM, MGRS, Decimal Degrees or Degress º ” ‘.
They are indicated through the latitude, longitude and altitude (being possible to define this
last one with respect to the ellipsoid, WGS84, to the sea level, MSL or to the ground, AGL).

– Direction: Defines the runway direction. Again, there are two available options:

∗ icon selected: By default, it is the same as the selected runway. It can be also chosen from
a list of options including runway direction, tailwind direction, etc.

∗ icon selected: Alternately, it can also be defined as an angle with respect to the magnetic
north.

2.9. Block Programs 255

1x PDI Builder, Release 6.8.65

2.9.5.8 VTOL

VTOL guidance (vertical take-off and landing) is used in multicopters for the take-off and landing operations. This
guidance consists on the creation of a vertical line that starts at the point where the platform enters in this guidance.

VTOL guidance generates a vertical straight trajectory.

Fig. 288: VTOL block

Warning: In order to produce a guidance computation this block has to be connected to the Guidace Computation
block.

• Configuration menu:

256 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 289: VTOL block configuration

All the parameters that define the VTOL guidance are detailed.

1. Patch: This is detailed in the common guidance block parameters, described at the beginning of this
section in Guidance blocks common configuration.

2. Set height mode: This is detailed in the common guidance block parameters, described at the beginning
of this section in Guidance blocks common configuration.

3. Arcade position/speed transition: This is detailed in the common guidance block parameters, described
at the beginning of this section in Guidance blocks common configuration.

4. Set speed: This is detailed in the common guidance block parameters, described at the beginning of this
section in Guidance blocks common configuration.

5. Guidance control: This is detailed in the common guidance block parameters, described at the beginning
of this section in Guidance blocks common configuration.

2.9. Block Programs 257

1x PDI Builder, Release 6.8.65

6. Type: These parameters are used to indicate how the multicopter follows the route during the take-off and
landing.

The path Straight consists on a vertical line from the point where the vehicle enters in this phase. In the
case of a take-off, the line goes from the ground to an altitude indicated by the user.

The second option, Hangman, the path consists on a vertical and horizontal line.

– Extend: When Up or Down are selected, the value set in Safe will be discard, and the platform will
ascend or descend, until a next change.

– Safe: This parameter defines the altitude the aircraft reach. The user can select an Operation

Guidance point from the drap-down list (icon selected) or manually enter a value (icon
selected), this latter value can be:

∗ Relative: Starting from the initial point of the route (current platform position).

∗ Absolute altitude: MSL, AGL or WGS84.

As an example, in a Take-Off operation, an altitude of -10000 meters can be indicated as the
final point of the route, so it is sure that the multicopter will keep climbing until another phase
is commended (via automation or manually).

The same procedure is done in the landing, indicating a big relative distance (for example 100
meters from the starting point), so it is sure that the vehicle reaches the ground, and an automation
is set to stop the platform when it touches the surface.

Note: When the option relative is selected, a positive value will made the aircraft descend.
Therefore, this value is Positive down.

– Touch: Additional parameter to be configured when the type Hangman is selected. It defines a
point that the aircraft has to reach. For instance, after go Up/Down the set value, the aircraft will
perform an horizontal movement according to the defined point. Finally, when the aircrafts is over
the point, it will descend until reaches that point.

Usually, this option is used to land at the same point where it took-off (Return to Take-Off point) or
when there are obstacles in the area and by performing this movement the platform can avoid them
and land safely.

There are 2 ways to configure it:

∗ icon selected: By default, this point is the touch point of the runway. But the user can select
in the drop-down list any other previously defined point. This includes waypoints defined in the
Mission (in Veronte Ops), among many others.

∗ icon selected: Alternately, the user can manually define this point. Then it can be configured
in two ways:

· Relative: In this case, the position of the point is relative to another point. That point could
be any platform fitted with a 1x autopilot.

· Absolute: The coordinates can be set in UTM, MGRS, Decimal Degrees or Degress º ” ‘.
They are indicated through the latitude and longitude.

258 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 290: Touch options

The following image gives an overview of some parameters introduced:

Fig. 291: Parameters Overview

2.9.5.9 Yawing current

Yaw guidance is used in multicopters to indicate the behaviour of the platform in the yaw axis. This option is normally
used during the cruise phase of the multicopters, because the route can be carried out with the aircraft without rotating
in the yaw axis, or rotate it to point its longitudinal axis parelel to the path.

Yawing current block produces the desired yaw by keeping the yaw reading in on focus. That is, the multicopter will
keep the yaw angle it has when entering in the phase that contains this guidance. Desired Yaw = Current Yaw.

Fig. 292: Yaw current block

2.9. Block Programs 259

1x PDI Builder, Release 6.8.65

• Input

(Optional) Commanded yaw offset with respect to reference: It is the desired yaw increment with respect
to the yaw reference set in the block.

• Configuration menu:

Fig. 293: Yaw current block configuration

– Limit enabled: When activated, the yaw rate limit will be set to a constant value indicated below.

– Limit rate value: The user can enter this value in different units. The available units are: rad/s, rad/m,
rad/h, rps, rpm, rph and °/s.

2.9.5.10 Yawing heading

Yaw guidance is used in multicopters to indicate the behaviour of the platform in the yaw axis. This option is normally
used during the cruise phase of the multicopters, because the route can be carried out with the aircraft without rotating
in the yaw axis, or rotate it to point its longitudinal axis parelel to the path.

Yawing heading block produces the desired yaw as an angle offset from heading.

Heading represents the direction of the velocity vector and, when it is very small, its estimation is more complex and
the direction is constantly changing. Because of this, the approximation Yaw = Heading is introduced when the
estimated velocity is close to 0.

Fig. 294: Yaw heading block

• Input

(Optional) Commanded yaw offset with respect to reference: It is the desired yaw increment with respect
to the yaw reference set in the block.

• Configuration menu:

260 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 295: Yaw heading block configuration

– Limit enabled: When activated, the yaw rate limit will be set to a constant value indicated below.

– Limit rate value: The user can enter this value in different units. The available units are: rad/s, rad/m,
rad/h, rps, rpm, rph and °/s.

2.9.5.11 Yawing north

Yaw guidance is used in multicopters to indicate the behaviour of the platform in the yaw axis. This option is normally
used during the cruise phase of the multicopters, because the route can be carried out with the aircraft without rotating
in the yaw axis, or rotate it to point its longitudinal axis parelel to the path.

Yawing north block produces the desired yaw as an angle offset from north. That is, the yaw of the multicopter will
be rotated so that its longitudinal axis always has north as a reference.

Fig. 296: Yaw north block

• Input

(Optional) Commanded yaw offset with respect to reference: It is the desired yaw increment with respect
to the yaw reference set in the block.

• Configuration menu:

Fig. 297: Yaw north block configuration

– Limit enabled: When activated, the yaw rate limit will be set to a constant value indicated below.

– Limit rate value: The user can enter this value in different units. The available units are: rad/s, rad/m,
rad/h, rps, rpm, rph and °/s.

2.9. Block Programs 261

1x PDI Builder, Release 6.8.65

On the other hand, there are 3 more blocks that help the navigation guidance.

2.9.5.12 Navigation guidance blocks

These blocks, based on the position of a target, calculate the acceleration required to reach that position.

• PNav: Proportional navigation block. The algorithm implemented in this block is based on the fact that two
vehicles are on a collision course when their direct line-of-sight does not change direction as the range closes.

So, PNav dictates that the missile velocity vector should rotate at a rate proportional to the rotation rate
of the line of sight (LOS-rate), and in the same direction.

Fig. 298: PNav algorithm: A missile (blue) intercepts a target (red) by maintaining constant bearing to it (green)

• Modified PNav: Modified proportional navigation guidance (Old Miura).

• GENEX: Generalized Vector Explicit Guidance (GENEX) block.

Fig. 299: Navigation guidance blocks

They are configured the same, but with slightly different algorithms:

262 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

• Input

Pin 0: Target position.

• Output

Pin 0: Desired acceleration in body axis.

• Configuration menu:

Fig. 300: PNav block configuration

The following parameters are configurable:

– Acc limit: The user can fix a limit for the acceleration. The units available for this value are: m/s2, ft/s2,
in/s2 and g.

– n: It is a proportional parameter.

2.9.6 Library blocks

Library blocks are custom blocks. They are usually a combination of blocks that are used many times in the
configuration of block programs, so for ease of configuration, the user can group them into a single block.

There are 2 types of Library blocks: Custom and Default blocks.

2.9. Block Programs 263

1x PDI Builder, Release 6.8.65

Fig. 301: Library blocks menu

• Custom
These are custom blocks created by the user. They can be added by simply clicking on the “+” icon. An example
of how to create one of these blocks is shown below:

Fig. 302: Example of custom library block

Examples of such blocks are those related to the Stick, which have been named “Center Stick” and “Trim Stick”:

Fig. 303: Example of custom library block - Center Stick

264 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 304: Example of custom library block - Trim Stick

• Default
There is only one ‘Default’ library block, it is called: Sagetech ADSB. This is a block created for the
Transponder/ADS-B “Sagetech MXS”.

Fig. 305: Default library block - Sagetech ADSB block

2.9. Block Programs 265

1x PDI Builder, Release 6.8.65

Fig. 306: Default library block - Sagetech ADSB block configuration

By clicking on the icon, it will appear as ‘Custom’ block and will be available in the Library blocks, so that
users will be able to use it in their programs.

Fig. 307: Default library block - Sagetech ADSB

266 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

2.9.7 Logic blocks

Logic gates for operating with boolean variables.

2.9.7.1 AND

Returns true if ALL inputs are true, else return false.

Fig. 308: AND block

• Inputs

0: Input bit.

1: Input bit.

• Output

0: Output bit.

• Configuration menu

Fig. 309: AND block configuration

Here the user can configure the number of inputs. The units available units for this value are: bin, octal, dec and
hex.

2.9.7.2 OR

Returns true if ANY of inputs are true, else return false.

2.9. Block Programs 267

1x PDI Builder, Release 6.8.65

Fig. 310: OR block

• Inputs

0: Input bit.

1: Input bit.

2: Input bit.

• Output

0: Output bit.

• Configuration menu

Fig. 311: OR block configuration

Here the user can configure the number of inputs. The units available units for this value are: bin, octal, dec and
hex.

2.9.7.3 OR

Logical complement (negation) computation.

Fig. 312: NOT block

• Input

0: Input bit.

268 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

• Output

0: Output negated bit.

2.9.8 Math blocks

Math blocks allow to perform a wide variety of mathematical operations.

Fig. 313: Math blocks

2.9.8.1 f(x)

Math blocks with 1 input and 1 output.

All f(x) math blocks have the same input and output:

• Input

: Input value, real variable or constant.

• Output

: Output value.

Warning: All these blocks express the output value in radians.

Users will find the following blocks:

• -x: Change of sign.

• 1/x: Inverse of the input (1/x).

• [-0.5,0.5] Wrap: Wrapping to the range [-0.5, 0.5].

• [-pi,pi] Unwrap: Angle unwrap from [-pi, pi] limits. This block converts an angle signal in the range [-pi, pi]
to a continuous signal in the range [-inf, +inf] assuming the smallest angle change between execution steps.

• [-pi,pi] Wrap: Angle wrapping to the range [-pi, pi] radians.

• [0,1] Wrap: Wrapping to the range [0, 1].

2.9. Block Programs 269

1x PDI Builder, Release 6.8.65

• [0,2pi] Wrap: Angle wrapping to the range [0, 2*pi] radians.

• Arccos(x): Arccos function.

• Arcsin(x): Arcsin function.

• Arctan(x): Arctangent function.

• Ceil(x): Closest intger rounding towards plus infinity.

• Cos(x): Cosine function.

• Exp(x): Natural exponent (e number to the power of the input of the block).

• Floor(x): Closest integer rounding towards minus infinity.

• Log(x): Natural logarithm.

• Round(x): Rounding to closest integer.

• Sign(x): Sign of the input. It returns ‘1’ if the input is positive or zero and ‘-1’ if negative.

• Sin(x): Sine function.

• Sqrt(x): Square root.

• Tan(x): Tangent function.

• x^2: Square of the input.

• |x|: Absolute value.

2.9.8.2 f(x,y)

Math blocks with 2 inputs and 1 output.

All f(x,y) math blocks have the same inputs and output:

• Inputs

: Input value, real variable or constant.

: Input value, real variable or constant.

• Output

: Output value.

Users will find the following blocks:

• Atan2(y,x): Calculates one unique arc tangent value, where the signs of both arguments are used to determine
the quadrant of the result.

• Max(x,y): Returns the maximum value of the two inputs.

• Min(x,y): Returns the minimum value of the two inputs.

• Remainder(x/y): Remainder block computes the remainder of the division with the first input as numerator and
second input as denominator.

• x*y: Mulitplier block.

• x+y: Adder block.

• x-y: Subtract block computes the subtraction of the first input minuts the second input.

• x/y: Divider block computes the division with the first input as numerator and second input as denominator.

270 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

• x^y: Computes the first input raised to the power of the second input.

2.9.8.3 Polynomial

This block performs a polynomial evaluation, it returns the value of the polynomial defined by the coefficients for the
value of x.

Fig. 314: Polynomial block

• Inputs

coef : Array of polynomial coefficients. The order is in increasing order of powers, that is first element is the
independent term, second term is the proportional term, third the quadratic term, etc.

x: Value of evaluation of the polynomial.

• Output

: Result of the polynomial evaluation.

2.9.8.4 Vectors

These are blocks that perform operations with vectors.

• Add: Adds two vectors together.

• Add Elements: Adds all the element of the input vector.

• azeld -> xyz: Conversion from azimuth, elevation and distance to NED (North, East, Down).

Fig. 315: azeld -> xyz block

– Inputs

az: Azimuth in radians.

el: Elevation in radians.

d: Distance in meters.

– Output

xyz: NED (North, East, Down) vector in meters.

2.9. Block Programs 271

1x PDI Builder, Release 6.8.65

• Body to NED: Rotates a vector from the Body frame of reference to North, East, Down.

Fig. 316: Body to NED block

– Input

i0: Vector in Body frame.

– Output

o0: Vector in NED frame.

• Bundle: Returns a vector whose components are the inputs of the block. In its configuration, the user can set
the number of inputs.

Fig. 317: Bundle block

• Dot Product: Returns the dot product of the input vectors.

• Linear Transformation: Returns the input vector multiplied by the transformation matrix. In order to edit the
transformation matrix, double click on the block.

Fig. 318: Linear Transformation block

• Max: Returns the value and position (integer output) of the highest component of the input vector.

• Min: Returns the value and position (integer output) of the lowest component of the input vector.

• Multiply Elements: Returns the product of the components of the input vector.

• NED to Body: Rotates a vector from the North, East, Down frame of reference to Body.

272 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 319: Body to NED block

– Input

i0: Vector in Body frame.

– Output

o0: Vector in NED frame.

• Norm: Computes the norm of the input vector.

• Scale: Multiply the input vector (vIN) by a scalar value (k).

• Split Bool: Splits a vector of booleans into singular boolean variables. In its configuration, the user can set the
number of outputs.

• Split Real: Splits a vector of real variables into singular real variables. In its configuration, the user can set the
number of outputs.

• xyz -> azeld: Conversion from NED (North, East, Down) to azimuth, elevation and distance.

Fig. 320: xyz -> azeld block

– Input

xyz: NED (North, East, Down) vector in meters.

– Outputs

az: Azimuth in radians.

el: Elevation in radians.

d: Distance in meters.

2.9.9 Mode/AP Selection blocks

Mode/AP Selection blocks allow to interact with flight modes and redundancy (4x autopilot).

2.9. Block Programs 273

1x PDI Builder, Release 6.8.65

2.9.9.1 AP Selection

AP selection block is a 4x Veronte Autopilot selection helper. This block helps providing the control outputs from
other autopilots according to the ‘4x selection’ table.

Fig. 321: AP Selection block

• Outputs

Overwriting: TRUE if this channel is being overwritten by other autopilot, that means that the current
autopilot is not selected.

FALSE if the current autopilot is selected, and therefore it has the control of this channel.

Value: If the channel is being overwritten by other autopilot (Overwritting is TRUE), it returns the value that
the other autopilot is applying. Otherwise (Overwritting is FALSE), value is 0.

• Configuration menu: The user must select the channel to be controlled.

Fig. 322: AP Selection block configuration

Attention: If the 4x Veronte tab of the Control menu is not configured, the following warning message will
appear when trying to open the configuration menu of this block.

Fig. 323: AP Selection block warning message

274 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

This block is intended to be used as input for the inner loop PID (at control rate), so that the Integral term of the 3
Autopilots 1x of the 4x Autopilot remains the same. This way, if the selected autopilot from the 4x is switched to one
of the other 2 available autopilots, a smooth response without significant ‘jumps’ in control will still be obtained. An
example of this use is shown below:

Fig. 324: AP Selection block - Example of use

2.9.9.2 Arcade

Arcade Pure block switches between two input signals according to the current mode of the configured channel. Refer
to the mode configuration table to check the configuration, see Modes section.

Fig. 325: Arcade block

• Inputs

Stick: Arcade value to be applied when the configured channel is in arcade mode.

(Optional) Auto: Auto value to be applied when the configured channel is not in arcade mode.

• Outputs

Active: TRUE if the configured channel is in arcade mode, FALSE otherwise.

Value: Value to apply. In arcade mode, this value is equal to the first input (arcade value) and in any other
mode is equal to the second input (auto value).

2.9. Block Programs 275

1x PDI Builder, Release 6.8.65

• Configuration menu:

Fig. 326: Arcade block configuration

The following parameters must be configured:

1. Channel: Channel controlled by this block. Be careful, each channel is related to a control output
previously defined in the Modes section.

2. Zero enabled: It can be enabled by the user.

– Disabled: If the stick is in position “0”, even if it is in arcade mode, the autopilot processes it as if
it were in auto mode, and consequently, the value of the output active will be false and the value of
the output value will be that of the auto input.

– Enabled: If the stick is in position “0” and in arcade mode, the autopilot still processes it as being
in arcade mode, so the output active value will be true and the output value will be that of the stick
input.

3. Gain: The output value is the result of multiply the stick input by this gain.

4. Dead band: Creates a zone where the movement of the stick is not sent to the system.

5. Stick zero: Output value when the value of the stick input is 0.

6. Delete a group of phases.

7. Delete/Add a phase to a group.

8. Add configuration: Add a new group of phases affected by this block.

276 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

2.9.9.3 Arcade Bounce

Arcade Bounce block switches between two input signals according to the current mode of the configured channel
preventing bounces in transitions from arcade to auto. Refer to the mode configuration table to check the configuration,
see Modes section.

Fig. 327: Arcade Bounce block

In the pictures below there is an example controlling the yaw.

Fig. 328: Arcade Bounce block example

2.9. Block Programs 277

1x PDI Builder, Release 6.8.65

Fig. 329: Arcade Pure VS Arcade Bounce

This example is explained below:

When the stick is in its zero position, the command sent is 0, so the status of the Active BIT is FALSE (low level), and
the desired yaw is the last yaw saved when the status was TRUE (high level).

However, the platform can still have a yaw rate (r (Angular Velocity) variable in the block example) and in an arcade
pure block it could experiment this bounce.

Therefore, with the Arcade Bounce block, when the Yaw rate (Vrate input) approaches 0 (changes its sign), this BIT
reverts to TRUE (for a moment), and even though a new yaw rate is not being commanded with the stick, the desired
yaw is being updated with the current yaw.

As it is very similar to the Arcade Pure block, the inputs and outputs are the same, except that an additional input is
added to this block:

• Input

Vrate: Controlled variable used to prevent bounces.

• Configuration menu:

278 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 330: Arcade Bounce block configuration

The following parameters must be configured:

1. Channel: Channel controlled by this block. Be careful, each channel is related to a control output
previously defined in the Modes section.

2. Gain: The output value is the result of multiply the stick input by this gain.

3. Dead band: Creates a zone where the movement of the stick is not sent to the system.

4. Stick zero: Output value when the value of the stick input is 0.

5. Delete a group of phases.

6. Delete/Add a phase to a group.

7. Add configuration: Add a new group of phases affected by this block.

2.9.9.4 Arcade Extend

Arcade Extend block switches between two input signals according to the current mode of the configured channel
smoothing the transition by extending the arcade mode until the input ‘Val’ goes below the configured margin.
(Similar to Arcade Bounce block). Refer to the mode configuration table to check the configuration, see Modes section.

2.9. Block Programs 279

1x PDI Builder, Release 6.8.65

Fig. 331: Arcade Extend block

As it is very similar to the Arcade Pure block, the inputs and outputs are the same, except that an additional input is
added to this block:

• Input

Val: Controlled variable used to extend the arcade to auto transitions.

• Configuration menu:

Fig. 332: Arcade Extend block configuration

The following parameters must be configured:

1. Channel: Channel controlled by this block. Be careful, each channel is related to a control output
previously defined in the Modes section.

2. Margin: If the ‘Val input’ is higher than the margin set here, the autopilot will remain in arcade mode.

3. Gain: The output value is the result of multiply the stick input by this gain.

4. Dead band: Creates a zone where the movement of the stick is not sent to the system.

5. Stick zero: Output value when the value of the stick input is 0.

280 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

6. Delete a group of phases.

7. Delete/Add a phase to a group.

8. Add configuration: Add a new group of phases affected by this block.

2.9.9.5 Manual

Manual block switches between two input signals according to the current mode of the configured channel. Refer to
the mode configuration table to check the configuration, see Modes section.

Fig. 333: Manual block

• Inputs

Stick: Manual value to be applied when the configured channel is in manual mode.

(Optional) Auto: Manual value to be applied when the configured channel is not in manual mode. The
default value if not connected is zero.

• Outputs

Active: TRUE if the configured channel is in manual mode, FALSE otherwise.

Value: Value to apply, which in manual mode is equal to the first input (manual value) and in any other
mode is equal to the second input (auto value).

• Configuration menu: The user must select the channel to be controlled.

Fig. 334: Manual block configuration

2.9.9.6 Mix

Mix block adds a ‘Stick’ signal to an ‘Auto’ signal if the current mode for the configured channel is MIX, otherwise
the output is directly the ‘Auto’ signal. In other words, it allows a variable offset to be applied to the input using one of
the stick channels.

2.9. Block Programs 281

1x PDI Builder, Release 6.8.65

Fig. 335: Mix block

• Inputs

Stick: Value to be added to ‘Auto’ when the configured channel is in MIX mode.

Auto: Auto value.

• Output

0: If the configured mode of the configured channel is MIX the output is the addition of ‘Stick’ and
‘Auto’, otherwise the output is directly ‘Auto’.

• Configuration menu:

Fig. 336: Mix block configuration

The following parameters can be configured:

– Channel: The user must select the channel to be controlled.

– Gain: This gain will multiply the ‘Stick’ input (before the addition with the ‘Auto’ input) if the current
mode is MIX.

2.9.10 Navigation blocks

2.9.10.1 EKF Adapters

These blocks allow the connection between the autopilot sensors (internal or external) and the calculation of the
navigation algorithm. That is, they “convert” the sensor data into EKF data in order to implement them in the navigation
block (Extended Kalman Filter algorithm).

For this reason, EKF Adapters blocks normally work with the Sensor blocks as inputs.

Altitude
Altitude block adapts an exteral altimeter sensor, like LIDAR, Sonar, etc., to the EKF input.

282 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 337: Altitude block

• Inputs

Alt: Altitude measurement as a 3-dimensional real array with the following components: 0-Update flag,
1-Altitude measurement, 2-Variance. This input corresponds to the Altitude Sensor block.

(Optional) enable: Optional boolean input to enable (true) or disable (false) the input in the EKF. Not
connected means enabled.

• Output

Pin 0: EKF input data (H, R, y).

Note:
– H: Observation matrix.

– R: Measurement covariance matrix.

– y: Measurement.

• Configuration menu:

Fig. 338: Altitude block configuration

The following acceletometer parameters must be configured:

2.9. Block Programs 283

1x PDI Builder, Release 6.8.65

– Decimation: Parameter that defines the group of measurements for which 1 value will be stored. For
example, if the decimation is 10, every 10 measurements will be counted as 1. This procedure is used to
reduce the number of samples. Recommended value 40 (in decimal units).

– Position of altimeter (Body frame): Parameter to indicate the distance from the altimeter to the centre of
gravity of the platform. This is used to take into account the weight of the altimeter in the aircraft control.

– Enable tilt limit: The altimeter is normally installed in a fixed position having a constant direction with
respect to the platform. Taking a LIDAR as an example, it is used to measure altitude so it has to point
towards the ground, in a direction parallel to the Z body axis. When the vehicle is not level on its X or Y
axis (has a pitch or roll angle different from zero), the LIDAR will not point in a direction perpendicular
to the ground, and the measurement taken will not be the real altitude of the aircraft. This option is a safe
condition to discard the measure of an altimeter when its tilt angle exceeds a certain value defined here.

– Enable tilt correction: Allows the correction of the altimeter sensor measurement, normally AGL
measurent, with internal pitch and roll measurements.

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = (𝐴𝐺𝐿 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡) cos(𝑝𝑖𝑡𝑐ℎ) cos(𝑟𝑜𝑙𝑙)

– Enable sensor limits: It is the range in which the sensor measurement is taken to be processed by 1x PDI
Builder. Any external value will be discarded by the system.

The following figure shows a diagram with the values of maximum and minimum sensor limits altitude, and the
maximum tilt angle.

Fig. 339: Altitude block - Limits

GNSS compass
GNSS compass block takes two relative position measurements and converts them to misalignment vectors to use in
the EKF for attitude correction.

284 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 340: GNSS compass block

• Inputs: These inputs correspond to the GNSS Sensor block.

Drn1: Relative position measurement 0 as a 10-dimensional real array with the following components:

– 0: Update flag

– 1: Rover flag: 1 is rover, 0 is base

– 2: Time stamp

– 3: North relative distance

– 4: East relative distance

– 5: Down relative distance

– 6: Relative distance variance

– 7: X body antenna position

– 8: Y body antenna position

– 9: Z body antenna position

Drn2: Relative position measurement 1 as a 10-dimensional real array with the same components as
described above.

• Outputs

NED: Baseline vector in NED frame as a 5-dimensional real array with the following components:

– 0: Update flag (always 1)

– 1: North component

– 2: East component

– 3: Down component

– 4: Variance

Body: Baseline vector in body frame as a 5-dimensional real array with the following components:

– 0: Update flag (always 1)

– 1: X body component

– 2: Y body component

– 3: Z body component

– 4: Variance.

An example of how to implement this block is presented below:

2.9. Block Programs 285

1x PDI Builder, Release 6.8.65

Fig. 341: GNSS compass block example

Misalignment
Misalignment block transforms from two vectors expressed in NED and body frames to EKF misalignment data
for attitude correction.

Fig. 342: Misalignment block

• Inputs

NED: Vector measured in NED frame as a 5-dimensional real array with the following components:

– 0: Update flag (always 1)

– 1: North component

– 2: East component

– 3: Down component

– 4: Variance

Body: Vector measured in body frame as a 5-dimensional real array with the following components:

– 0: Update flag (always 1)

– 1: X body component

– 2: Y body component

– 3: Z body component

– 4: Variance.

286 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

(Optional) enable: Optional boolean input to enable (true) or disable (false) the input in the EKF. Not
connected means enabled.

• Outputs

Pin 0: EKF input data (H, R, y).

Note:
– H: Observation matrix.

– R: Measurement covariance matrix.

– y: Measurement.

ok: Measurement check bit, returns true if the measurements pass the module checks, false otherwise.

• Configuration menu:

Fig. 343: Misalignment block configuration

The following parameters are configurable:

– Norm diff. threshold: In order to use the measures that enter the block, the moduli of both measurements
must be similar according to the equation:

| 𝑛𝑚𝑛− 𝑛𝑚𝑏𝑛

(𝑛𝑚𝑛 + 𝑛𝑚𝑏𝑛) · 𝑛𝑑𝑡ℎ𝑟
| < 1

Where,

∗ 𝑛𝑚𝑛: This is the norm of the first input vector.

∗ 𝑛𝑚𝑏𝑛: This is the norm of the second input vector.

∗ 𝑛𝑑𝑡ℎ𝑟: Norm diff. threshold as a percentage of one, users should look at the absolute value.

– Minimum norm: In addition, it must also be fulfilled that the moduli of the measures are greater than
the Minimum norm defined here.

– Norm filter: This parameter is to filter the measurement of | 𝑛𝑚𝑛−𝑛𝑚𝑏𝑛
(𝑛𝑚𝑛+𝑛𝑚𝑏𝑛)·𝑛𝑑𝑡ℎ𝑟 | to use it in the Madgwich

algorithm.

2.9. Block Programs 287

1x PDI Builder, Release 6.8.65

– Decimation: Parameter that defines the group of measurements for which 1 value will be stored. For
example, if the decimation is 10, every 10 measurements will be counted as 1. This procedure is used to
reduce the number of samples. Recommended value 10 (in decimal units).

– Use 3D: If enabled, the attitude correction will be in 3D, as by default, only the attitude correction in the
horizontal plane is activated.

Position
Position block adapts absolute position data to EKF data for position update.

Fig. 344: Position block

• Inputs

Pos: Absolute position measurement. This input corresponds to the GNSS Sensor block or Relative position
sensor block.

(Optional) enable: Optional boolean input to enable (true) or disable (false) the input in the EKF. Not
connected means enabled.

• Outputs

Pin 0: EKF input data (H, R, y).

Note:
– H: Observation matrix.

– R: Measurement covariance matrix.

– y: Measurement.

• Configuration menu:

Fig. 345: Position block configuration

288 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Users must configure the following parameters:

– Square error on strong acceleration for position: Under strong acceleration the variance for the position
solution is changed to the specified value.

– Acceleration: Threshold definition. When this threshold is exceeded, strong acceleration variances are
considered.

– Duration of effect (disappears linearly with time): Time needed to restore the default variances of the
GNSS solution.

– Use position measures in the attitude calculation: When enabled, the position data from the GNSS
solution is considered for the attitude estimation.

Static Pressure
Static Pressure block converts static pressure measurement into EKF data for altitude update.

Fig. 346: Static Pressure block

• Inputs

mea: Static pressure measurement as a 3-dimensional real array with the following components:

– 0: Update flag

– 1: Pressure

– 2: Variance

This input corresponds to the Static Pressure sensor block.

(Optional) enable: Optional boolean input to enable (true) or disable (false) the input in the EKF. Not
connected means enabled.

(Optional) gec-y: Enable ground effect measurement correction (true) or disable (false). Not connected
means disabled.

(Optional) gec-r: Enable ground effect variance increment (true) or disable (false). Not connected means
disabled.

• Outputs

Pin 0: EKF input data (H, R, y).

Note:
– H: Observation matrix.

– R: Measurement covariance matrix.

– y: Measurement.

2.9. Block Programs 289

1x PDI Builder, Release 6.8.65

hQNH: MSL right from actual QNH and pressure measurement.

hISA: MSL for ISA and pressure measurement.

• Configuration menu:

Fig. 347: Static Pressure block configuration

The following parameters must be configured:

Navigation
– Decimation: Parameter that defines the group of measurements for which 1 value will be stored. For

example, if the decimation is 10, every 10 measurements will be counted as 1. This procedure is used to
reduce the number of samples. Recommended value 10 (in decimal units).

Variance rate limit
– Max falling rate: Defines the maximum falling rate of the system.

– Max rising rate: Defines the maximum rising rate of the system.

Ground effect: Veronte Autopilot 1x is configured to apply a correction to the Ground Effect for landing
purposes, which needs to be configured here.

– Square error: This value is automatically calculated from the square error of the static pressure sensor
(see Static Pressure sensor block).

290 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

– Altitude correction threshold (Positive down): The user has to define an Altitude Difference for the
system to apply the Grouund Effect. While landing, the aircraft will feel a decrease in the static pressure
due to the Ground Effect, and this pressure difference (transformed into meters) is the Threshold that can
be configured here. If set to 0, whenever Ground Effect is enabled, it will make its effect.

In other words, Altitude error is the measurement from the static pressure sensor in meters minus the
estimated state of the UAV.

Explanation
The ground effect creates a high pressure below the UAV when it is close to the ground, this increase in pressure
readings produces the navigation to “go down”. Veronte Autopilote 1x can mitigate the ground effect in two
ways:

– 1: Increasing the static pressure sensor variance (R) used for the Extended Kalman filter. This means
that other height sources, for example GNSS will be used more strongly to estimate the altitude near the
ground. This is configured with the boxes “Square error” and “Altitude correction threshold (Positive
down)”. If enabled, the R used in the EKF for the static pressure sensor will be increased to be the value
configured in the box when the “altitude error” measured by the static pressure sensor is higher than the
configured threshold in the down direction. Example, if the current estimated state of the UAV is 10 meters
MSL and the measurements from the static pressure sensor tell that the UAV is at 5 meters MSL. If the
“Altitude correction threshold (Positive down)” is less than 5 then the R used for this sensor will be the one
configured in the “Square error”. Please notice that ground effect correction must only be enabled when
close to the ground so that the navigation performance is not negatively impacted when there is no ground
effect.

– 2: Modifying the actual measurement of the static pressure sensor. When this function is enabled the
“altitude error” corresponding to the static pressure sensor is modified according to the table. The idea
is that altitude errors that would make the estimation of the height to go down are changed to reduce the
altitude error. It is also important to only enable this when close to the ground. Using the same example
as before, the 5 meters down of altitude error for this sensor would be transformed to only 4 meters for
example, that way this sensor would pull down the estimated altitude a little bit less.

Note: Please note that these two ways of compensating the ground effect can be enabled/disabled separately
and that they only have to be used when close to the ground. It is recommended to test in controlled conditions.

Correction compensation: Users can edit the correction compensation by clicking here:

Fig. 348: Static Pressure block configuration - Correction compensation table

The user can add or remove points from the correction compensation table. The correction will have the ‘shape’

2.9. Block Programs 291

1x PDI Builder, Release 6.8.65

made by these points. The altitude error used is computed from the actual altitude error by interpolating in the
table (with extrapolation).

– X-axis: Actual altitude error

– Y-axis: Actual error used in EKF

Note: The unit of measurement is meters.

Terrain height
Terrain height block transforms from terrain height measurement to EKF data for terrain height update.

Fig. 349: Terrain height block

• Inputs

height: Terrain altitude as a 4-dimensional real array with the following components:

– 0: Update flag (always 1)

– 1: Valid flag (inside mesh)

– 2: Terrain height

– 3: Variance

This input corresponds to the SRTM height sensor block.

(Optional) enable: Optional boolean input to enable (true) or disable (false) the input in the EKF. Not
connected means enabled.

• Output

Pin 0: EKF input data (H, R, y).

Note:
– H: Observation matrix.

– R: Measurement covariance matrix.

– y: Measurement.

• Configuration menu: The user must configure the decimation of this sensor.

292 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 350: Terrain height block configuration

This parameter defines the group of measurements for which 1 value will be stored. For example, if the
decimation is 10, every 10 measurements will be counted as 1. This procedure is used to reduce the number of
samples. Recommended value 2 (in decimal units).

Velocity
Velocity block converts velocity measurement into EKF data for velocity update.

Fig. 351: Velocity block

• Inputs

Vel: Velocity measurement as a 12-dimensional real array with the following components:

– 0: Update flag

– 1: Fix flag

– 2: North velocity

– 3: East velocity

– 4: Down velocity

– 5: North velocity variance

– 6: East velocity variance

– 7: Down velocity variance

– 8: X body antenna position

– 9: Y body antenna position

– 10: Z body antenna position

– 11: Measurement delay

This input corresponds to the GNSS Sensor block.

(Optional) enable: Optional boolean input to enable (true) or disable (false) the input in the EKF. Not
connected means enabled.

2.9. Block Programs 293

1x PDI Builder, Release 6.8.65

• Output

Pin 0: EKF input data (H, R, y).

Note:
– H: Observation matrix.

– R: Measurement covariance matrix.

– y: Measurement.

• Configuration menu:

Fig. 352: Velocity block configuration

Users must configure the following parameters:

– Square error on strong acceleration for speed: Under strong acceleration the variance for the speed
solution is changed to the specified value.

– Acceleration: Threshold definition. When this threshold is exceeded, strong acceleration variances are
considered.

– Duration of effect (disappears linearly with time): Time required to restore the default variances of the
GNSS solution.

– Use speed measures in the attitude calculation: When enabled, the speed data from the GNSS solution
is considered for the attitude estimation.

Velocity down
Velocity down block adapts the velocity down measurement to EKF data for velocity down update.

Fig. 353: Velocity down block

• Inputs

Vdown: Velocity measurement down measurement.

294 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

(Optional) enable: Optional boolean input to enable (true) or disable (false) the input in the EKF. Not
connected means enabled.

• Output

Pin 0: EKF input data (H, R, y).

Note:
– H: Observation matrix.

– R: Measurement covariance matrix.

– y: Measurement.

• Configuration menu:

Fig. 354: Velocity down block configuration

The following parameters must be configure:

– Decimation: Parameter that defines the group of measurements for which 1 value will be stored. For
example, if the decimation is 10, every 10 measurements will be counted as 1. This procedure is used to
reduce the number of samples. Recommended value 10 (in decimal units).

– Sensor variance ((m/s)2): Sensor error variance in metres per second squared.

– Enable tilt limit: The sensor measures the variable in a direction perpendicular to the longitudinal axis
of the platform, so when it is tilted the reading will not be reliable. This option allows the definition of a
tilt limit, so that if the limit is reached, the sensor reading will be discarded.

– Max tilt: A maximum tilt can be defined.

– Enable speed limit: This option allows a speed limit to be set, so that if the limit is reached, the sensor
reading will be discarded.

– Min speed down: Defines the minimum limit of the speed measured by the sensor.

2.9. Block Programs 295

1x PDI Builder, Release 6.8.65

– Max speed down: Defines the maximum limit of the speed measured by the sensor.

2.9.10.2 EKF Split

EKF Split block shows all the sensor information that is going into the EKF algorithm.

Fig. 355: EKF Split block

• Input

Pin 0: EKF input data from any EKF input adapter block (H, R, y).

• Outputs

is_new: Update flag (true when a new measurement is generated, false otherwise).

y: Measurement. (3-dimensional real array)

R: Measurement covariance matrix. (3-dimensional real array)

Hdrn: Observation matrix for the position increment states. (9-dimensional real array)

Hdvn: Observation matrix for the velocity increment states. (9-dimensional real array)

Hmis: Observation matrix for the misalignment states. (9-dimensional real array)

Hdwb: Observation matrix for the gyroscope bias increment states. (9-dimensional real array)

Hdfb: Observation matrix for the terrain altitude increment state. (9-dimensional real array)

This block is designed for any EKF adapter block, i.e. a standard block for all EKF adapter blocks, therefore some
outputs only correspond to a certain type of EKF adapter block. And, consequently, the outputs that do not
correspond to the connected block, will get 0 as value.

Attention: Be careful! Check that the blocks to which the outputs are connected match in size with the data,
i.e. if the output is a 9-dimensional real array, a split block or a multiple user real variable with size 9 va must be
connected to it in order to display the data.

296 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 356: EKF Split block - Example

2.9.10.3 Navigation

Navigation block updates the Veronte navigation variables (position, velocity, attitude, etc.) based on the current
selected navigation source.

Note: This block has by default 1 input, in its configuration the user must set the desired size of inputs.

2.9. Block Programs 297

1x PDI Builder, Release 6.8.65

Fig. 357: Navigation block

Veronte Autopilot 1x integrates a navigation system that can operate with GPS and without GPS coverage.

In the navigation with GPS, the system uses it to fly the aircraft along a route or to a given waypoint. It is possible
to control the aircraft’s position (longitude and latitude) and the altitude. This is the navigation used by default by the
system when everything is working properly.

In case the GPS signal is lost, the navigation can easily measures the attitude angles with a greater precision than using
a simple IMU. With these measures, it is possible for the system to control pitch, roll and yaw and then maintain a safe
attitude when the GPS signal is lost, avoiding any possible malfunctions. It is recommended to create an automation
to change to a phase where the attitude angles are controlled, in case of loss of GPS signal. For more information visit
Automations.

Note: The yaw can be measured in the navigation without GPS only if the magnetometer is activated in the navigation
window.

• Input

0: EKF input data from any EKF input adapter block.

• Output

0: Index + 1 of the current input measurement used to update the EKF state. A value of zero means that no
measurements have been input to the EKF in the current step.

• Configuration menu: This menu contains the parameters used in the Kalman Filter algorithm to fuse the
information provided by the different sensors. This data is used in the navigation system to generate the
commands sent to the aircraft.

298 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 358: Navigation block configuration

Warning: The values that appear here should only be changed by advanced users. If the user is not
familiar with the Kalman Filter algorithm and Sensor Fusion, do not change the default parameters.

If further information is required, please contact the support team (create a ticket in the customer’s Joint
Collaboration Framework; for more information, see Tickets section of the JCF manual).

Although this configuration menu must be set by default or modified by advanced users, the 2 following
parameters must be configured by all users:

– Inputs size: Users must set the number of inputs.

– Navigation: The type of navigation must be selected, tha available options are:

∗ Internal: Uses internal data for navigation. Data (position, attitude, etc.) is processed into 1x unit
from sensor measures.

∗ External VCP: Uses external data for navigation. Data (position, attitude, etc.) is provided by
Veronte Communication Protocol (VCP).

∗ External Var: Uses external data for navigation.

· It takes directly the attitude, velocity and acceleration data of the following real variables
from the memory:

2.9. Block Programs 299

https://manuals.embention.com/joint-collaboration-framework/en/0.1/tickets/index.html

1x PDI Builder, Release 6.8.65

· ID 259: External yaw

· ID 260: External pitch

· ID 261: External roll

· ID 262: External roll rate

· ID 263: External pitch rate

· ID 264: External yaw rate

· ID 265: External veloctiy north

· ID 266: External velocity east

· ID 267: External velocity down

· ID 268: External acceleration x body axis

· ID 269: External acceleration y body axis

· ID 270: External acceleration z body axis

· ID 271: External GPS Time of Week

· Position data is read from the Moving Feature 00.

∗ Vectornav VN-300: Uses external data for navigation. Data (position, attitude, etc.) is provided
by Vectornav VN-300. For more information, see the Vectornav VN-300 -> Integration examples
section of this manual.

Wind
By clicking on the ‘Wind Estimation’ button, a configuration menu will be displayed:

Fig. 359: Wind Estimation configuration

To make a proper estimate, the system needs to collect as much wind information as possible, so missions with
a trajectory involving changes in directions will result in a better wind estimate compared to a straight trajectory
mission.

The computed result is displayed in the variables: Wind Velocity Down, Wind Velocity East, Wind Velocity
North.

Warning: The values that appear here should only be changed by advanced users.

300 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

2.9.11 Positions blocks

Position blocks allow to operate with position variables.

Note: In 1x PDI Builder, positio variables are also refered to as Features.

2.9.11.1 Constant Position

Constant Position block defines a position on Earth using Latitude, Longitude and WGS84 Height.

Fig. 360: Constant Position block

• Output

Pin 0: Output of the configured position.

• Configuration menu:

Fig. 361: Constant Position block configuration

The following parameters must be configured to define the desired absolute position:

– The coordinates can be set in UTM, MGRS (Military Grid Reference System), Decimal Degrees or
Degress º ‘ ”.

– They are indicated through the latitude, longitude and altitude.

2.9. Block Programs 301

1x PDI Builder, Release 6.8.65

– WGS84: The first time, the altitude must be defined with respect to the ellipsoid, WGS84. After this, MSL
and AGL values will be calculated automatically and the user will also be able to define the altitude with
respecto to the sea level, MSL.

2.9.11.2 Move

Move block outputs the position which is the result of moving the input position with the displacement of the input
vector.

Fig. 362: Move block

• Inputs

Pin 0: Input position.

Pin 1: Input displacement vector in NED frame. It must be a vector of 3 elements, i.e. a 3x1 vector.

• Output

Pin 0: Output position.

2.9.11.3 Relative Vector

Relative Vector block calculates the relative vector in NED frame from the two input positions.

Fig. 363: Relative Vector block

• Inputs

Pin 0: First position.

Pin 1: Second position.

• Output

Pin 0: Distance vector from the first position to the second position.

302 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

2.9.11.4 Read Feature

Read Feature block reads a position from a FID (feature) variable.

Fig. 364: Read Feature block

• Output

Pin 0: Position to read.

• Configuration menu:

Fig. 365: Read Feature block configuration

Users must select the feature variable where the position is stored.

2.9.11.5 Write Feature

Write Feature block writes a position to a FID variable.

Fig. 366: Write Feature block

2.9. Block Programs 303

1x PDI Builder, Release 6.8.65

• Input

Pin 0: Position to write.

• Configuration menu:

Fig. 367: Write Feature block configuration

Users must select the feature variable where the position is to be stored.

2.9.12 Sensors blocks

Sensors blocks allows to configure any sensor connected externally or internally to Veronte Autopilot 1x.

As the outputs of these blocks are not ‘ready’ to be directly implemented in the navigation block (EKF algorithm),
these blocks are usually connected afterwards to EKF Adapters blocks.

2.9.12.1 Altimeter

Altimer sensor block configures the parameters of external altimeters.

304 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 368: Altimeter block

• Input

Pin 0: Sensor variance.

• Output

Pin 0: Measurement as a 3-dimensional real array with the following components:

– 0: Update flag

– 1: Altitude measurement

– 2: Variance

• Configuration menu:

Fig. 369: Altimeter block configuration

The following parameters must be configured:

– Altitude measurement: A real variable must be selected from which the altitude measurement is read.
The parameters defined here shall be applied to this input variable.

– Maximum variance: Maximum variance applied to the measurement after measurement lost.

– Minimum variance: Minimum variance applied to the measurement after recovering from a measurement
lost.

– Variance down tau: Filter constant. Smoothing parameter for the transition from maximum to minimum
variance.

– Sensor timeout: Time before considering measurement lost.

2.9. Block Programs 305

1x PDI Builder, Release 6.8.65

Note: If the measurement does not change during this time, the autopilot may consider that no
measurement is entered, and therefore, the timeout is fulfilled.

2.9.12.2 GNSS sensor

GNSS sensor block configures GNSS receivers, RTK and External source.

Fig. 370: GNSS sensor block

• Outputs

Pos: Absolute position measurement.

Vel: Velocity measurement as a 12-dimensional real array with the following components:

– 0: Update flag

– 1: Fix flag

– 2: North velocity

– 3: East velocity

– 4: Down velocity

– 5: North velocity variance

– 6: East velocity variance

– 7: Down velocity variance

– 8: X body antenna position

– 9: Y body antenna position

– 10: Z body antenna position

– 11: Measurement delay

Drn: Relative position measurement as a 10-dimensional real array with the following components:

– 0: Update flag

– 1: Rover flag (one is rover, zero is base)

– 2: Time stamp

– 3: North relative distance

– 4: East relative distance

– 5: Down relative distance

306 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

– 6: Relative distance variance

– 7: X body antenna position

– 8: Y body antenna position

– 9: Z body antenna position

• Configuration menu:

Fig. 371: GNSS sensor block configuration

The parameters to be configured in the first and last row of this configuration menu are presented below:

2.9. Block Programs 307

1x PDI Builder, Release 6.8.65

– Select sensor: The first parameter to select is the GNSS sensor: GNSS 1, GNSS 2 or GPS External.
Depending on the sensor selected, the block will change name and configuration menu.

However, GNSS 1-2 have the same configuration menu.

Fig. 372: GNSS sensor blocks

– Ublox preset: By default, Custom is selected. If an option other than Custom is selected, users will only
be able to configure the ‘Sensor Variance’ tab (this tab will be described below).

308 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 373: GNSS sensor block configuration - Rover/Dynamic base/Static base

∗ Custom: This option allows the user to modify all the tabs that appear in this menu (all tabs are
described below).

∗ Rover: By choosing this option, a default ‘Rover’ configuration will be selected for this block. This
corresponds to AIR units of the RTK wizard (described below).

∗ Dynamic base: By choosing this option, a default ‘Dynamic base’ configuration will be selected
for this block. This corresponds to GNSS Compass of the RTK wizard (described below).

∗ Static base: By choosing this option, a default ‘Static base’ configuration will be selected for this
block. This corresponds to GND units of the RTK wizard (described below).

2.9. Block Programs 309

1x PDI Builder, Release 6.8.65

For more information on these default configurations, click here (go to section 3.1.5).

– RTK Wizard: This interface helps the user configuring everything related to RTK or GNSS Compass.
By clicking here, the configuration menu will be displayed:

Fig. 374: GNSS sensor block configuration - RTK Wizard

In this menu, the user can find 3 different options:

∗ RTK: Stands for Real Time Kinematics (RTK) and it is a satellite navigation technique used to
enhance the precision of position data derived from satellite-based positioning systems.
To work, it requires 2 GNSS receivers placed in different autopilots.
By clicking on ‘Air’, a default ‘Rover’ configuration will be loaded in this block. Likewise, by
clicking on ‘Ground’, a default ‘Static base’ configuration will be selected.

∗ Compass: The GNSS compass provides accurate dual antenna GNSS-based heading that is not
subject to magnetic interference.

It requires 2 GNSS receivers placed on the same autopilot to work. By clicking on ‘Air’, a default
‘Dynamic base’ configuration will be loaded.

∗ RTK + Compass: Hybrid combination where both tools are employed at the same time in a system
where the AIR unit must have 2 GNSS receivers and the GND must have, at least, 1 GNSS
reseiver.

By clicking on ‘Air’, a default ‘Rover’ configuration will be loaded in this block. Likewise, by
clicking on ‘Ground’, a default ‘Static base’ configuration will be selected.

– Antenna position: It is used to set the relative distance to the center of mass from the GNSS antenna in
aircraft body axis. This parameter has to be set correctly in order to get a correct value when using GNSS
Compass.

310 Chapter 2. Configuration

https://content.u-blox.com/sites/default/files/ZED-F9P_IntegrationManual_UBX-18010802.pdf

1x PDI Builder, Release 6.8.65

– Delay: Delay with which the GPS information is ‘picked up’, as the GPS may have a small delay while it
reads and processes the information. In case the user has selected GNSS 1 or GNSS 2, the internal GPS
of the Veronte Autopilot 1x has a default delay of 0.5 seconds.

• GNSS 1-2 configuration menu:

– Configuration: This menu contains some of the parameters needed to configure the GNSS 1-2 receiver
located in Veronte Autopilot 1x.

Fig. 375: GNSS 1/2 sensor block configuration - Configuration tab

The following parameters are configurable:

2.9. Block Programs 311

1x PDI Builder, Release 6.8.65

∗ GNSS: Data values that can be configured.

· Meas Rate: Defines the minimum time between data acquisition.

· Precise Point Positioning (PPP): This option is a precise global positioning service. PPP is
able to provide centimetre to decimetre level positioning solutions after a few minutes with
an unobstructed view of the sky.

∗ Survey In: Determines the position of a stationary receiver by building a weighted average of all
valid 3D position solutions.

This mode should be activated on a Ground unit to enable GNSS Differential mode and send
corrections to the Air unit. Two requirements must be specified to stop the procedure. Survey
in procedure shall end when both requirements are met:

· Minimum duration: Defines a minimum amount of observation time independent of the
actual number of valid fixes that were used for the position calculation.

Reasonable values range from one day for high accuracy requirements to a few minutes for
approximate position determination.

· Position accuracy limit: Defines a limit on the dispersion of positions contributing to the
calculated mean.

∗ SPI Port: Allows the user to select the different comunication protocols as input or output. One
port can handle several protocols at the same time (e.g. NMEA and UBX).

· Mask in: Defines the inputs, i.e., receives the data (usually the air unit). The available
protocols are UBX, NMEA, RTCM and RTCM3.

· Mask out: Defines the outputs, i.e. sends the data (usually the ground unit). The available
protocols are UBX, NMEA and RTCM3.

More information on protocols and configuration can be found in the U-blox documentation.

∗ SCI Port: In this case, RTK messages that are sent through the RTCM3 protocol are connected
directly through an SCI port, so they do not occupy the bandwidth of the SPI port.

Note: Only for Veronte version 4.8 and higher.

– SBAS: SBAS stands for Satellite Based Augmentation System. It is a set of geostationary satellites that
are used to check the status of the signals sent by GPS Satellites and to improve tracking by correctiong
for atmospheric disturbations, orbit deviations, clock errors, etc.

In 1x PDI Builder, it is possible to select the satellites to be used for this purpose by selecting the numbers
listed in the table in the figure below or have the software choose them automatically according to the
location of the platform.

The automatic option is recommended.

312 Chapter 2. Configuration

https://content.u-blox.com/sites/default/files/documents/u-blox-F9-HPG-1.32_InterfaceDescription_UBX-22008968.pdf

1x PDI Builder, Release 6.8.65

Fig. 376: GNSS 1/2 sensor block configuration - SBAS tab

– Message Rate: The Message rate options are used to set the time between the messages received on
the autopilot. Each of the different messages can be configured separately: ECEF (Earth Centred Fixed
Reference Frame), LLH (Latitude, Longitude and Height), Speed, GPS Time, SV Status (status of the GPS
satellite), etc.

2.9. Block Programs 313

1x PDI Builder, Release 6.8.65

Fig. 377: GNSS 1/2 sensor block configuration - Message Rate tab

More information on the list of RTCM 3 messages can be found here.

– Constellations: In this tab, the user can select which GNSS constellations are being used from the
supported constellations listed in the figure below:

314 Chapter 2. Configuration

https://www.use-snip.com/kb/knowledge-base/rtcm-3-message-list/

1x PDI Builder, Release 6.8.65

Fig. 378: GNSS 1/2 sensor block configuration - Constellations tab

∗ SBAS
∗ Galileo
∗ BeiDou
∗ QZSS
∗ GLONASS

– Jamming: This menu allows the user to configure an indicator for both broadband and continuous wave
(CW) jammers/interference. The receiver monitors the background noise and looks for significant changes.

2.9. Block Programs 315

1x PDI Builder, Release 6.8.65

Fig. 379: GNSS 1/2 sensor block configuration - Jamming tab

∗ Enable Threshold: Enables the interference detection. Therefore, if broadcast or CW jamming is
reported, Veronte Autipilot will disregard the GPS information, position not fixed.

∗ Broadband jamming detection threshold: If the value rises significantly above this threshold, this
indicates that a broadband jammer is present.

∗ CW jamming detection threshold: If the value rises significantly above this threshold, this
indicates that a continuous wave (CW) jammer is present.

∗ Enable Antenna Setting.

∗ Antenna Setting: It is also possible to specify whether the receiver expects an active or a passive

316 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

antenna; unknown option if the user does not know the behaviour of the antenna.

– Advanced: The values shown here should only be modified by advanced users. For this reason, the
following message appears when entering this tab:

Fig. 380: GNSS 1/2 sensor block configuration - Warning advanced tab

2.9. Block Programs 317

1x PDI Builder, Release 6.8.65

Fig. 381: GNSS 1/2 sensor block configuration - Advanced tab

Warning: Modifying these parameters can cause problems during the acquisition of GNSS
positioning.

∗ Minimum satellites number: Minimum number of satellites needed to have position fixed.

∗ Maximum satellites number: Maximum number of satellites needed to have position fixed

∗ Minimum satellite elevation: Minimum elevation of a satellite to be considered. Value in degrees.
∗ PDOP mask: Maximum Position Dilution of Precision to consider the solution.

318 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

∗ TDOP mask: Maximum Time Dilution of Precision to consider the solution.

∗ P Acc mask: Maximum Position Accuracy to consider the solution.

∗ T Acc mask: Maximum Time Accuracy to consider the solution.

∗ Dynamic model
The embedded receiver supports different dynamic platform models to adjust the GNSS
navigation engine to the expected application environment. The settings improve the receiver’s
interpretation of the measurements and thus provide a more accurate position output. Setting the
receiver to an unsuitable platform model for the given application environment is likely to
result in a loss of receiver performance and position accuracy.

Platform Description
Portable Applications with low acceleration.
Stationary Stationary applications. Velocity restricted to 0 m/s. Zero dynamics assumed
Pedestrian Applications with low acceleration and speed. Low acceleration assumed.
Automotive Used for applications with equivalent dynamics to those of a car. Low vertical

acceleration assumed.
Sea Recommended for applications at sea, with zero vertical velocity. Zero vertical

velocity assumed. Sea level assumed.
Airborne
1G

Used for applications with a higher dynamic range and greater vertical acceleration
than a car.

Airborne
2G

Recommended for typical airborne environments.

Airborne
4G

Recommended for extremely dynamic environments.

– Sensor Variance: The variances considered in the EKF for the GNSS solution are by default the values
provided by the GNSS receiver but can be modified for more complex scenarios.

2.9. Block Programs 319

1x PDI Builder, Release 6.8.65

Fig. 382: GNSS sensor block configuration - Sensor variance tab

∗ Horizontal Position: Variance for the North and East components of the position solution.

∗ Vertical Position: Variance for the Down component of the position solution.

∗ Horizontal Velocity: Variance for the North and East components of the velocity solution.

∗ Vertical Velocity: Variance for the Down component of the velocity solution.

∗ Relative Position: This is the variance of the relative position from one GNSS receiver to another.

• GPS External configuration menu: If the GNSS information is received via an external system, the user must
configure it in this menu, so that this system can be included in the navigation filters.

320 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

After correctly configuring the communication protocol in the corresponding channel (RS 232, RS485, CAN,
. . .) the GPS External variables of interest must be filled in this interface:

– Configuration:

Fig. 383: GPS External sensor block configuration - Configuration tab

Caution: Check GNSS External device communication protocol before filling this menu.

The user must create a Custom Message according to the communication protocol used by the external
sensor, so that its readings are stored in system variables. Then, the user can select these variables to
configure the following parameters:

∗ Enable.

2.9. Block Programs 321

1x PDI Builder, Release 6.8.65

∗ Period: Defines the period of incoming information from the external system.

∗ Fix Bit: Data provided by the external device which is important to know the status of the
positioning.

∗ Time of week: Variable extracted from the communication protocol defining the time of the week.

∗ GPS Week: Variable extracted from the communication protocol defining the week.

∗ Enable position:

· GPS Position: Variable defining latitude, longitude and height from GNSS. Usually Moving
Object variables are used in 1x PDI Builder.

· Horizontal Position Error: Defined by the GNSS External device provider.

· Vertical Position Error: Defined by the GNSS External device provider.

∗ Enable Velocity:

· Horizontal Velocity Error: Defined by the GNSS External device provider.

· Vertical Velocity Error: Defined by the GNSS External device provider.

· Velocity North/East/Down: Variables extracted from the communication protocol defining
GNSS velocity measured.

– Sensor Variance: This tab is configured in the same way as described above.

2.9.12.3 Magnetic Field

Magnetic Field sensor block returns the configured magnetic field in the current location.

Note: The magnetic field configuration is global, shared by all blocks of this type.

Fig. 384: Magnetic Field block

• Output

Pin 0: Magnetic field in NED frame as a 5-dimensional real array with the following components:

– 0: Update flag (always 1)

– 1: North component of magnetic field

– 2: East component of magnetic field

– 3: Down component of magnetic field

– 4: Variance (always zero)

• Configuration menu:

322 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 385: Magnetic Field block configuration

– North/East/Vertical: The magnetic vector of the mission’s area should be entered.

– Declination/Inclination/Horizontal: It is recommended to select ‘Generate magnetic field’ to take the
magnetic declination information of the mission area.

The following window will appear to introduce the latitude and longitude of the mission area to generate
the magnetic field there:

Fig. 386: Magnetic Field block configuration - Generate magnetic field

When generated, this message will appear and the configuration parameters will be automatically updated
with the calculated values:

Fig. 387: Magnetic Field block configuration - Generate magnetic field message

2.9. Block Programs 323

1x PDI Builder, Release 6.8.65

2.9.12.4 Magnetometer

Magnetometer sensor block returns the magnetic field being read by the selected sensor in the body frame.

Fig. 388: Magnetometer block

• Output

Pin 0: Magnetic field in body frame as a 5-dimensional real array with the following components:

– 0: Update flag (always 1)

– 1: X body component of magnetic field

– 2: Y body component of magnetic field

– 3: Z body component of magnetic field

– 4: Variance

• Configuration menu:

Fig. 389: Magnetometer block configuration

– Magnetometer: Users must select the desired internal or external sensor magnetometer to be used.

– Variance: Means the influence of the parameter on the Navigation filters. The higher the variance, the
lower the effect.

This is the only parameter configured indepently from the Mangemtometer selected.

2.9.12.5 Relative position

Relative position sensor block works in conjunction with the Internest configuration section to configure the Internest
system as an ultrasound sensor that calculates the position of Veronte Autopilot 1x.

324 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 390: Relative position block

• Inputs: The 3 navigation angles (yaw, pitch and roll) of the base platform can be entered.

base: Base position to which position measurements are relative. Usually a ‘Moving object’ is linked.

(Optional) yaw: Yaw of system of reference in which position measurements are received (0 if not connected).

(Optional) pitch: Pitch of system of reference in which position measurements are received (0 if not
connected).

(Optional) roll: Roll of system of reference in which position measurements are received (0 if not connected).

• Output

Pin 0: Absolute position measurement.

• Configuration menu:

Fig. 391: Relative position block configuration

– Increment of horizontal/vertical variance with distance: With this increment, the further away the
Veronte autopilot 1x is from the base, the more variance it is given in a linear fashion.

– Horizontal/Vertical sensor variance: Square error of the internest position in xy/z planes.

Note: If the option By device is selected, these parameters are automatically set by the autopilot.

– x/y/z: Defines the distance between the Internest system and the center of mass from the base.

2.9. Block Programs 325

1x PDI Builder, Release 6.8.65

– Invert measurements (multiply them by -1): If enabled, the measurements shall be multiplied by -1.

More information
These parameters are used in the calculation of the variance for the EKF algorithm by means of the following
equation:

𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 + 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 · 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

– 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 : Horizontal/Vertical sensor variance position

– 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 : Increment of hotizontal/vertical variance with distance

– 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 : Distance to the base

2.9.12.6 SRTM height

SRTM height sensor block gets the terrain altitude at the current UAV position according to the configured mesh.

Fig. 392: SRTM height block

• Output

Pin 0: Terrain altitude as a 4-dimensional real array with the following components:

– 0: Update flag (always 1)

– 1: Valid flag (inside mesh)

– 2: Terrain height

– 3: Variance

• Configuration menu:

Fig. 393: SRTM height block configuration

– Fine mesh variance: Variance of the fine mesh. This is the smallest mesh, which contains detailed
information on the altitude of the terrain.

– Coarse mesh variance: Variance of the coarse mesh. This is the medium mesh with the least detail.

326 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Important:
– The values to be entered in the configuration of this block must be > 0.

– If the configured error values are very large, the EKF will converge more slowly to them or give more
importance to other sensors, such as Lidar, to know the height of the terrain.

– If these values are small, much more importance will be given to the terrain grid and it will converge faster.

2.9.12.7 Static Pressure

Static Pressure sensor block returns the static pressure measured by the selected sensor.

Fig. 394: Static Pressure block

• Output

Pin 0: Static pressure measurement as a 3-dimensional real array with the following components:

– 0: Update flag

– 1: Pressure

– 2: Variance

• Configuration menu:

Fig. 395: Static Pressure block configuration

– Static pressure sensor: Users must select the desired static pressure sensor to be used.

– Variance: Means the influence of the parameter on the Navigation filters. The higher the variance, the
lower the effect.

This is a parameter configured independently from the Static Pressure sensor selected.

2.9. Block Programs 327

1x PDI Builder, Release 6.8.65

2.9.13 Servos blocks

2.9.13.1 Actuator

Actuator block controls the transformation of the action to the servo value.

Fig. 396: Actuator block

• Inputs

U: Control actions (U) before servo saturation.

(Optional) Smin: Vector of minimum values allowed for the servos.

(Optional) Smax: Vector of maximum values allowed for the servos.

• Outputs

servo_ok?: Output BIT vector that indicates the servos that had to be trimmed to prevent saturation.

Pulse: PWM pulse for servos.

Servo: Servo value.

Usat: Control actions (U) after servo saturation.

• Configuration menu:

328 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 397: Actuator block configuration

The servo configuration is divided into 3 different menus: Physical, Saturation and Matrices.
– Physical: This tab allows the actuators physical configuration.

Warning: The calibration of all connected actuators is performed in the 1x PDI Calibration software.

2.9. Block Programs 329

1x PDI Builder, Release 6.8.65

Fig. 398: Actuator block configuration - Physical

1. Dimensions: Set the number of servos and control outputs.

Fig. 399: Actuator block configuration - Physical dimensions

330 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Note: Veronte Autopilot 1x allows up to 32 actuators to be configured at the same time.

2. Servos (actuators): This menu contains the servos of the platform.

3. Control Signals: This menu contains the variables representing the control signals/outputs 𝑈
generated by the system.

The mapping of the controls to servo positions is indicated within the SU matrix, which is set in
the Matrices tab.

4. Servo parameters:
∗ Actuator Output variable: If the Actuator output variable has been renamed, it will be

renamed here as well.

∗ Startup position (S): Sets the initial values of the actuators.

∗ Increasing/Decreasing Rate Limit (S/s): Sets a rate limit for increasing/decreasing motions
of the servo.

5. Servo Position - PWM: This option is used to set the mapping of the 𝑆 servo position to the PWM
signal. In this example, 1 𝑆 position corresponds to a 100 % pulse to be sent to the corresponding
servo (Motor 1).

The mapping is expressed through the graph, where the user can enter as many points as desired.

– Saturation: In this menu, the user can configure the behaviour of the platform when one or more of its
actuators is/are in saturation state.

2.9. Block Programs 331

1x PDI Builder, Release 6.8.65

Fig. 400: Actuator block configuration - Saturation

The three available options are:

∗ Inactive: The system does not respond to saturation.

∗ Linear: The system affects all the actuators in the same way if saturation is reached.

∗ Standard: The system affects only the selected actuators if saturation is reached at any actuator. It
can be chosen from 1 to all of them (which will be linear action).

332 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 401: Actuator block configuration - Saturation Standard

Clicking the Advanced checkbox generates a vector that includes all control outputs, allowing
proportional control over the system when saturation occurs.

This tool is configured to allow the user to have more extensive control over this feature if required.

– Matrices:
𝑆𝑈 and 𝑈𝑆 are 2 matrices (inverse of one another, respectively) which contain the relationship between
actuator outputs 𝑆 and control outputs𝑈 , i.e. the influence of each control channel on each actuator output.
The option of having a configurable SU matrix allows Veronte Autopilots 1x to control any type of vehicle,
independently of how its control surfaces/devices are set and adjusted.

𝑈 is a vector which contains the control outputs of the platform, e.g. pitch, roll, yaw, throttle, etc. The
values of 𝑈 do not represent a physical variable. They are instead fictitious variables which are used in
the control algorithm. What is actually applied to the system are the actuators movements, i.e. the PWM
signals sent to the servos, which are mapped in the 𝑆 vector.

The relation between 𝑆 and 𝑈 is essential for the right attitude control of the platform.

2.9. Block Programs 333

1x PDI Builder, Release 6.8.65

Fig. 402: Actuator block configuration - Matrices

∗ Normally, the SU matrix is defined instead of the US matrix because it is more intuitive, the US
is calculated automatically.

To define it, click Edit and the following pop-up window will open with the matrix. Control outputs
𝑈 are placed on the columns and actutator outputs 𝑆 on the rows. Clicking on the ‘+’ sign allows
the user to add a new 𝑈 or 𝑆, by adding a new column, a row will appear and vice versa.

334 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 403: Actuator block configuration - SU matrix

∗ In addition, an allocation matrix is available to help the user configure these matrices for a multi-
rotor.

Warning: Regarding the selection of the parameters of 𝑆𝑈 matrix, the order of magnitude of the
parameters should be respected at least for every row, i.e. every control channel, as long as there are
no coupled control channels 𝑈 .

Good practice recommendations
∗ Unitary values are recommended. Doing so, 𝑈 will be equal to 𝑆. And if 𝑆 has been defined

according to a physical value – e.g. deflected angle, then control outputs can be easier to understand.

∗ The order of magnitude and the value of the 𝑆𝑈 parameters will not influence control algorithm
calculations. But it will affect the control parameters, i.e. the control gains.

∗ It is recommended to keep the same order of magnitude for the whole matrix. That will allow an
easier set up of a scaled version of the platform. Keeping the same 𝑆𝑈 and knowing the scaling
factor, then the new control gains should be the old ones multiplied by that scaling factor. This
practice can also be useful for transition to similar platforms.

∗ The 𝑆𝑈 matrix and 𝑆 vector should be defined accordingly in order to follow the sign convention
for aerial navigation, a positive roll lowers the right wing, a positive pitch moves the nose up and a
positive yaw moves the nose the right.

An example of the use of this block is given below:

2.9. Block Programs 335

1x PDI Builder, Release 6.8.65

Fig. 404: Actuator block - Example of use

2.9.13.2 Arc Trim

Arcade stick trim block is used to set the zero-stick position for the Arcade Mode.

Fig. 405: Arc Trim block

The Stick input variable that enters the navigation algorithm is called ‘Stick input 𝑑’, which is the one obtained from
the Arc Trim block.

It is calculated as 𝐷 = 𝑈 − 𝑈0, where 𝑈0 is the arcade trim.

Fig. 406: Arc Trim block - Example of use

• Input

u: Input stick vector to trim.

• Output

du: Trimmed stick vector.

336 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

• Configuration menu:

Fig. 407: Arc Trim block configuration

The values of the trim vector 𝑈0 can be entered manually in the configuration menu (as shown in the figure
above) or by creating an automation that autocompletes these values with the stick position. For the latter case,
the configuration menu should be with all trim values to 0.

For more information on this automation, see Arcade trim automation section.

Warning: The Arcade mode has to be trimmed before flight. If not trimmed, the zero level will be different from
the desired one.

2.9.13.3 PWM

PWM block applies the input vector to the configured PWM outputs.

Fig. 408: PWM block

• Input

pulse: Input vector of pulses to apply.

2.9. Block Programs 337

1x PDI Builder, Release 6.8.65

• Configuration menu:

Fig. 409: PWM block configuration

– : Users must enter the PWM variables to be configured.

– : PWMs variables can be sorted as desired by simply dragging and dropping them.

– Check the variable to enable commands to this PWM.

– : Deletes the PWM.

A PWM servo configuration can be found in PWM - Servos of the Integration examples section.

2.9.14 Signals blocks

Signal blocks include fucntions for processing and filter signals, control inputs and outputs, etc.

338 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

2.9.14.1 3D Table Interpolation

3D Table Interpolation block returns the value obtained interpolating the configured table with the input variables.

Fig. 410: 3D Table Interpolation block

• Inputs

Pin 0: X component, columns.

Pin 1: Y component, rows.
• Output

Pin 0: Value interpolated from table for the input X and Y components.

• Configuration menu:

Fig. 411: 3D Table Interpolation block configuration

– Sort: By pressing this button, rows and columns are sorted from lowest to highest.

– Add: A row/column is added

Note: If out of range, the value for the closest limit shall be taken

2.9. Block Programs 339

1x PDI Builder, Release 6.8.65

2.9.14.2 Bound

Bound block limits the input signal and produces a bit to indicate if it was within the allowed range.

Fig. 412: Bound block

• Inputs

(Optional) min: Minimum value allowed for input signal. If not defined, it is assumed to be infinity.

in: Input signal.

(Optional) max: Maximum allowed value for input signal. If not defined, it is assumed to be infinity.

• Outputs

out: Limited signal.

in range: Bit that is true when the input signal is within the allowed range and false otherwise.

User can use the Bound block to monitor critical system parameters that are within operating limits, e.g. airspeed. If
not OK, in range can be used to trigger an alarm.

Fig. 413: Bound block - Example of use

2.9.14.3 EWMA Tau filter

EWMA (Exponentially Weighted Moving Average) Tau filter block is a simple first order filter with configurable
time constant Tau.

This filter follows the following equation:

𝑦 = 𝛼 · 𝑢 + (1− 𝛼) · 𝑦−1

Where:

• 𝛼 = 𝑑𝑡
𝑑𝑡+𝜏

– 𝑑𝑡: GNC Timestamp

– 𝜏 : Time constant

• 𝑢: Input value to be filtered

340 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

• 𝑦−1: Initialization value at the first execution of the block (t=0)

Fig. 414: EWMA Tau filter block

• Inputs

u0: Initialization value (set in on_focus).

u: Current value to filter.

• Output

Pin 0: Filtered value.

• Configuration menu:

Fig. 415: EWMA Tau filter block configuration

– Tau: The time constant Tau must be entered.

2.9.14.4 FFT

Error: The FFT block is temporarily disabled in this version.

FFT (Fast Fourier Transform) block outputs the Fast Fourier Transform of the input signal.

Fig. 416: FFT block

• Input

in: Input signal.

• Outputs

Amax: 3D vector containing the magnitude of the three dominant frequencies (sorted from higher to lower
magnitude).

2.9. Block Programs 341

1x PDI Builder, Release 6.8.65

Fmax: 3D vector containing the frequency of the three dominant frequencies (sorted from higher to lower
magnitude).

• Configuration menu:

Fig. 417: FFT block configuration

– Stages.
– Computing time.

2.9.14.5 Hysteresis

Hysteresis block applies hysteresis to input signal to prevent changes in output signal when the input is close to zero.

Fig. 418: Hysteresis block

The behaviour is as shown in the following diagram:

342 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 419: Hysteresis diagram

• Input

Pin 0: Input signal.

• Output

Pin 0: Output signal.

• Configuration menu:

Fig. 420: Hysteresis block configuration

2.9. Block Programs 343

1x PDI Builder, Release 6.8.65

– Hysteresis: Users must enter the magnitud of the hysteresis.

2.9.14.6 IIR Filter

IIR Filter block allows the user to define an Infinite Input Response filter, it applies a Z-transform.

Fig. 421: IIR Filter block

• Input

Pin 0: Input signal.

• Output

Pin 0: Output signal.

• Configuration menu:

Fig. 422: IIR Filter block configuration

– A: Filter a coefficients. The user can add as many coefficients a as desired.

– B: Filter b coefficients. The user can add as many coefficients b as desired.

– Respect to IIR: If enabled, the first time the block is executed, it takes the value of input as the initial
offset.

This block can be used as a derivative if configured as shown in the following figure:

344 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 423: IIR Filter block - Derivative example

2.9.14.7 Interpolation Vector

Interpolation Vector block applies the configured table interpolation over each of the components of the input vector.

Fig. 424: Interp Vec block

• Input

X: Input vector.

• Output

Y: Interpolated output vector.

• Configuration menu:

2.9. Block Programs 345

1x PDI Builder, Release 6.8.65

Fig. 425: Interp Vec block configuration

– : Users should add as many Vector elements as there are components in the input vector.

– Points: The interpolation function of each component must be configured by the user. It is represented by
the graph below.

– Invert: If enabled, the y axis of the function will correspond to the input vector and the x axis to the
interpolated output vector.

2.9.14.8 Ramp

Ramp block will ramp up to the final value defined as input, starting from the initial value defined as input, and
respecting the parameters Ramp Delay and Ramp Time.

Fig. 426: Ramp block

• Inputs

u0: Initial value of the ramp, read only in on_focus.

u: Final value of the ramp, updated in each step.

• Output

Pin 0: Output ramp value.

346 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

• Configuration menu:

Fig. 427: Ramp block configuration

– Ramp Delay: Time before starting the ramp.

– Ramp Time: Time in which the variable must change from the initial value to the final value.

2.9.14.9 Rate limiter

Rate limiter block limits the rate of change of the input signal. Ir returns the signal input, but limiting its maximum
rate of change.

Fig. 428: Rate limiter block

If the rate of change of the input is higher than the maximum, the output will try to converge to the input, but respecting
the imposed maximum rate of change.

The first time the block is executed the output will be equal to Init.
• Inputs

Init: Initialization value, this is the output of the block in the first step after on_focus.

Signal: Input signal.

(Optional) Up limit: Rate limit in the up direction. The value is read as absolute value, this means that the
sign of this input is neglected.

2.9. Block Programs 347

1x PDI Builder, Release 6.8.65

(Optional) Down limit: Rate limit in the down direction. The value is read as absolute value, this means
that the sign of this input is neglected.

• Output

Pin 0: Rate-limited signal.

• Configuration menu:

Fig. 429: Rate limiter block configuration

– Angle wrap: Perform a [-pi, pi] wrap. It should be enable when using angles.

This block can be used to avoid instantaneous spikes and spikes in control signals, effectively reducing control noise
and smoothing flight:

Fig. 430: Rate limiter block - Example of use

2.9.14.10 Signal generator

Signal generator block is a wave signal generator.

Fig. 431: Signal generator block

• Output

Pin 0: Signal generated according to the configured type.

• Configuration menu:

348 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 432: Signal generator block configuration

– Frequency: Frequency of the signal.

– Gain: Gain of the signal

– Signal type: Users must select the type of signal to be generated. The available options are: Sine, Sqaure,
Triangle and Sawtooth.

Note: An example of the shape of each type of signal is shown below.

– Duty cycle: Duty cycle of the signal. Can only be modified when Square signal is selected.

An example is given below:

2.9. Block Programs 349

1x PDI Builder, Release 6.8.65

Fig. 433: Signal generator block - Configuration example

350 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 434: Signal generator block - Example of signal generated

2.9.15 Type Casting blocks

These blocks allow to change from one data type to another. There are four different blocks available:

Fig. 435: Type Casting blocks

1. Bool to Real: It transforms a boolean variable to a real variable.

2. Integer to Real: It converts an integer variable to a real variable.

3. Real to Bool: It transforms a real variable to a boolean variable.

Any number (negative numbers included), except 0, will be transformed to TRUE; 0 will be FALSE.

2.9. Block Programs 351

1x PDI Builder, Release 6.8.65

4. Real to Integer: It converts a real variable to an integer variable.

2.10 Devices

This menu displays the possible payloads/devices that can be configured with Veronte Autopilot 1x. Each section will
allow the user to configure different parameters from the available variety of payloads.

Fig. 436: Devices menu

By default, only the Transponder/ADS-B device is added to this menu (as shown in the figure above). However, users
can added other devices supported by Veronte Autopilot 1x simply by clicking Add device:

352 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 437: Add devices

2.10.1 Transponder/ADS-B

A transponder is a device that generates or parses ADS-B messages. This menu allows the user to use/configure a
transponder through Custom Messages.
There are 2 different types of ADS-B:

• ADS-B In: When the transponder sends the detected UAVs.

• ADS-B Out: When the transponder wants to send the position of the UAV.

The interface includes both types and, depending on the model (type) selected, the configurable parameters for ADS-B
In or ADS-B Out are enabled.

2.10. Devices 353

1x PDI Builder, Release 6.8.65

Fig. 438: Transponder/ADS-B section

The parameters that appear in this menu and that must be configured by the user are explained below:

• Enable: Check it to activate a transponder device.

• Custom message: Select the Custom message 1-3 to be used for the information exchange, as it will be
automatically filled with the information required by the transponder/ADS-B.

• Type: Veronte Autopilot 1x is compatible with:

– Sagetech MX Series

– uAvionix ping 20s

– uAvionix ping 1090i

– Daedalean

– Sagetech XPS-TR

– Sagetech XPG-TR

– Sagetech XPS-TRB

• Mode: The available modes are:

– Off : Transponder switched off.

– Standby: Transponder will not respond to interrogation.

– ON: Replies to interrogations with 4-digit squawk code.

354 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

– ALT: Replies to interrogation with altitude information.

Important: The parameters detailed above are common for ADS-B In and Out, the following depends on the selected
Type.

• Call sign: Communication call sign assigned as unique identifier to the aircraft.

• Icao: Unique ICAO 24-bit address permanent for the aircraft, which becomes a part of the aircraft’s Certificate
of Registration.

It is represented by six hexadecimal characters.

Note: Only available for ALT mode.

• Squawk Code: Users must introduce the Squawk Code provided. This is the transponder code to in order to
identify the flight. For certain type of flights and/or situations, specific transponder codes are used.

These codes are four/digital octal numbers.

• Enable Ident Mode: This is an identification of the UAV at the request of ATC, in order to help them to locate
the aircraft.

Note: Only available for ON and ALT modes.

• Enable reception: Enables reception (ADS-B IN).

• Enable ADS-B Out: Enables transmission (ADS-B OUT).

2.10.2 Cameras

Adding a camera will create a default Camera configuration menu.

2.10. Devices 355

1x PDI Builder, Release 6.8.65

Fig. 439: Cameras section

1. Name: Give a name to the customized camera.

2. Search: Users can also choose a camera from the predefined list of cameras, which will automatically establish
the values of the Sensor, Resolution and Lens parameters.

3. Sensor: Defines the camera sensor width and height in mm.

4. Resolution: Defines the camera resolution width and height.

5. Lens: Defines the focal length from the camera in mm.

6. Camera cache: Defines the cache time used to play the selected camera on the gimbal widget.
• A higher cache might increase the video delay.

• A lower cache might cause video artifacts or disconnections.

Tip: 333 miliseconds should be enough for a 1080p video.

7. Cam associated with gimbal: If the camera is from a Gimbal device, it is important to configure this field and
select the the Gimbal block number that is related to this camera.

8. Photogrammetry: This allows the creation of Photogrammetry actions.

The actions performed in a Photogrammetry mission can be defined here, following the same possibilities as in
Actions - Automations.

• Add Action: Will add a new action.

356 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Warning: A maximum of 4 Actions can be defined (Actions 0-3).

• Generate: Clicking on ‘Generate’ will create the automation ‘Photogrammetry’ with a Button as event
and with the actions defined here.

An example is given below:

Fig. 440: Cameras - Example

The automation created for Photogrammetry is shown below:

2.10. Devices 357

1x PDI Builder, Release 6.8.65

358 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 441: Cameras - Automation example

2.10.3 Board

This board menu allows the user to configure communicate via CAN, in 1x PDI Builder, with another device such
as CEX, MEX, MC01, etc., in only 1 step, so in only 1 interface window. Instead of doing it in several steps, as is
explained in CEX - Integration examples or MC01 - Integration examples.

Fig. 442: Board section

• Click on the icon to add a new field. The following parameters must be defined:

– Commgr port: Select the desired COM Manager port: Commgr port 1-6.

– Can Over Serie: Select the desired Serial to CAN / CAN to serial: Serial to CAN 1-2/CAN to Serial 1-2.

– Can Input Filter: Select the desired input filter to use: Input Filter 1-2.

2.10. Devices 359

1x PDI Builder, Release 6.8.65

– Can Output Filter: Select the output filter the user wishes to use: Output Filter 1-2.

– Can Port: CAN A, CAN B or BOTH can be selected.

– ID Can Tx: Enter the ID of the CAN message to be sent.

– ID Can Rx: Enter the ID of the CAN message to be received.

Warning: Be careful not to select a producer/consumer that is being used for another purpose, as the
configuration defined here has “priority” and will be changed to this.

For more information on these parameters, see Input/Output section of this manual.

• Clicking the icon will remove the field and display a confirmation warning message.

• By clicking on ‘Apply changes’, all these CAN communication settings are applied to the Autopilot 1x
configuration.

Below is an example of before/after when changes are applied:

Fig. 443: Board - I/O Setup configuration

360 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 444: Board - CAN Setup configuration

Fig. 445: Board - Mailboxes configuration

2.10. Devices 361

1x PDI Builder, Release 6.8.65

2.11 Telemetry

In this section there are 2 options available: Telemetry and Sniffer.

2.11.1 Telemetry

Telemetry controls permit to configure data to be stored or transmitted on the system. There are 4 main items that can
be configured within this panel:

Type Description
Data to
VApp

Configures the variables to send throughout the data link channel.

Onboard
Log

Sets the variables to be stored on system Log. (on 1x SD Card)

User Log User Log for custom applications.
Fast Log Saves data at the maximum frequency available on the system. Recording time depends on the

selected variables.

Configuration display permits to enable the desired variables for each telemetry file and to set the maximum and
minimum values together with precision for each one.

Data to VApp
This menu contains the variables sent between 1x autopilots and Veronte Ops. By default, the system provides one
Data link that represents the connection between the air autopilot and the software (Veronte Ops).

1x autopilot air unit sends the variables to 1x autopilot ground unit, being processed when they arrive there by Veronte
Ops. The variables indicated in red in a Data to Vapp are required for correct operation of Veronte Ops.

362 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 446: Data to VApp section

In order to configure the variables sent, users have to:

1. Search: Search the desired variables into the Disabled panel.

2. Disabled: When the desired variables are found, add them to the Enabled panel by dragging and dropping them

into it or simply by clicking on the button.

3. Freq: Specify the sending rate. 10 Hz usually works well, this frequency depends on the bandwidth of the radio.

4. Address: Select the corresponding address, the option available are App 2 (Veronte Ops address), Broadcast (all
units on the network) and Veronte v4.X XXXX (to a specific unit). Usually App 2.

1x PDI Builder allows the creation of more Data links, the user can add it by simply pressing in the “+” icon next to
‘Telemetry’.

As an example, another possible data link could be set between the air and ground autopilots directly (without Veronte
Ops) and used to send the position of the UAV to the ground autopilot for the configuration of a tracker. This data link
example is presented in the following figure.

2.11. Telemetry 363

1x PDI Builder, Release 6.8.65

Fig. 447: Data Ground/Air

If we consider this configuration as that of the air unit, this 1x autopilot will send the Latitude, Longitude and AGL
to the autopilot with address Veronte v4.8 4021. The unit that receives the telemetry has to configure its sniffer (more
information about this in the following section) in order to store the data.

Warning: If the number of variables enabled for telemetry communication are higher than the maximum supported
by the system, the latest variables will not be sent, so they will display a zero value if shown in the workspace.

Note: It is possible to create more than one data link associated to the same receiver address, and they can also have
different sending rates. It could be useful in case one of the data links is almost full.

Onboard Log
The Onboard Log determines the variables that are being stored on the autopilot SD Card. In this case, there are not
sending/receiving units, so the only thing to configure here is the list of variables that will be saved on the autopilot
internal memory for a further download and processing, as well as the writing frequency.

The log starts writing once the autopilot is turned on and does not stop logging until the autopilot is turned off.

364 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 448: Onboard Log section

Warning: This is a circular log, which means that if the SD card memory is full, Veronte Autopilot 1x will delete
the oldest logs automatically so it can continue logging.

1x Autopilot has 2.5 GB of memory reserved for these logs. Hence the registered time can be calculated, for
example:

• If 10 variables are stored with 4 bytes each one, then each log will occupy 40 bytes

• With a frequency of 10 Hz, the writing speed will be 400 bytes/s

• 2.5 𝐺𝐵
400 𝑏𝑦𝑡𝑒𝑠/𝑠 = 6710886 𝑠 = 1864 ℎ = 77.7 𝑑𝑎𝑦𝑠

User Log
The user log contains the variables that are stored according to an automation created by the user.

Considering an example, in a photogrammetry mission it is important to record the aircraft location when the photo is
taken, so a user log could be used to record a certain set of variables (position, speed, direction, . . .) each time a photo
is taken.

2.11. Telemetry 365

1x PDI Builder, Release 6.8.65

Fig. 449: User Log section

In order to create a User Log action where an entry is added to the log when a certain set of events are accomplished
check Actions section of the Automations menu.

Fast Log
The fast log store the specified variables at the maximum rate available on the system. This tool could be used to save
information in an operation that happens extremely fast, such as missile launching. The time that this logging process
lasts depends on the number of variables being saved.

366 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 450: Fast Log section

The Fast Log can be activate when the user want, but must be done in Veronte Ops. For more information about Fast
Log, click on the Veronte Ops manual.

The downloading of the information of an operation depends on how it has been stored, i.e depends on the type of log
(data link, onboard, user or fast). Visit FDR manual for information related to Onboard Log, User Log and Fast log
downloading. And Veronte Link manual for information about Data to VApp.

Besides, 1x autopilot includes some compression tools that may be useful for increasing the amount of information
transmitted in a certain bandwith or stored in a log. Each variable can be compressed separately in each log.

2.11. Telemetry 367

https://manuals.embention.com/veronte-ops/en/6.8/index.html
https://manuals.embention.com/veronte-fdr/en/6.8/index.html
https://manuals.embention.com/veronte-link/en/6.8.33/index.html

1x PDI Builder, Release 6.8.65

Fig. 451: Compression options

There are different types of compression available:

368 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 452: Compression options panel

• Uncompressed: The variable is taken in its full length, with no value modification.

• Compress (Bits signed): Specify the number of bits to be compressed to (negative values accepted). It is
necessary that the user configures Encode/Decode options.

• Compress (Bits unsigned): Specify the number of bits to be compressed to (no negative values accepted). It
is necessary that the user configures Encode/Decode options.

• Compress (Decimals): The variable is compressed according to the number of decimals specified and the range
specified (max and min values). The resultant compression (number of bits) follows the relation (𝑚𝑎𝑥−𝑚𝑖𝑛) ·
10𝑑𝑒𝑐𝑖𝑚𝑎𝑙𝑠, which yields the encoding of the maximum value of the range (and the number of bits necessary for
that). The range needs to be specified on the Encode - Min/Max field.

• Encode/Decode: These values are used to apply a scaling factor after the transformation from binary to decimal
value, or before the transformation from decimal to binary value.

In the example shown below, the Heading variable with 3 decimals will be compressed, so instead of using 32 bits, it
will only require 19 bits.

2.11. Telemetry 369

1x PDI Builder, Release 6.8.65

Fig. 453: Compression example

2.11.2 Sniffer

This menu is used to establish a telemetry communication between two autopilots. The autopilot being configured will
“listen” the variables indicated in the window Enabled, from another autopilot whose address is indicated in Address.
The sniffer is commonly used to make the aircraft listen the position of the ground station and the link quality.

370 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 454: Sniffer menu

The source UAV, in this case, is the ground station (Veronte v4.8 4021), which communicates to the 1x air unit its
position and some variables related to link quality (Rx and Tx Packet Error Rates).

The sniffer is configured so that the air autopilot has information about the state of the communications, and it could
perform an action when the link is lost. The aerial platform also receives information about the ground station position,
so it can perform a mission in relation to that point.

The 1x autopilot unit that sends the data has to be configured as well (1x ground unit), in the Telemetry section. That
unit will send telemetry through a Data Link.

By clicking on the icon, the user can access the Mapping Variables configuration. Here, the variables send by
the ground unit are indicated in the columm In, and they are stored in the variables indicated in Out for its later use by
the air 1x autopilot.

2.11. Telemetry 371

1x PDI Builder, Release 6.8.65

Fig. 455: Mapping variables option

An example of the configuration required for communication between 1x ground and air units can be found in Data
transmission between Veronte 1x Autopilots -> Integration examples section of this manual.

2.12 UI

In this menu, the user can manage operation elements, system variables and the geoid world mesh.

2.12.1 Operation elements

In this section, the user can rename operation elements. These are variables that have no value until an operation is
performed, e.g. cruise speed and altitudes, marks to initiate landing, the route, etc.

In addition, they must first be renamed in this section, so that they can then be referenced in the setup, as in Automations
(see Automations section), and then defined in the operation, in Veronte Ops (visit Veront Ops manual).

Operation elements are divided into 8 different types:

• Custom Points: An operation custom point is a waypoint, a position variable (x,y,z) that can be used as a
reference.

• Patches: A patch establishes a path that the UAV can fly to, they make up the route. Therefore patches include
waypoints, segments, arcs and orbits.

• Marks: A mark is a reference that is placed in a patch and when the uav reaches it, an action takes place.

• Polygons: A polygon is a detection area.

• Circles: A circle is a circular polygon.

• Runways: These are the runways used during the take-off and landing phases.

• Spots: A spot is a kind of runway with an initial point, direction and azimuth.

• Operation variables: An operation guidance point is a value of the operation, such as the cruise speed.

372 Chapter 2. Configuration

https://manuals.embention.com/veronte-ops/en/6.8/index.html

1x PDI Builder, Release 6.8.65

Fig. 456: Operation elements section

2.12.2 Variables

In this section, the user can find the name of all system variables, as well as their units and initial values. This is very
useful, for example, in the case of ‘User Variables’.

Variables are divided into 4 different tabs:

• Bits: Bits variables, 1 bit.

• Unsigned: Unsigned integer variables, 16 bits.

• Real Vars: Real Variables, 32 bits.

• Features: Features variables, 64 bits.

Note: There are 300 User variables available for each class (Bits, Unsignet and Real Vars).

2.12. UI 373

1x PDI Builder, Release 6.8.65

Fig. 457: Variables section

To set a custom name for one of the system variables:

1. Click on the Custom Name cell of the desired variable and introduce the new name for it.

2. When the name is introduced press Enter to store the name on the system.

3. Press Save to save all changes.

Error: In this version, there is a maximum amount of characters that the user can use to rename variables, i.e.
there is no limit per se but there is a maximum size of the configurable (xml size).

Besides changing their name, the user can also configure the measurement units of the variables, as well as the initial
value (expressed in SI units) they will have each time the system (re)starts, using the Show Units and the Initial Value
(SI) cells.

By right-clicking on the Show Units cell, the user can select the desired units.

374 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 458: Variables units
2.12. UI 375

1x PDI Builder, Release 6.8.65

The table below shows all the available units in 1x PDI Builder.

Variable Type Units
Velocity [m/s] [kt] [km/h] [mph] [ft/s] [mm/s] [ft/m]
Length [m] [km] [mi] [NM] [yd] [ft] [in] [cm] [mm]
Angle rad[-;] °[-180;180] °[0;360] [° ‘ “] [rad] rad[0;2] °
Acceleration [m/s2] [ft/s2] [in/s2] [g]
Temperature [K] [°C] [°F]
Magnetic Flux Density [T] [mG] [gauss] [nT]
Voltage [V] [mV]
Current [A] [mA]
Pressure [Pa] [kPa] [bar] [mbar] [psi] [mmHg] [at] [atm]
Time [s] [min] [h] [s] [ms] [Time]
Angular Velocity [rad/s] [rad/m] [rad/h] [rps] [rpm] [rph] [°/s]
Flow Rate [m3/s] [gal/s] [gal/h] [l/s] [l/h]
Custom Type [- -]
Percentage [x1] [%]
Transfer [pkts/s]
Frequency [Hz] [mHz] [kHz]
Area [m2] [cm2] [mm2] [km2] [mile2] [ft2] [yd2]
Data [bit] [byte] [KB] [GB] [bytes/s]
Mass [kg] [g] [tonnes] [lbs] [oz]
Force [N] [kN] [lbf] [pdl]
Angular Acceleration [rpm/s] [rad/s2] [rad/m2] [rad/h2] [°/s2] [°/m2] [°/h2]
Baudrate [Bd] [kBd] [MBd]
Pressure Variance [Pa2]
Magfield Variance [T2]
Velocity Variance [(m/s)2] [(cm/s)2] [(mm/s)2]
Numeral System [bin] [octal] [dec] [hex]
Pressure Square Error Rate [Pa2/s]
Centimeters/Pixels [cm/pixel]
Jerk [m/s3]
Power [W] [kW] [Kgm/s] [erg/s] [CV]
Resistence []
Inductance [H]
Volume [m3] [dm3] [mm3] [L] [mL]

2.12.3 Geoid

In this section, the user can define the world mesh which provides the geoid altitude.

376 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 459: Geoid section

1. Margin: This is the percentage at which the system will recalculate the mission if the route is displaced. In
other words, if the mission is displaced 60% out of the area and the margin is set to 80%, the mission will be
not recalculated. If the mission is 81% (or more) away from the previous one, the system will recalculate the
mission. A low level (or zero) margin means more terrain profile precision but the system will have to recalculate
the meshes more times (or each time) when the mission is modified.

2. Delta: The distance to the ground (AGL) may be measured through two or more systems. Usually, an altimeter
like a LIDAR in conjunction with the GPS signal and the meshes information are used. During flight, it is
possible that the GPS position error is large enough that the height provided by the meshes does not correspond
with the actual position. In order to avoid problems, the Delta parameter can be defined. This parameter defines
a circumference radius where both systems will be used. If the estimated position error is bigger than the
delta parameter, only LIDAR data will be used.

2.12. UI 377

1x PDI Builder, Release 6.8.65

Fig. 460: Delta Parameter

3. Geoid: World mesh which provides the geoid altitude. The user must place and adjust the mesh manually,
the coordinates of each upper left corner and lower right corner of the meshes’ rectangle must be introduced. In
general, increasing meshes size will mean lower area definition. And greater resolutions smaller meshes, because
it implies heavier data files.

Warning: Check that meshes position are over the mission area before flying, especially if carrying out an
operation in mountainous terrain.

2.13 HIL

Professional Hardware In the Loop (HIL) Simulator package is a powerful tool for 1x autopilot integration, development
and operator training; allowing to extensively operate the system in a safe environment, prior to conducting real flight
operations.

The user can link the variables on 1x autopilot with the corresponding ones in the simulator. In this panel, simulator
variables are available on the left side (Disables). In addition, it can be seen 2 section more, To Simulator and To
Veronte.

378 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 461: HIL menu

In order to configure the simulation variables, users have to:

1. Disabled: Select the simulator variables that have been configured in the aircraft model. Just drag and drop them
into To Simulator section.

2. Select the actuator variable (Control Output) of 1x autopilot that matches with the one in the simulator. A new
window will be displayed for each variable.

2.13. HIL 379

1x PDI Builder, Release 6.8.65

Fig. 462: 1x autopilot variables

4. Offset: Set an offset, if it is necessary.

3. Conversion Factor: Set a conversion factor, if it is necessary. It multiplies the 1x autopilot output signal and
can be used in case units on 1x and the simulator do not match. For example, in X-Plane simulator, the unit of
angles is radians.

Note: To be sure of which units the simulator has, please refer to the relevant simulator manual.

Warning: Always make sure that surfaces are moving in the right direction and with the correct deflection angle.

5. Here the user can see all the variables he has selected and sent to the simulator.

6. To Veronte: The user can also select variables to be sent from the simulator to 1x autopilot. An interesting
variable could be the RPM of the motor.

2.14 Safety

In this menu the user can create checklists for each phase, avoid changing certain parameters, settings or programs and
define safety bits lists.

380 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

2.14.1 Checklist

This feature is used to make sure that some requirements have been accomplished, for example, prior to a phase change
or to avoid a possible malfunction.

These checklists will appear in a panel called Checklist of Veronte Ops (for more information about this, visit Veronte
Ops manual).

Note: There are 3 different types of checks:

• Checks that are performed automatically by Veronte 1x Autopilot, such as “In Range check”.

• Checks that need a command to 1x Autopilot, e.g. “Calibrate Atmosphere”.

• Checks for operator information only, which are performed with type “None”.

Fig. 463: Checklist section

In (1), the user will find all the phases configured for the operation. In each one of them, new elements for the checklist
can be added with the button Add (2). The user can modify the checklist order of the phase by selecting and dragging
elements in the list to the desired position.

The configurable parameters for each element are:

• Name: The name that will identify the element.

• Type: The element chosen from the checklist can be one of the following types:

2.14. Safety 381

https://manuals.embention.com/veronte-ops/en/6.8/index.html
https://manuals.embention.com/veronte-ops/en/6.8/index.html

1x PDI Builder, Release 6.8.65

– Calibrate Atmosphere: The user can request the calibration of the atmosphere model.

– Calibrate DEM: The user can request the calibration of the DEM.

– Command Position: Send to the UAV a position.

– Command Yaw: Send to the UAV a yaw angle.

– Enter Wind Information: Enter initial values for wind state to the UAV.

– In Range Check: Allows checking if a variable is between the range selected.

– None: Any action is performed, been just a check for the user to do something external.

– Trim arcade: The user can request the stick calibration for arcade commands.

• Required for phase change: If enabled, the element must be checked to switch to another phase.

• Show only once: If enabled, the check will only appear the first time its phase is executed.

• Automatic check: This option is only available when ‘In Range check’ is selected.

An example of ‘In Range Check’ can be shown below:

Fig. 464: Checklist example

382 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

2.14.2 Config Manager

Config manager avoid the user changing certains parameters, settings or programs of 1x autopilot. It is shown in the
picture below:

Fig. 465: Config manager section

The user can choose between:

• No block

• Block in normal mode

• Block in maintenance mode

• Block always

2.14. Safety 383

1x PDI Builder, Release 6.8.65

2.14.3 Safety bits

In this section the user can configure 3 different safety bits lists.

The bits included in these lists are added to the set of default system bits that trigger the System error variable, and
therefore trigger the FTS. The user can refer to this list of default system bits in the Activation System Error bits section
of the 1x Software Manual.

Fig. 466: Safety bits section

By default, there is no bit defined in any Safety bits list. To add them, just press “+” icon and select the desired bits. A
common user bit to add to these lists is the ‘Sensors error’ bit, so that if one of the sensors fails, the FTS is triggered.

In addition, the user can switch between the different lists with an action, see Actions of the Automations menu.

Once the installation is finished, open 1x PDI Builder and select the unit.

384 Chapter 2. Configuration

https://manuals.embention.com/1x-software-manual/en/6.8/variables/index.html#activation-system-error-bits

1x PDI Builder, Release 6.8.65

Fig. 467: 1x autopilot ID

If it is correctly connected, it should appear in Normal mode as shown in the following figure.

Fig. 468: 1x PDI Builder

2.14. Safety 385

1x PDI Builder, Release 6.8.65

1x unit can also appears as: Maintenance mode, Maintenance mode (loaded with errors) or Normal mode -
Disconnected.

Note: Maintenance mode (loaded with errors) appears when something is wrong in the configuration. For more
information, see Troubleshooting section of this manual.

The user can access now to 3 configuration options:

• Veronte: It allows the user to work with offline configurations. A previously exported 1x PDI can be opened
and modified or it is possible to build a new one from the default configuration.

Note: When an offline configuration is opened, it is possible to select the hardware version the user wants to
work with:

Fig. 469: Hardware versions

• Upload PDI: A previously exported 1x PDI configuration can be imported to the linked 1x.

• Open Veronte: By clicking on this option, 1x PDI Builder configuration menu opens with the configuration (the
PDI files) loaded in the 1x. Then, the user can modify it online.

Note: PDI files are 1x configuration files. These files allow for modular control with improved version management.
These PDI files are split in 3 folders. Each folder hold several .xml files:

386 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

• Operation: This folder holds all the files related with the operations defined, such as waypoints, routes, operative
parameters, runaways, etc.

• Setup: This contains the configuration of the vehicle. All the control loops and their parameters, the definition
of the flight phases and guidance commands, and the automations defined are stored here.

• xsd: This folder holds .xsd files. An XSD file is a definition file specifying the elements and attributes that can
be part of an XML document. This ensures that data is properly interpreted, and errors are caught, resulting in
appropriate XML validation. Users should never delete, replace or modify it.

Fig. 470: PDIs files

Finally, click on ‘Open Veronte’ to open the configuration and start editing. The different ‘buttons’ that can be seen in
the initial menu of the 1x PDI builder are explained below.

Fig. 471: Initial menu

2.14. Safety 387

1x PDI Builder, Release 6.8.65

1. Save PDI: After changes are done, press on the save button to apply the changes.

While saving, a percentage of the progress of the saving process is displayed:

Fig. 472: Save PDI

After saving any changes, Veronte Autopilot 1x will RESET and the 1x PDI Builder software will close.

Danger: As Veronte Autopilot 1x is reset, it is not advisable to save changes during flight tests.

Note: This button will only appear if an autopilot 1x is connected, i.e. when working offline this button will
not be available.

2. Export PDI: After modifying a configuration, press the export button to store the configuration in the local
storage. Users can store this configuration in an empty folder or in the folder where the previously imported
configuration is stored. With the latter option, the “original” configuration will be overwritten by the one with
the new changes. The user can choose between:

• Download PDI: With this option the 3 folders with the PDI files are downloaded.

• Download VER file: Download a .ver file with the configuration in binary. This option is only available
‘online’, otherwise it will be disabled.

388 Chapter 2. Configuration

1x PDI Builder, Release 6.8.65

Fig. 473: Download option

3. Import PDI from repo: The user can import a configuration file from the repo and modify it. After that, if the
save button is pressed, this configuration will be uploaded on the 1x.

4. Import PDI from local storage: The user can import a configuration file from the local storage and modify it.
After that, if the save button is pressed, this configuration will be loaded into the 1x.

5. Feedback: Users can report a problem they have encountered by creating an issue in their own ‘Joint
Collaboration Framework’. The ‘Download’ button downloads a zipped folder with the current 1x
configuration and more information needed for Embention to resolve the issue. It is advisable to attach this
folder when creating the issue.

Note: The user’s ‘Joint Collaboration Framework’ is simply a own Github repository for each customer.

If the user has any questions about this Joint Collaboration Framework, please see Joint Collaboration Framework
user manual.

2.14. Safety 389

https://manuals.embention.com/joint-collaboration-framework/en/0.1/index.html
https://manuals.embention.com/joint-collaboration-framework/en/0.1/index.html

1x PDI Builder, Release 6.8.65

Fig. 474: Feedback

6. These are the different functions of 1x autopilot. Each option will be explained in detail in the next sections.

Icon Item Description

Veronte Introduce 1x autopilot information

Connections Configure I/O connections on 1x autopilot

Sensors Configure parameter sensors

Input/Output Configure external sensors/devices and I/O signals

Control Introduce Phases, Envelopes, Modes and Arcade axis configuration

Automations Configure automatic actions on event detection (go home, change phase. . .)

Communications Configure alternative communication channels, statistics and routing

Stick Cusomize transmitter configuration

Block Programs Customize algorithms executed by 1x autopilot

Devices Configure any connected devices: servo, radio, camera. . .

Telemetry Customize traffic: log, telemetry. . .

UI Customize variable names

HIL Configure parameters for XPlane Simulator

Safety Customize checklist, block user control in PDI configuration and safety bits

390 Chapter 2. Configuration

CHAPTER

THREE

INTEGRATION EXAMPLES

In this section, a series of examples will be presented so that the user knows how to perform certain customizations
in the 1x PDI Builder. In addition, some examples of integration between the 1x Autopilot and external devices are
presented.

3.1 AP communication with PC

Since Veronte Autopilot 1x can be connected to a computer via a USB or serial interface, the configuration for both
connections is already set by default in 1x PDI Builder.

However, users should check that this configuration has not been modified to ensure a correct communication via both
ways in case one of them is lost. For this:

Go to Input/Output menu→ I/O Setup section. Each USB, RS232 and RS485 Producers must be bidirectionally
connected to a Commgr port:

Important: Users should also check that the Commgr ports to which USB and serial ports are connected are not
routed. For more information on Routing, see Ports section of this manual.

391

1x PDI Builder, Release 6.8.65

Fig. 1: USB/RS232/RS485↔ Commgr port

3.2 ArcTrim Button

The ArcTrim button allows the user to trim the stick signal directly from the stick position, before the operation, by
simply clicking on it. In addition, this button is considered as an ‘action button’ that can be embedded in the Veronte
Panel.
To do this, the following steps should be followed:

1. Go to Block Programs menu.

• Create a program to make the necessary connection to the Arc Trim block.

Usually the user has a Stick program where the blocks that are related to the stick are implemented.

• Add the Arc Trim block and connect the input and output variables to it.

Usually the input variables are Stick Input u1-u4 and the output variables Stick Input d1-d4.

• Finally, enable the block to be commandeded by simply clicking on the icon.

392 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 2: Arc Trim block

2. Configure the trim vector of the Arc Trim block.

Depending on the range of the signal, the following values are recommended:

• If the signal ranges from 0 to 1⇒ 0.5.

• If the signal ranges from -1 to 1⇒ 0.

In this example, since the signal is in the range 0-1, 0.5 is set:

Fig. 3: Arc Trim block configuration

3. Go to Automations menu→ create a New Automation→ go to Events.
Select the Button option and choose the desired icon for this button.

In addition, it is recommended to activate the Confirmation checkbox, to avoid trimming the stick by mistake.

3.2. ArcTrim Button 393

1x PDI Builder, Release 6.8.65

Fig. 4: Arcade trim automation - Events

4. In the created automation, go to Actions.
• Add the Command block action.

• Select Arc Trim block to command and choose the commandable Id.

• Finally, it is recommended to activate both checkboxes:

394 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 5: Arcade trim automation - Actions

5. In Veronte Ops, this button will appear embedded in the Veronte Panel.

Note: This action button will only appear on the Veronte Panel if the action buttons have been enabled to be
shown on it. For more information on this, see Veronte Panel section on the Veronte Ops user manual.

3.2. ArcTrim Button 395

https://manuals.embention.com/veronte-ops/en/6.8/panels/workspace/main/index.html#veronte-panel

1x PDI Builder, Release 6.8.65

Fig. 6: Arc Trim button - Veronte Panel

When clicking on it, the following confirmation message will be displayed (as the confimration checkbox has
been activated in the automation):

Fig. 7: Arc Trim button - Veronte Panel

Now, the stick is trimmed.

3.3 CAN communication

Here are described the steps to be followed in order to correctly receive and transmit CAN messages:

CAN messages reception

396 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 8: CAN messages reception diagram

1. Go to Input/Output menu→ CAN Setup section→Mailboxes tab.

Configure the mailbox to receive a message with the appropiate ID (in this example ID 28 has been configured):

Fig. 9: Mailbox configuration

2. Go to Input/Output menu→ CAN Setup section→ Configuration tab.

Connect an Input filter with the right CAN ID to a Custom message consumer:

3.3. CAN communication 397

1x PDI Builder, Release 6.8.65

Fig. 10: Input filter

Fig. 11: Input filter configuration

3. Go to Input/Output menu → CAN Setup section → Custom message 1 tab (as Custom Message 1 has been
selected as consumer).

Configure the message reading as desired in the RX tab by setting the correct CAN ID.

The different options and parameters to be configured are explained in the RX messages -> Custom messages
section of this manual.

398 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 12: Custom Message configuration

CAN messages transmission

Fig. 13: CAN messages transmission diagram

1. Go to Input/Output menu→ CAN Setup section→ Custom message 1 tab.

Select the fields to send in the TX or TX Ini section, as it is a Producer. More information on the configuration
of CAN messages can be found in the TX messages -> Custom messages section of this manual.

For example, a CAN messsage set to ID 12:

3.3. CAN communication 399

1x PDI Builder, Release 6.8.65

Fig. 14: Custom Message configuration

2. Go to Input/Output menu→ CAN Setup section→ Configuration tab.

Connect CAN custom message 1 producer (as the message has been configured in the Custom Message 1 tab)
to an Output Filter as follows:

400 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 15: Output filter

Warning: Remember that it is necessary to have at least 1 free mailbox for TX messages.

3.4 Data transmission between Veronte 1x Autopilots

To stablish a proper communication between the ground and air units, the telemetry and sniffer menus must be
configured, respectively.

A simple example of use between a ground unit and an air unit is shown below:

In the 1x ground unit:
1. Go to Telemetry menu → Telemetry section → Data link to VApp tab (see Telemetry section, for more

information about this).

2. Add the variables: Absolute: UAV position, Yaw, Pitch and Roll.

3. Set a Frequency, it is recommended to set it to 10 Hz.

4. On Address, point to the 1x air unit (it is needed to have both units connected through the radio in order to be
able to see them on the menu).

3.4. Data transmission between Veronte 1x Autopilots 401

1x PDI Builder, Release 6.8.65

Fig. 16: 1x ground unit - Telemetry

For the 1x air unit:
1. Go to Telemetry menu→ Sniffer section (for more information about this, see Sniffer section).

2. Add a new Sniffer.

3. Configure the same variables (keeping the same order) than in the ground unit.

4. On Address, point to the 1x ground unit.
5. In the gear next to it, configure the 4 incoming variables as System Variables: assign UAV Position to Moving

Object and the 3 variables from attitude to 3 different User Variables (keeping the same order as well).

402 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 17: 1x air unit - Sniffer

3.5 External devices

The step-by-step instructions for the following external devices will be explained in detail in the following sections:

• Altimeters

• External sensors

• Radios

• Servos

• Stick

• Veronte products

3.5.1 Altimeters

3.5.1.1 Lidar

The integration between Veronte Autopilot 1x and a lidar is performed using a variety of interfaces depending on the
lidar device. The most common interfaces are I2C or analog although serial or CAN bus can also be used if the lidar
is compatible.

3.5. External devices 403

1x PDI Builder, Release 6.8.65

3.5.1.1.1 ADC lidar

An ADC lidar changes the voltage depending on the measured distance and therefore the connection to the Autopilot
1x is made using the ADC pins (see section Hardware installation - Electrical of the 1x user manual).
Once connected to 1x autopilot, the value can be monitored in 1x PDI Builder by using the variables ADC1 to ADC5.
For pin ANALOG_1 the correspondent ADC variable in 1x PDI Builder is ADC1.

1. Go to Connections menu→ ADC 1 section.

Click on ‘Create new program’:

Fig. 18: Create ADC program

2. Go to Block programs menu.

Configure the following operation (for more information about blocks, see Block Programs):

404 Chapter 3. Integration examples

https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#veronte-autopilot-1x-i-o-signals

1x PDI Builder, Release 6.8.65

Fig. 19: Lidar operation

After implementing the operation the variable Lidar 1 Distance will represent the distance measured by the lidar.

Note: As 4x Autopilot can read up to 36 V per each ADC, the 3.3 value of the ADC program must be changed to 36
if applicable.

3.5.1.1.2 I2C lidar

I2C lidars are configured slightly differently.

Connect the lidar following the pinout provided by the manufacturer and connect it to the Veronte Autopilot 1x I2C
bus following the Hardware installation - Electrical section of the 1x user manual.
In this case it is not needed to transform the lidar readings, the readings will be reported directly in the selected lidar
distance variable.

Go to Sensors menu→ Lidar section.

• Enable Lidar 1

• Select the desired Lidar from the drop-down menu

• Set the I2C address

More information on the available lidar options can be found in the Lidar section of this manual.

3.5. External devices 405

https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#veronte-autopilot-1x-i-o-signals

1x PDI Builder, Release 6.8.65

Fig. 20: I2C Lidar

Warning: I2C address will be different for different devices make sure to define it properly by checking the
manufacturer documentation.

3.5.1.1.3 Using lidar readings

Once the information provided by a lidar sensor is stored in a system variable as Lidar Distance via an ADC reading,
I2C, serial or CAN, the user has to set how this data will be considered. Common uses are: to consider the lidar data
as external sensor or to trigger an action based on a predefined event.

• Altimeter configuration: The following operation must be configured in the Block Programs menu to consider
the lidar measurement as an EKF input.

406 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 21: Altimer connection - Block Programs

The Lidar Distance variable where the lidar measurement is stored must be selected. In this example, Lidar 1
Distance has been used:

Fig. 22: Altimer sensor configuration - Block Programs

Fig. 23: Altitude EKF adapter configuration - Block Programs

For more information on these blocks, see Altimeter sensor and Altitude EKF adapter of Block Programs

3.5. External devices 407

1x PDI Builder, Release 6.8.65

section.

• Automation: This automation will trigger a change of phase, Flare phase, when the aircraft is landing and at 5
m AGL.

Fig. 24: Lidar automation example

For more information on automations, see Automations section.

3.5.1.2 Radar

Radar altimeters are common devices on aircrafts.

3.5.1.2.1 Ainstein CAN Radar

The following explanation corresponds to the integration of the Ainstein CAN Radar.

These settings will allow Autopilot 1x to read out via CAN A the radar altimeter reading, in particular distance.

Note: In the datasheet of the radar, the user can access the complete protocol of the device.

1. Go to Input/Output menu→ CAN Setup section→ Configuration tab.

408 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Connect an Input Filter to Custom message 1, in this example Input Filter 2. and configure to read from CAN
A:

Fig. 25: CAN Setup - Input Filter

Configure this Input Filter to read from CAN A, with Id 589826 and allow both types of messages to enter the
input filter (since the radar altimeter uses extended IDs).

Fig. 26: CAN Setup - Input Filter configuration

2. After specifying that Custom message 1 will receive the data from CAN A, go to Mailboxes tab.

3.5. External devices 409

1x PDI Builder, Release 6.8.65

Configure a CAN A mailbox for extended CAN ID message: 589826:

Fig. 27: Mailboxes configuration

3. Go to UI menu→ Variables section→ Reals Vars tab.

Rename a User Variable that will be used to store the measurement read from the radar:

410 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 28: User Variable renamed

4. Finally, go to Input/Output menu→ CAN Setup section→ Custom message 1 tab.

• Add a new message in RX with extended ID 589826 and Big endian:

3.5. External devices 411

1x PDI Builder, Release 6.8.65

Fig. 29: Custom message 1

• Configure the reading of the message and store the received value in the user variable renamed above. And
set the following values for the different parameters:

412 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 30: Custom message 1 configuration

For more details on CAN configuration see CAN Setup section.

3.5.1.2.2 Smartmicro CAN Radar

The following explanation corresponds to the integration of the Smartmicro CAN Radar. For more information on
the Smartmicro Radar - Altimeter datasheet, the user can go to:

• Micro Radar Altimeter Web

• Micro Radar Altimeter Data Sheet

These settings will allow Autopilot 1x to read out via CAN A the radar altimeter readings, in particular AGL and
vertical speed.

Note: In the datasheet the user can access the complete protocol of the device.

1. Go to Input/Output menu→ CAN Setup section→ Configuration tab.

Set an Input Filter to read from CAN A in Custom message 1, in this example Input Filter 3.

3.5. External devices 413

https://www.smartmicro.com/airborne-radar
https://www.smartmicro.com/fileadmin/media/Downloads/Airborne_Radar/Sensor_Data_Sheets/Micro_Radar_Altimeter_Data_Sheet.pdf

1x PDI Builder, Release 6.8.65

Fig. 31: CAN Setup - Input Filter

Fig. 32: CAN Setup - Input Filter configuration

2. After specifying that Custom message 1 will receive the data from CAN A, go to Mailboxes tab.

Configure the CAN A baudrate:

414 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 33: Baudrate configuration

3. Once the baudrate is set, configure CAN A mailboxes for CAN ID message: 1872.

3.5. External devices 415

1x PDI Builder, Release 6.8.65

Fig. 34: Mailboxes configuration

4. Go to Custom message 1 tab.

• Add a new message in RX with ID 1872.

416 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 35: Custom message 1

• Define the content of the incoming message:

3.5. External devices 417

1x PDI Builder, Release 6.8.65

Fig. 36: Custom message 1 configuration

For more details on CAN configuration see CAN Setup section.

Note: CAN ID messages and messages content will change for different Radar altimeters. Check the documentation
of your device for further details.

3.5.2 External sensors

Veronte Autopilot 1x can be integrated with any external sensor that shares the communication interface.

External sensors can be configured to be considered as part of the sensors fusion.

3.5.2.1 LM335 with Autopilot 4x

Once LM335 sensor is wired and connected to Autopilot 1x or 4x (according to LM335 - 4x User Manual), the value
can be monitored in 1x PDI Builder by using the variables ADC1 to ADC5.

Note: For pin ANALOG_1 the correspondent ADC variable in 1x PDI Builder is ADC1.

Read the following steps to configure a Veronte Autopilot 1x:

1. Go to Connections menu→ ADC 2 section (This is only an example, the user must select the ADC pin where
the signal is connected).

Click on ‘Create new program’:

418 Chapter 3. Integration examples

https://manuals.embention.com/4x/en/1.8/integration%20examples/external%20sensors/index.html#temperature-sensor-lm335

1x PDI Builder, Release 6.8.65

Fig. 37: Create ADC program

2. Go to Block Programs menu→ Launch Editor.

3.5. External devices 419

1x PDI Builder, Release 6.8.65

Configure the following operation (for more information about blocks, read Block Programs):

Fig. 38: LM335 sensor operation

Note:
• The Temperature variable is an User Variable which has been renamed.

• The equation to obtain temperature (in ºC) from voltage is: 𝑇 = 𝑉 𝑜𝑢𝑡100 − 273. Nonetheless, in the
blocks program, the input signal is not multiplied by 100, since ADC expresses the voltage in hundredths.

420 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 39: LM335 sensor operation detailed

3. The IIR Filter block requires the following configuration, where the column B has 20 coefficients (from 0 to
19) with value 1.

Click on Apply to save the changes.

Fig. 40: IIR Filter block configuration

4. Save the configuation in the Autopilot 1x.

After implementing the operation, the variable Temperature (User variable renamed) will represent the temperature (in
°C) measured by the LM335 sensor.

Tip: With Veronte Ops it is possible to check that the sensor is working correctly.

3.5. External devices 421

1x PDI Builder, Release 6.8.65

Fig. 41: Temperature value in Veronte Ops

3.5.2.2 Magnetometer Honeywell HMR2300

3.5.2.2.1 RS-232

Magnetometer Honeywell HMR2300 can be connected via RS-232 (serial interface) in accordance with the
manufacturer’s specifications and following the Hardware installation - Electrical section of the 1x user manual.
The following steps explain how to configure Veronte Autopilot 1x to integrate this external magnetometer:

1. Go to Connections menu→ Serial section→ 232 tab.

Configure the serial communication settings:

Fig. 42: RS-232 connection configuration

422 Chapter 3. Integration examples

https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#electrical

1x PDI Builder, Release 6.8.65

2. Go to Block Programs menu.

• Create a program to make the necessary connection to the sensor blocks.

Usually the user has a Navigation program where the sensor blocks are implemented.

• Configure the Magnetometer sensor block selecting External HMR2300.

Fig. 43: Magnetometer sensor block configuration

For more information on this block, see Magnetometer sensor of Block Programs section.

3. Go to Sensors menu→Magnetometer section→ External HMR2300 tab.

Set the rotation matrix according to the sensor installation by clicking on Edit Rotation Matrix:

3.5. External devices 423

1x PDI Builder, Release 6.8.65

Fig. 44: External HMR2300 magnetometer - Rotation matrix

4. Go to Input/Output menu→ I/O Setup section.

Bidirectionally connect the RS232 Producer to the External HMR2300 magnetometer Consumer:

424 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 45: RS232↔ External HMR2300 magnetometer

Then, the External HMR2300 magnetometer Producer should be automatically connected to the RS232
Consumer:

3.5. External devices 425

1x PDI Builder, Release 6.8.65

Fig. 46: External HMR2300 magnetometer↔ RS232

For more information on the Magnetometer Honeywell HMR2300, check out the datasheet: Smart Digital
Magnetometer HMR2300.

3.5.2.2.2 RS-485

Magnetometer Honeywell HMR2300 can be connected via RS-485 (serial interface) in accordance with the
manufacturer’s specifications and following the Hardware installation - Electrical section of the 1x user manual.
Follow the next steps to stablish a correctly communication between Honeywell HMR2300 magnetometer and Veronte
Autopilot 1x via RS-485:

1. Connect the Honeywell HMR2300 magnetometer via USB to the PC (with a USB-RS485 conversor).

2. The configuration to establish communication must be:

• In binary mode

• With continuous fowarding
• ID = 00

To configure the magnetometer in this way, the following commands must be sent to it:

• *99Q: This command reads the default values, including the device ID.

• *00WE: This enables writing.

426 Chapter 3. Integration examples

https://aerospace.honeywell.com/content/dam/aerobt/en/documents/learn/products/sensors/datasheet/SmartDigitalMagnetometerHMR2300_ds.pdf
https://aerospace.honeywell.com/content/dam/aerobt/en/documents/learn/products/sensors/datasheet/SmartDigitalMagnetometerHMR2300_ds.pdf
https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#electrical

1x PDI Builder, Release 6.8.65

• *ddID=00: Changes the ID to 00, where dd is the device ID obtained with the first command.

• *00WE: Enables writing.

• *00B: Binary mode.

• *00C: Continuous send mode.

• *00WE: Enables writing.

• *00SP: Finally, this command saves the configuration in EEPROM.

3. Autopilot can now be configured to communicate via RS485 with the Honeywell HMR2300 magnetometer.

The configuration to be carried out is very similar to that described above for communication with the
magnetometer via RS-232:

• Instead of configuring the 232 connection, the 485 connection is configured.

• And, the bidirectional connection must be made between the RS485 port and External HMR2300
magnetometer and not with the RS232 port.

For more information on the Magnetometer Honeywell HMR2300, check out the datasheet: Smart Digital
Magnetometer HMR2300.

3.5.2.3 MEX as Magnetometer Honeywell HMR2300

MEX can be used as an external magnetometer Honeywell HMR2300 connected to Veronte Autopilot 1x via serial
interface, RS-232 or RS-485. For this serial connection, check the Hardware installation - Electrical section of the 1x
user manual.
The following steps explain how to configure Veronte Autopilot 1x to integrate it as an external magnetometer:

1. Go to Connections menu→ Serial section→ 232/485 tab.

Configure the serial communication settings:

Note: If the user connects the MEX via RS-485, configure the RS-485 port instead of RS-232.

3.5. External devices 427

https://aerospace.honeywell.com/content/dam/aerobt/en/documents/learn/products/sensors/datasheet/SmartDigitalMagnetometerHMR2300_ds.pdf
https://aerospace.honeywell.com/content/dam/aerobt/en/documents/learn/products/sensors/datasheet/SmartDigitalMagnetometerHMR2300_ds.pdf
https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#electrical

1x PDI Builder, Release 6.8.65

Fig. 47: RS-232 connection configuration

2. Go to Block Programs menu.

• Create a program to make the necessary connection to the sensor blocks.

Usually the user has a Navigation program where the sensor blocks are implemented.

• Configure the Magnetometer sensor block selecting External HMR2300.

428 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 48: Magnetometer sensor block configuration

For more information on this block, see Magnetometer sensor of Block Programs section.

3. Go to Sensors menu→Magnetometer section→ External HMR2300 tab.

Set the rotation matrix according to the sensor installation by clicking on Edit Rotation Matrix:

3.5. External devices 429

1x PDI Builder, Release 6.8.65

Fig. 49: External HMR2300 magnetometer - Rotation matrix

4. Go to Input/Output menu→ I/O Setup section.

Bidirectionally connect the RS232 Producer to the External HMR2300 magnetometer Consumer:

Note: If the user connects the MEX via RS-485, connect the RS485 Producer instead of RS232 Producer.

430 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 50: RS232↔ External HMR2300 magnetometer

Then, the External HMR2300 magnetometer Producer should be automatically connected to the RS232
Consumer:

Note: If the user connects the MEX via RS-485, the RS485 Consumer shall be connected instead of the RS232
Consumer.

3.5. External devices 431

1x PDI Builder, Release 6.8.65

Fig. 51: External HMR2300 magnetometer↔ RS232

3.5.2.4 OAT Sensor

Once OAT sensor is connected to 1x autopilot, the value can be monitored in 1x PDI Builder by using the variables
ADC1 to ADC5.

Note: For pin ANALOG_1 the correspondent ADC variable in 1x PDI Builder is ADC1.

Read the following steps to configure it:

1. Go to Connections menu→ ADC 1 section.

Click on ‘Create new program’:

432 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 52: Create ADC program

2. Go to Block programs menu.

Configure the following operation (for more information about blocks, see Block Programs):

Fig. 53: OAT sensor operation

3.5. External devices 433

1x PDI Builder, Release 6.8.65

Fig. 54: Custom block: Converter from V to K

Fig. 55: Custom block: Converter from K to °C

After implementing the operation, the variable Temperature sensor will represent the temperature (in °C) measured by
the OAT sensor.

Note: If the temperature is needed in other units, the only thing necessary would be to modify the Custom block
Converter K to C, or simply remove it.

Note: As 4x autopilot can read up to 36 V per each ADC, the 3.3 value of the ADC program must be changed to 36
if applicable.

3.5.2.5 Vectornav VN-300

Vectornav VN-300 is an external IMU that can be connected via RS-232 (serial interface) to Veronte Autopilot 1x.

The following steps explain how to configure Veronte Autopilot 1x to integrate this external IMU:

1. Go to Connections menu→ Serial section→ 232 tab.

Configure the serial communication settings:

434 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 56: RS-232 connection configuration

2. Go to Input/Output menu→ I/O Setup section.

Connect the RS232 Producer to the Vectornav VN-300 Consumer:

3.5. External devices 435

1x PDI Builder, Release 6.8.65

Fig. 57: RS232→ Vectornav VN-300

3. Go to Block Programs menu.

• Create a program to configure the Vectornav VN-300 as the type of navigation.

Usually the user has a Navigation program where the blocks that are related to the navegation are
implemented.

• Configure the Navigation block selecting Vectornav VN-300.

436 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 58: Navigation sensor block configuration

For more information on this block, see Navigation of Block Programs section.

3.5.2.5.1 Vectornav VN-300 configuration

It is also required a configuration on the Vectoran VN-300 IMU.

Follow the steps below to stablish proper communication between Vectornav VN-300 and Veronte Autopilot 1x via
RS-232:

1. Connect the Vectornav VN-300 IMU via USB to the PC (if necessary, use a USB-RS232 converter).

2. Connect one or both GPS antennas to it.

3. For its configuration, enable periodic binary messages at 100 Hz. Only the following outputs from the Group
1 (Common group) must be sent:

Outputs Bit Offset
TimeGps 1
YawPitchRoll 3
AngularRate 5
Position 6
Velocity 7
Accel 8
InsStatus 12

Warning: Veronte Autopilot 1x is only capable to decode messages with exactly that structure, any missing or
added field will cause 1x Autopilot to reject the messages.

3.5. External devices 437

1x PDI Builder, Release 6.8.65

In addition, the baudrate configured on the VN-300 must match that configured for Veronte Autopilot 1x. Therefore,
it is recommended to configure the baudrate of the serial port to the standard 115200.

3.5.3 Radios

Warning: The internal radio of Veronte Autopilots 1x depends on the hardware version, so the user should check
the internal radio according to the hardware version of his 1x Autopilot:

• Veronte Autopilot 1x v4.5: To consult its internal radio, click here.

• Veronte Autopilot 1x v4.8: To consult its internal radio, click here.

3.5.3.1 Digi internal radio

3.5.3.1.1 Configuration

This section describes the necessary configuration for 1x PDI Builder and the Digi radio software (XCTU) to allow
a correct communication between Veronte Autopilot 1x and its internal Digi radio.

To configure the communication between autopilots 1x and their internal Digi radios, apply the following steps to each
one (air and BCS/PCS unit):

1. Connect the Autopilot 1x to a computer with Veronte Link, read the user manual to use it.

Configuration in 1x PDI Builder
2. Go to Input/Output menu→ I/O Setup section.

Since the configuration of this menu is going to be modified temporarily, i.e. the current configuration will have
to be re-established, just to be able to set up a tunnel between the autopilot and the radio.

It is necessary that the user first annotates the configuration of USB, Veronte LOS and the ports to which
they are connected. The following image shows an example.

Note: It is recommended to take a screenshot for this step.

Warning: Although the connection with 1x Autopilot will be lost via USB, users can still “see” the autopilot
via serial (RS232 or RS485). For this purpose, the bidirectional RS232 or RS485 connection must not be
modified.

438 Chapter 3. Integration examples

https://manuals.embention.com/1x/en/4.5/integration%20examples/radios/index.html#microhard-internal-radio
https://manuals.embention.com/1x/en/4.8/integration%20examples/radios/index.html#digi-radio-as-internal-radio
https://manuals.embention.com/veronte-link/en/6.8.33/index.html

1x PDI Builder, Release 6.8.65

Fig. 59: Example of configuration of USB and Veronte LOS ports

3. Change the port which USB producer is connected to and select Veronte LOS as consumer.

USB and Veronte LOS must have bidirectional communication←→.

3.5. External devices 439

1x PDI Builder, Release 6.8.65

Fig. 60: USB←→ Veronte LOS

4. Go to Communications menu→ Veronte LOS section.

It is important to know which baudrate is configured for the Veronte LOS serial port in order to match it with
the one configured in the Digi radio.

By default, the baudrate configured in 1x PDI Builder is set to 115200.

440 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 61: Veronte LOS baudrate

5. Click on to apply changes to the Autopilot.

Warning: The communication between computer and Autopilot 1x will be disconnected, since the autopilot is
working as a tunnel between computer and radio. The computer will be communicating only with the Digi radio.

6. Wait for the device to disconnect and close Veronte Link. If the user does not close it, XCTU software will
not be able to detect the radio as the COM is being managed by Veronte Link, and the following error message
will appear:

Fig. 62: XCTU error message

3.5. External devices 441

1x PDI Builder, Release 6.8.65

Important: Remember that to completely close the application the user must close it from the windows system
tray.

Fig. 63: Close Veronte Link

Configuration in Digi radio software
7. Download and install XCTU (Digi radio software).

8. Build a configuration for ‘air’ or ‘bcs’ in XCTU:

The integrated radio is the model DIGI-XBEE3 XB3-24Z8UM. For more information about how to configure
it, read the XCTU User Guide.

The following table shows which parameters can be configured. The rest of parameters should remain as default.

DIGI Parameter Description
PL Transmit power (100 mW)
ID Network addres PAN ID
DD Device type identifier
BD UART baud rate (115200)
RR Retries (minimum 5)
CH 2.4 GHz channel to send
MM Mac mode, 802.15.4 with Digi header for discovery and packages duplicate
CA Clear channel threshold as dBm
EA Ack failures
EC Failure to sent due to excess of energy in channel

Note: Radios to pair must have matching PAN IDs.

Warning: Check that the baudrate of the radio matches the baudrate configured in 1x PDI Builder. If it
is not the same, change one of them to match. Remember that Veronte LOS baudrate must not exceed
115200, as this may compromise proper communication.

9. Only for Autopilots 1x implemented in a 4x
Digi radios are able to create a network and talk to each other, even if they are configured as endpoint.

This is a problem, as it leads to radio channel overload. To prevent this problem, the destination addresses must
be configured so that the ground station transmits in broadcast and each air unit transmits only to the ground.

The following table shows how to configure air and ground units in XCTU:

442 Chapter 3. Integration examples

https://hub.digi.com/support/products/xctu/?path=/support/asset/xctu-v-659-windows-x86x64/
https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm

1x PDI Builder, Release 6.8.65

Radio Parameter Configuration
Ground MY 16-bit Source Address FFFF

DH Destination Address High 0
DL Destination Address Low FFFF

Air MY 16-bit Source Address FFFF
DH Destination Address High SH of the ground radio
DL Destination Address Low SL of the ground radio

Fig. 64: Air configuration example

Fig. 65: Ground configuration example

10. After configuring the radio, the communication between computer and Autopilot 1x should be restored. To do
it, force the maintenance mode.

Configuration in 1x PDI Builder
11. Go to Input/Output menu→ I/O Setup section.

Finally, after configuring the Digi radio in its software, restore the annotated USB and Veronte LOS
configuration (step 2).

If after the whole process described above for setting up the radio or later during operation the communication between
the Digi radio and the Veronte Autopilot 1x is lost, please check the Communication lost with intenal Digi radio - >
Troubleshooting section of this manual.

3.5. External devices 443

https://manuals.embention.com/1x/en/4.8/troubleshooting/index.html#forcing-maintenance-mode

1x PDI Builder, Release 6.8.65

3.5.3.1.2 Operational range

The following table is a reference of the functional range for each telemetry load (it may be affected by enviromental
conditions):

Frequency
Load 5 Hz 10 Hz 20 Hz
Low (Half telemetry vector) > 700 m 500 m 300 m
Medium (one telemetry vector) > 700 m 100 m 80 m
High (two or more telemetry vectors) 300 m 80 m X

Note: Telemetry vectors are structured messages with up to 255 bytes of data. To know more about them, read VCP
manual -> Message structure.

3.5.3.2 Microhard internal radio

This section describes the necessary configuration that must be performed in 1x PDI Builder and 1x PDI Calibration
to allow a correct communication between Veronte Autopilot 1x and its internal Microhard radio.

To configure the communication between autopilots 1x and their internal Microhard radios, apply the following steps
to each one (air and bcs unit):

1. Connect the Autopilot 1x to a computer with Veronte Link, read the user manual to use it.

Configuration in 1x PDI Builder
2. Go to Input/Output menu→ I/O Setup section.

Since the configuration of this menu is going to be modified temporarily, i.e. the current configuration will have
to be re-established, just to be able to set up a tunnel between the autopilot and the radio.

It is necessary that the user first annotates the configuration of Veronte LOS, Tunnel and the ports to which
they are connected. The following image shows an example.

Note: It is recommended to take a screenshot for this step.

444 Chapter 3. Integration examples

https://manuals.embention.com/vcp/en/6.8/index.html#message-structure
https://manuals.embention.com/vcp/en/6.8/index.html#message-structure
https://manuals.embention.com/veronte-link/en/6.8.33/index.html

1x PDI Builder, Release 6.8.65

Fig. 66: Example of configuration of Veronte LOS port

3. Change the port which Veronte LOS producer is connected to and select a Tunnel as consumer, in this example
Tunnel 1 has been selected.

Veronte LOS and Tunnel 1 must have bidirectional communication←→.

3.5. External devices 445

1x PDI Builder, Release 6.8.65

Fig. 67: Veronte LOS←→ Tunnel 1

4. Click on to apply the changes to the Autopilot 1x.

Configuration in 1x PDI Calibration
5. In 1x PDI Calibration, go to Terminal menu.

To set up the Microhard radio, the 1x PDI Calibration software provides a Microhard wizard to assist the user
in setting up the radio.

Please refer to the Terminal and Microhard setup helper sections of the 1x PDI Calibration user manual.

Configuration in 1x PDI Builder
6. Go to Input/Output menu→ I/O Setup section.

Finally, after configuring the Microhard radio in 1x PDI Calibration, restore the annotated Veronte LOS and
Tunnel 1 configuration (step 2).

7. Click on to apply the changes to the Autopilot 1x.

3.5.3.3 External radios

This section describes the required configuration to be performed in 1x PDI Builder to allow a correct connection
between Veronte Autopilot 1x and any external radio.

External radios compatible with the autopilot 1x, such as Microhard, DTC, Digi, Silvus and Veronte Data Link
(Embention external radio, contact sales@embention.com for more information).

After configuring the external radio in the corresponding software, follow the steps below:

1. Go to Connections menu→ Serial section→ 232 tab.

446 Chapter 3. Integration examples

https://manuals.embention.com/1x-pdi-calibration/en/6.8.67/operation/terminal/index.html
https://manuals.embention.com/1x-pdi-calibration/en/6.8.67/operation/terminal/index.html#microhard-setup-helper
mailto:sales@embention.com

1x PDI Builder, Release 6.8.65

Check that these parameters are the same as the parameter values previously set in the external radio.

Fig. 68: RS-232 connection configuration

2. Go to Input/Output menu→ I/O Setup section.

RS-232 has to be configured as a bidirectional commgr port.

3.5. External devices 447

1x PDI Builder, Release 6.8.65

Fig. 69: RS-232 I/O configuration

Note: These settings have to be made in both 1x autopilot units (GND and AIR).

3.5.4 Servos

The user can configure any actuator compatible with the communication interfaces.

3.5.4.1 PWM

The following steps explain how to configure a PWM servo in Veronte Autopilot 1x.

1. Connect the servo according to the manufacturer’s documentation and follow the Hardware installation -
Electrical section of the 1x user manual to connect it to the 1x autopilot.

2. Go to Connections menu→ PWM section.

• Select and configure the PWM pins where the servos are connected. Set the frequency according to the
manufacturer’s specifications.

448 Chapter 3. Integration examples

https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#electrical
https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#electrical

1x PDI Builder, Release 6.8.65

Fig. 70: PWM connection configuration

Caution: If there is no PWM tab or the PWM pin where the servo is connected is not shown on the interface,
it must be because they are configured as GPIO. For this, refer to PWM section of this manual.

3. Go to Block Programs menu.

• Create a program to make the necessary connection to the servo blocks.

Usually the user has a Control to servo program where the servo blocks are implemented.

• Configure the Actuator block connecting PWM block as Pulse and Actuator Outputs as Servo:

3.5. External devices 449

1x PDI Builder, Release 6.8.65

Fig. 71: Block programs connection

• Assign a given PWM to a given actuator output.

The assignment is done automatically in the order in which they are configured in the blocks. That is, the
first PWM will relate to the first actuator output, which does not necessarily mean that PWM 1 is assigned
to Actuator Output s1.

In this example, the PWMs are assigned to the actuator outputs as shown in the following figure:

450 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 72: Block programs configuration

Note: For instance, PWM 6 is assigned to Actuator Output s3.

For more information on Actuator and PWM blocks, see Actuator block and PWM block of Block Programs
section.

3.5.4.2 Serial

Serial servos are configured differently than PWM servos as the protocol of a serial device must be defined with serial
custom messages.

In this case a PWM variable must be sent through a serial interface.

3.5. External devices 451

1x PDI Builder, Release 6.8.65

3.5.4.2.1 Volz DA26 - RS485

Firstly, the following wiring connection is recommended for a RS485 connection between Volz DA26 servos and
Veronte Autopilot 1x:

Fig. 73: Volz DA26 - Veronte Autopilot 1x wiring connection

The above diagram is made for the case where 2 Volz DA26 servos are connected, however, the connection is the same
in case the user wants to connect only one or as many servos as the bus allows.

Follow the steps below to configure a Volz DA26 servo via RS-485.

1. Go to Input/Output menu→ I/O Setup section.

Bidirectionally connect the RS485 port to a RS custom message, in this example RS custom message 1 is used:

452 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 74: RS485↔ RS custom message 1

2. Configure the RS custom message 1 producer by defining the protocol specified by the manufacturer:

Note: As the RS-485 is a Half Full duplex serial port, Veronte Autopilot 1x needs to leave this serial bus free
for a certain time in order to receive the servo response. This is done by setting the Delay parameter.

3.5. External devices 453

1x PDI Builder, Release 6.8.65

Fig. 75: RS custom message 1 - Manufacturer’s communication protocol

• Endianness: Big endian

• Period: 0.035

• Delay: 0.0015

– Matcher x77: Silent mode command (0x77).

∗ Value: 119

∗ Bits: 8

∗ Mask: 255

– Matcher x1: Servo interface Id = 1. The Id will be different for each servo and/or interface.

∗ Value: 1

∗ Bits: 8

∗ Mask: 255

– PWM 1: PWM is the variable that carries the information that has to be applied to the servo.
Therefore, it must be included in the message.

∗ Variable: PWM 1

∗ Compression: Compress - Bits Unsigned

454 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

∗ Encode: 0 / 1

∗ Decode: 3050 / 5070

– CRC (Custom): A Checksum is needed to complete the communication protocol.

∗ Type: Polynomial

∗ Bits: 16

∗ Endianness: Mixed endian

∗ CRC - Preset: Custom

∗ BackFrom: 4

∗ BackTo: 0

∗ Polynomial: 32773

∗ Start Value: 65535

∗ Final XOR: 0

Note: For more information on checksum, see Checksum (CRC) explanation - I/O section of this
manual.

3.5.5 Stick

3.5.5.1 PPM Stick

3.5.5.1.1 General case: GND unit sends commands directly to the air unit

Follow the steps below to perform a correct stick configuration on the ground and air units.

Ground unit
1. Go to Input/Output menu→ Digital Input section.

Make sure that the following parameters have been configured:

• Producer: CAP 1
– Enabled

– Select the pin to which the transmitter is connected (normally EQEP A (i.e., GPIO 17))

– Edge detection: First rising edge

• Consumer: PPM 1

3.5. External devices 455

1x PDI Builder, Release 6.8.65

Fig. 76: Stick - Digital Input configuration

2. Go to Connections menu→ GPIO section.

Verify that the pin to which the transmitter is connected, in this case GPIO 17 (i.e., EQEP A), is set as input.

456 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 77: Stick - GPIO/EQEP configuration

3. Go to Stick menu→ Transmitter 1 section→ PPM tab.

Select the brand of transmitter that applies.

3.5. External devices 457

1x PDI Builder, Release 6.8.65

Fig. 78: Stick - PPM configuration

4. Go to Stick menu→ Transmitter 1 section→ Output tab.

Click on Enable and on Remote to send the stick information to the air unit. Please check the recommended
values for the configurable parameters described in the Ouput tab of the Stick section.

458 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 79: Stick - Output configuration

If all these settings are correct, users can check that ‘Stick PPM 1 not detected’ variable of the GND unit will be true.

Fig. 80: Stick PPM 1 not detected variable - True

Air unit
1. Go to Stick menu→ Transmitter 1 section→ PPM tab.

Select the brand of transmitter that applies (make the same configuration as the ground unit).

2. Go to Stick menu→ Transmitter 1 section→ Output tab.

Just click on Enable.

3.5. External devices 459

1x PDI Builder, Release 6.8.65

Fig. 81: Stick - Output configuration

3. Go to Block Programs menu→ Stick program→ Double click on the Stick block→ Edit sources.
Input the ground unit address to receive the stick information from that source and put it as the highest priority
in the priority table. We recommend a Time Out of 0.4 s.

460 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 82: Stick block configuration

Then, if all is correct, users can check that ‘Stick not detected’ variable of the AIR unit will be true.

Fig. 83: Stick not detected variable - True

And that means that the communication between the GND and the AIR unit is correctly configured.

3.5. External devices 461

1x PDI Builder, Release 6.8.65

3.5.5.1.2 Simulation case (HIL)

In this case, the user is only using one 1x autopilot.

So users will have to follow steps 1, 2 and 3 explained above for the ground unit, but also steps 2 and 3 of the air unit
configuration. However, instead of entering the ground unit address, select the Local option.

3.5.5.1.3 On-board PPM receiver case

In that case, follow the next steps:

Ground unit
1. Go to Stick menu→ Transmitter 1 section→ PPM tab.

Select the brand of transmitter that applies.

Fig. 84: Stick - PPM configuration

Air unit
1. Go to Input/Output menu→ Digital Input section.

Make sure that the following parameters have been configured:

• Producer: CAP 1
– Enabled

462 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

– Select the pin to which the transmitter is connected (normally EQEP A (i.e., GPIO 17))

– Edge detection: First rising edge

• Consumer: PPM 1

Fig. 85: Stick - Digital Input configuration

2. Go to Connections menu→ GPIO section.

Verify that the pin to which the transmitter is connected, in this case GPIO 17 (i.e., EQEP A), is set as input.

3.5. External devices 463

1x PDI Builder, Release 6.8.65

Fig. 86: Stick - GPIO/EQEP configuration

3. Go to Stick menu→ Transmitter 1 section→ PPM tab.

Select the brand of transmitter that applies.

464 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 87: Stick - PPM configuration

4. Go to Stick menu→ Transmitter 1 section→ Output tab.

Just click on Enable.

3.5. External devices 465

1x PDI Builder, Release 6.8.65

Fig. 88: Stick - Output configuration

If all these settings are correct, users can check that ‘Stick PPM 1 not detected’ variable of the AIR unit will be true.

Fig. 89: Stick PPM 1 not detected variable - True

5. Go to Block Programs menu→ Stick program→ Double click on the Stick block→ Edit sources.
Input the address as Local to receive the stick information from that source and put it as the highest priority in
the priority table. We recommend a Time Out of 0.4 s.

466 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 90: Stick block configuration

Then, if all is correct, users can check that ‘Stick not detected’ variable of the AIR unit will be true.

Fig. 91: Stick not detected variable - True

And that means that the communication between the GND and the AIR unit is correctly configured.

3.5. External devices 467

1x PDI Builder, Release 6.8.65

3.5.5.2 USB joystick

Veronte software is able to detect USB devices such as joystick. The axis of these devices can be read and configured
to send stick information to Veronte Autopilot 1x.

To configure them:

1. Connect the USB joystick to the computer.

2. Configure a Virtual Stick as explained in Virtual Stick Integration.

3.5.5.3 Virtual Stick

To configure a virtual stick, follow the next steps:

1. Go to Stick menu→ Virtual Stick section→ Input variable tab.

Enable the virtual stick and enter an update period (we recommend 0.02 s).

Fig. 92: Virtual Stick configuration

2. Go to Stick menu→ Virtual Stick section→ Output tab.

Just click on Enable.

3. Go to Block Programs menu→ Stick program→ Double click on the Stick block→ Edit sources.
Input App 2 to receive the stick information from the virtual stick widget and put it as the highest priority in
the priority table. We recommend a Time Out of 0.4 s.

468 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

4. Configure a Virtual Stick Widget.
Please find an example of how to configure it in Virtual stick widget in the Integration examples section of the
Veronte Ops manual.

If the user creates a virtual stick to process the information received through a different channel than PPM (e.g., by
CAN or ADC), the user will also have to:

• Go to Stick menu→ Virtual Stick section→ Input variable tab.

Add the variables containing the stick information in Input Variable.

Fig. 93: Virtual Stick with Input variables configuration

3.5.6 Veronte products

3.5.6.1 Autopilot 4x

To establish on a Veronte Autopilot 4x version 1.8 the communication between Autopilots 1x and Arbiters via
CAN, the following connection is required:

3.5. External devices 469

https://manuals.embention.com/veronte-ops/en/6.8/integration%20examples/index.html

1x PDI Builder, Release 6.8.65

Fig. 94: Communication diagram 1x - Arbiters

Follow the steps below to make this configuration:

1. Go to Communications menu→ Ports section.

Remove Port 5 and 6 from the Forward group and Add Port 5 and 6 to the Route group, with target Arbiters’
Address:

• Address of Arbiter A: 50 000 + Serial number

• Address of Arbiter B: 54 000 + Serial number

470 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 95: Routing configuration

Note: This is just an example, users can choose Ports other than 5 and 6.

2. Go to Input/Output menu→ I/O Setup section.

Connect Commgr Port 5 to Serial to CAN 1 consumer and Commgr Port 6 to Serial to CAN 2 consumer:

3.5. External devices 471

1x PDI Builder, Release 6.8.65

Fig. 96: I/O Setup - Serial to CAN

Then, connect CAN to Serial 1 to Commgr Port 5 and CAN to Serial 2 to Commgr Port 6:

472 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 97: I/O Setup - CAN to Serial

Note: This is just an example, users can choose Serial to CAN and CAN to Serial other than 1 and 2.

3. Go to Input/Output menu→ CAN Setup section→ Configuration tab.

• Connect Serial to CAN 1 to Output filter 1 and Serial to CAN 2 to Output filter 2.

In addition, connect Input filter 1 to CAN to Serial 1 and Input filter 2 to CAN to Serial 2:

3.5. External devices 473

1x PDI Builder, Release 6.8.65

Fig. 98: CAN Setup

• Set for both Serial to CAN 1/2 the same CAN ID: 1302.

Fig. 99: CAN Setup - Serial to CAN 1/2 configuration

• Select for Output filter 1 the CAN A, as this is the CAN of 1x Autopilot that is connected to Arbiter A:

Fig. 100: CAN Setup - Output filter 1 configuration

• Select for Output filter 2 the CAN B, as this is the CAN of 1x Autopilot that is connected to Arbiter B:

474 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 101: CAN Setup - Output filter 2 configuration

• Configure both Input filter 1/2 with CAN ID:1301.

Select for Input filter 1 the CAN A, as this is the CAN of 1x Autopilot that is connected to Arbiter A:

Fig. 102: CAN Setup - Input filter 1 configuration

Select for Input filter 2 the CAN B, as this is the CAN of 1x Autopilot that is connected to Arbiter B:

Fig. 103: CAN Setup - Input filter 2 configuration

Note: This is just an example, users can choose Input filter and Output filter other than 1 and 2.

4. Go to Input/Output menu→ CAN Setup section→Mailboxes tab.

• Set the Baudrate for both CANs, CAN A: 1 000 000 and CAN B: 500 000.

• Configure at least 10 reception mailboxes with ID 1301 for both CAN A and B:

3.5. External devices 475

1x PDI Builder, Release 6.8.65

Fig. 104: Mailboxes - CAN A configuration

476 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 105: Mailboxes - CAN B configuration

3.5.6.2 CEX/MEX

As it is sometimes not possible to connect a CEX/MEX directly to the PC in order to configure it (access CEX/MEX
PDI Builder), the Veronte Autopilot 1x is connected to the computer and a connection is made between CEX/MEX
and Veronte Autopilot 1x via CAN.

To be able to communicate with CEX/MEX via CAN, the following connection is necessary:

Fig. 106: Communication diagram 1x - CEX/MEX

3.5. External devices 477

1x PDI Builder, Release 6.8.65

Note:
• 1x usually has this configuration by default, but check it out.

• As the steps to be performed in CEX PDI Builder and MEX PDI Builder is exactly the same, only the steps
for one of them will be detailed. The interface may differ slightly, but the configuration is the same.

Follow the steps below to make this configuration:

1x PDI Builder side
1. Go to Input/Output menu→ I/O Setup section.

Check the connection between the computer and the 1x (usually via USB, but RS232 and RS485 are also
possible).

Fig. 107: 1x - USB communication

2. Go to Communications menu→ Ports section.

Remove Port 6 from the Forward group and Add Port 6 to the Route group, with target CEX’s Address:

⇒ Address = 44000 + Serial number.

The CEX address must be in the range 45000 - 49999.

Note:

478 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

• For MEX, the address should look like this:

– Address = 42000 + Serial number.

– The MEX address must be in the range 43000 - 43999.

• If the theorical address does not work, 999 (unknown) can be used as sometimes the address has not been
set in CEX/MEX.

Fig. 108: 1x - Routing

3. Go to Input/Output menu→ I/O Setup section.

Connect Commgr Port 6 to Serial to CAN 1 consumer:

3.5. External devices 479

1x PDI Builder, Release 6.8.65

Fig. 109: 1x - I/O Setup - Serial to CAN

Then, connect CAN to Serial 1 to Commgr Port 6:

480 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 110: 1x - I/O Setup - CAN to Serial

4. Go to Input/Output menu→ CAN Setup section→ Configuration tab.

Connect a Serial to CAN with the right Id (CAN ID 1302) to an Output filter.

In addition, connect an Input filter with the right Id (CAN ID 1301) to a CAN to Serial:

Warning: For correct communication, mark both as High priority (with the Priority checkbox).

3.5. External devices 481

1x PDI Builder, Release 6.8.65

Fig. 111: 1x - CAN Setup

Fig. 112: 1x - CAN Setup - Serial to CAN configuration

Fig. 113: 1x - CAN Setup - Input filter configuration

482 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

5. Go to Input/Output menu→ CAN Setup section→Mailboxes tab.

Finally, configure the reception mailbox with ID 1301, assign at least 4 mailboxes:

Fig. 114: 1x - Mailboxes configuration

CEX PDI Builder side

Note: This part is already built for CEX default configuration, but the user can check it.

6. Go to Input/Output menu→ CAN I/O section→ Configuration tab.

Connect a CAN Input filter with the right CAN Address (CAN ID 1302) to CAN to Serial 1.

In addition, connect Serial to CAN 1 with the right CAN Address (CAN ID 1301) to a CAN Output filter port:

3.5. External devices 483

1x PDI Builder, Release 6.8.65

Fig. 115: CEX - CAN I/O

Fig. 116: CEX - CAN I/O - Input filter configuration

Fig. 117: CEX - CAN I/O - Serial to CAN configuration

484 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

7. Go to Input/Output menu→ I/O Setup section.

Connect CAN to Serial 1 to any Commgr Port 1 in CEX.

In addition, connect Commgr Port 1 to Serial to CAN 1 consumer:

Fig. 118: CEX - I/O Setup

8. Go to Input/Output menu→ CAN Setup section.

Finally, configure the reception mailbox with ID 1302, assign at least 4 mailboxes:

3.5. External devices 485

1x PDI Builder, Release 6.8.65

Fig. 119: CEX - CAN Seup (Mailboxes) configuration

3.5.6.3 MC01

In order to communicate a Veronte Autopilot 1x with a MC01 via CAN, the following connection is required:

Fig. 120: Communication diagram 1x - MC01

The following steps explain how to configure the communication between a 1x Autopilot and a MC01.

MC01 PDI Builder side
1. By default, MC01 is configurated with a connection Serial to CAN, with the following Standard CAN IDs:

• Tx CAN Id: 1301

486 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

• Rx CAN Id: 1302

1x PDI Builder side
2. Go to Communications menu→ Ports section.

Remove Port 5 from the Forward group and Add Port 5 to the Route group, with target MC01’s Address. This
address must be chosen in the destination path of the MC01 (40117 for the example).

Fig. 121: Routing configuration

3. Go to Input/Output menu→ I/O Setup section.

Connect the Commgr Port 5 to the Serial to CAN 1.

3.5. External devices 487

1x PDI Builder, Release 6.8.65

Fig. 122: I/O Setup - Serial to CAN

Then, connect CAN to Serial 1 to Commgr Port 5:

488 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

Fig. 123: I/O Setup - CAN to Serial

4. Go to Input/Output menu→ CAN Setup section→ Configuration tab.

Connect a Serial to CAN with the right Id (CAN ID 1302) to an Output filter.

In addition, connect an Input filter with the right Id (CAN ID 1301) to a CAN to Serial:

3.5. External devices 489

1x PDI Builder, Release 6.8.65

Fig. 124: CAN Setup

Fig. 125: CAN Setup - Serial to CAN configuration

Fig. 126: CAN Setup - Input filter configuration

490 Chapter 3. Integration examples

1x PDI Builder, Release 6.8.65

5. Go to Input/Output menu→ CAN Setup section→Mailboxes tab.

Finally, configure the reception mailbox with ID 1301, assign at least 1 mailbox:

Fig. 127: Mailboxes configuration

3.5.6.4 VSE (Veronte Stick Expander)

To configure the VSE in 1x PDI Builder it is only needed to follow the steps explained in the Ground unit configuration
in the General case - PPM stick integration section of this manual.

In the step 1 of that explanation, there is already a transmitter configured with the required configuration of the VSE,
users will find it as Brand: Embention and Model: Stick Expander.

3.5. External devices 491

1x PDI Builder, Release 6.8.65

492 Chapter 3. Integration examples

CHAPTER

FOUR

TROUBLESHOOTING

4.1 Communication lost with internal Digi radio

Most of the time, the communication between Autopilot 1x and Digi radio is lost due to a change in its baudrate.

In 1x PDI Builder it is set to 115200 by default, however, in Digi radios the factory default baudrate at reset is 9600.

To recover communication, try changing the baudrate on one of them to match.

1. Go to Communications menu→ Veronte LOS section.

Set the Baudrate on Veronte LOS to 9600.

Fig. 1: Veronte LOS baudrate

493

1x PDI Builder, Release 6.8.65

2. Check the steps described in the Digi internal radio -> Integration examples section to see if the module is now
detected in XCTU software.

Then, if desired, the user can change the radio baudrate to 115200 and after that also change it for Veronte
Autopilot 1x.

4.2 Debug serial messages transmission

To check that the transmission of serial messages is being carried out correctly, the user can view what is being sent in
the 1x PDI Calibration software hyperterminal. To do this:

In 1x PDI Builder
1. Go to Input/Output menu→ I/O Setup section.

Connect the RS custom message producer (where the message is configured) to a Tunnel with App2 address.
In this case the message is configured in the RS custom message 1 producer.

Fig. 2: RS cutom message→ Tunnel

In 1x PDI Calibration
2. Go to Terminal tab.

Click on Agree:

494 Chapter 4. Troubleshooting

1x PDI Builder, Release 6.8.65

Fig. 3: Terminal tab

3. Next, select the Tunnel 1 (this is the one that has been configured in 1x PDI Builder) and click on Launch:

4.2. Debug serial messages transmission 495

1x PDI Builder, Release 6.8.65

Fig. 4: Terminal tab - Tunnel selected

The tunnel console should open and the user will be able to view the message being sent:

496 Chapter 4. Troubleshooting

1x PDI Builder, Release 6.8.65

Fig. 5: Tunnel console

For more information on the Terminal configuration, please refer to the Terminal section of the 1x PDI
Calibration user manual.

4.3 Maintenance mode

The user can simply enter maintenance mode via 1x PDI Builder by clicking on the “Normal mode” button in the initial
menu. In addition, exiting maitenance mode is the same process.

Below is an example of how to do this:

Fig. 6: Enter/Exit maintenance mode

4.3. Maintenance mode 497

https://manuals.embention.com/1x-pdi-calibration/en/6.8.67/operation/terminal/index.html

1x PDI Builder, Release 6.8.65

4.4 Maintenance mode (loaded with errors)

The following error message may appear when trying to save a change or import a configuration.

Fig. 7: Error message

Therefore, Veronte Autopilot 1x will be in ‘Maintenance mode (loaded with errors)’:

Fig. 8: Maintenance mode (loaded with errors)

To check what the source of the problem is, the user can consult the Veronte Ops Platform panel, which will show
what the PDI Error is. For more information on this panel, see Platform panel section of the Veronte Ops user manual.

498 Chapter 4. Troubleshooting

https://manuals.embention.com/veronte-ops/en/6.8/panels/platform/index.html

1x PDI Builder, Release 6.8.65

Fig. 9: PDI Error - Veronte Ops

Then, it is possible to access the Autopilot 1x configuration to fix this error.

Tip: If the PDI error is related to a migration, it is usually caused by the selection of accelerometer, gyroscope and
magnetometer sensors.

In addition, a list of all PDI Errors can be accessed in the List of PDI errors section of the 1x Software Manual.

4.5 Radios paired but 1x air unit not showing

If the radios of both Autopilots 1x, air and ground unit, are paired but the air unit does not appear connected in Veronte
Link, check the Ports configuration on the 1x ground unit. To do this:

Go to Communications menu→ Ports section, and it should be similar to the configuration shown in the figure below:

4.5. Radios paired but 1x air unit not showing 499

https://manuals.embention.com/1x-software-manual/en/6.8/variables/index.html#list-of-pdi-errors

1x PDI Builder, Release 6.8.65

Fig. 10: 1x ground unit - Ports configuration

4.6 Reducing GNC Task frequency

400 Hz is the maximum possible frequency, but can only be used in simple configurations, in other cases it is
advisable to reduce it to 250-300 Hz.

To find out if the frequency needs to be reduced in the user configuration, check the GNC Task Average CPU Ratio
variable.

For correct operation, this variable should be at approximately 60-70%. If it reports a higher value, the frequency
must be lowered.

4.7 Trajectory Overshoot

If the user observes significant meandeling or overshoot in the mission path, this can be reduced by modifying the
gains of the guidance PIDs:

• Reducing the proportional gain.

• Ensure that the integral gain is 0.

Guidance error accumulates and leads to increasing overshoot, as can be seen in the following example:

500 Chapter 4. Troubleshooting

1x PDI Builder, Release 6.8.65

Fig. 11: Trajectory overshoot

4.8 Unstable communication with CEX/MEX

If communication with a CEX/MEX appears to be OK, but suddenly fails, i.e. there is unstable communication between
the devices, it may be because Serial to CAN and CAN to Serial communications have not been marked as High
priority. In order to do this:

Go to Input/Output menu→ CAN Setup section→ Coniguration tab, and mark Serial to CAN and CAN to Serial
communications as High priority (with the Priority checkbox):

4.8. Unstable communication with CEX/MEX 501

1x PDI Builder, Release 6.8.65

Fig. 12: CAN Setup - High priority

502 Chapter 4. Troubleshooting

CHAPTER

FIVE

FAQ

5.1 What does decimation mean?

EKF implementation in Veronte Autopilot 1x algorithm means that only one sensor can enter per run step.

Therefore, if more than one sensor is read in the same GNC step, then the sensor with highest priority is the one
introduced to the EKF. The rest of the sensor measurements will be introduced to the EKF in subsequent GNC steps
according to their priority order.

The priority order of the sensors from highest to lowest priority is as follows:

• GNSS position

• GNSS velocity

• Relative position sensor

• GNSS compass

• Magnetometer

• Static pressure

• Altimeter

• Velocity down

• Terrain mesh

Consequently, if there is a sensor with a high priority and it has a high refresh rate it may cause other sensors to never
enter.

To avoid this, the parameter decimation has been introduced to discard a certain number of new measurements. That
is, with decimation 10, only 1 out of 10 new measurements is entered.

It is recommended not to change the default values if the user is not sure what he/she is doing.

503

	Quick Start
	Download
	Installation

	Configuration
	Veronte
	Unit name
	Attitude
	Frequencies
	Operator position
	GPIO
	Status

	Connections
	ADC
	Arbiter
	FTS
	GPIO
	I2C
	Others
	PWM
	Serial
	USB

	Sensors
	Accelerometer
	Gyroscope
	Magnetometer
	Dynamic Pressure
	Static Pressure
	RPM
	Lidar
	Internest

	Input/Output
	I/O Setup
	Tunnel
	Serial Custom Messages
	NMEA Parser
	Unescape port

	CAN Setup
	Configuration
	Custom Messages
	Mailboxes

	Custom Messages types
	Variable
	Checksum (CRC)
	Matcher
	Skip
	Parse ASCII
	Position

	Digital Input

	Control
	Phases
	Envelope
	Modes
	Arcade axis

	Automations
	New automation
	Other options
	Events
	Alarm
	Area
	Button
	Mode
	Phase
	Route
	Timer
	Variable

	Actions
	Atmosphere Calibration
	Change active sensor
	Command block
	Custom CAN TX
	Custom Serial TX
	DEM calibration
	Enable/Disable Wind Estimation
	Envelope
	FTS Activation
	Feature
	Format SD
	Go to
	Mode
	Navigation
	Obstacle avoidance
	Output
	Periodical
	Phase
	Ports
	Run block program
	Safety Bits
	Select Arcade axis
	Stick priority
	Terrain obstacle
	Track
	User Log
	Variable
	Yaw

	Communications
	Ports
	4G
	Comstats
	Iridium
	Veronte LOS

	Stick
	Transmitter (1-4)
	PPM
	Exponential
	Trim
	Output

	Virtual Stick

	Block Programs
	Control blocks
	PID
	T-Sched PID
	Total Energy Control
	Fuzzy Logic Controller
	ECU Control
	Quaternion Control
	Driver Control Filter
	System Identification
	Predictive Control Block

	Data Source/Sink blocks
	Devices blocks
	Clock
	Gimbal
	Stick

	Execution Flow blocks
	Guidance blocks
	Guidance blocks common configuration
	Climb
	Cruise
	Guidance Computation
	Landing
	Rendezvous
	Taxi
	VTOL
	Yawing current
	Yawing heading
	Yawing north
	Navigation guidance blocks

	Library blocks
	Logic blocks
	AND
	OR
	OR

	Math blocks
	f(x)
	f(x,y)
	Polynomial
	Vectors

	Mode/AP Selection blocks
	AP Selection
	Arcade
	Arcade Bounce
	Arcade Extend
	Manual
	Mix

	Navigation blocks
	EKF Adapters
	EKF Split
	Navigation

	Positions blocks
	Constant Position
	Move
	Relative Vector
	Read Feature
	Write Feature

	Sensors blocks
	Altimeter
	GNSS sensor
	Magnetic Field
	Magnetometer
	Relative position
	SRTM height
	Static Pressure

	Servos blocks
	Actuator
	Arc Trim
	PWM

	Signals blocks
	3D Table Interpolation
	Bound
	EWMA Tau filter
	FFT
	Hysteresis
	IIR Filter
	Interpolation Vector
	Ramp
	Rate limiter
	Signal generator

	Type Casting blocks

	Devices
	Transponder/ADS-B
	Cameras
	Board

	Telemetry
	Telemetry
	Sniffer

	UI
	Operation elements
	Variables
	Geoid

	HIL
	Safety
	Checklist
	Config Manager
	Safety bits

	Integration examples
	AP communication with PC
	ArcTrim Button
	CAN communication
	Data transmission between Veronte 1x Autopilots
	External devices
	Altimeters
	Lidar
	ADC lidar
	I2C lidar
	Using lidar readings

	Radar
	Ainstein CAN Radar
	Smartmicro CAN Radar

	External sensors
	LM335 with Autopilot 4x
	Magnetometer Honeywell HMR2300
	RS-232
	RS-485

	MEX as Magnetometer Honeywell HMR2300
	OAT Sensor
	Vectornav VN-300
	Vectornav VN-300 configuration

	Radios
	Digi internal radio
	Configuration
	Operational range

	Microhard internal radio
	External radios

	Servos
	PWM
	Serial
	Volz DA26 - RS485

	Stick
	PPM Stick
	General case: GND unit sends commands directly to the air unit
	Simulation case (HIL)
	On-board PPM receiver case

	USB joystick
	Virtual Stick

	Veronte products
	Autopilot 4x
	CEX/MEX
	MC01
	VSE (Veronte Stick Expander)

	Troubleshooting
	Communication lost with internal Digi radio
	Debug serial messages transmission
	Maintenance mode
	Maintenance mode (loaded with errors)
	Radios paired but 1x air unit not showing
	Reducing GNC Task frequency
	Trajectory Overshoot
	Unstable communication with CEX/MEX

	FAQ
	What does decimation mean?

