
1x PDI Builder
Release 6.12.62

Embention

2024-08-20

CONTENTS

1 Quick Start 3
1.1 System Requirements . 3
1.2 Download . 3
1.3 Installation . 4

2 Configuration 5
2.1 Veronte . 16

2.1.1 Unit name . 16
2.1.2 Attitude . 17
2.1.3 Frequencies . 20
2.1.4 Operator position . 20
2.1.5 GPIO . 22
2.1.6 Status . 24

2.2 Connections . 24
2.2.1 ADC . 25
2.2.2 Arbiter . 29
2.2.3 FTS . 30
2.2.4 GPIO . 31
2.2.5 I2C . 34
2.2.6 Others . 35
2.2.7 PWM . 35
2.2.8 Serial . 41
2.2.9 USB . 42

2.3 Sensors . 42
2.3.1 Accelerometer . 42

2.3.1.1 Common accelerometers configuration . 43
2.3.1.2 Common configuration of the internal accelerometers 44
2.3.1.3 Sensor . 46

2.3.2 Gyroscope . 52
2.3.2.1 Common gyroscopes configuration . 53
2.3.2.2 Common configuration of the internal gyroscopes 54
2.3.2.3 Sensor . 56

2.3.3 Magnetometer . 62
2.3.3.1 Sensor . 64

2.3.4 Dynamic Pressure . 68
2.3.4.1 Navigation . 68
2.3.4.2 Sensor . 69

2.3.5 Static Pressure . 71
2.3.5.1 Atmospheric calibration export . 72
2.3.5.2 Sensor . 74

i

2.3.6 RPM . 77
2.3.7 Lidar . 77
2.3.8 Internest . 79

2.4 Input/Output . 80
2.4.1 I/O Setup . 80

2.4.1.1 Serial Custom Messages . 86
2.4.1.2 Tunnel . 89
2.4.1.3 Unescape port . 90
2.4.1.4 NMEA Parser . 91
2.4.1.5 CAN wrapper/CAN unwrapper . 92

2.4.2 CAN Setup . 93
2.4.2.1 Configuration . 93
2.4.2.2 Custom Messages . 97
2.4.2.3 Mailboxes . 101

2.4.3 Custom Messages types . 103
2.4.3.1 Variable . 103
2.4.3.2 Checksum (CRC) . 105

2.4.3.2.1 Polynomial type . 107
2.4.3.2.2 sum8 type . 108
2.4.3.2.3 sumMod type . 108
2.4.3.2.4 Mavlink type . 109
2.4.3.2.5 8-bit sagetech checksum . 109

2.4.3.3 Matcher . 110
2.4.3.4 Skip . 110
2.4.3.5 Parse ASCII . 111
2.4.3.6 Position . 111

2.4.4 Digital Input . 113
2.4.5 Serial . 119

2.4.5.1 Veronte LOS . 120
2.4.5.2 RS485/RS232 . 120

2.5 Control . 120
2.5.1 Phases . 121
2.5.2 Modes . 124

2.5.2.1 Modes . 124
2.5.2.2 4x Veronte . 127

2.5.3 Arcade axis . 128
2.6 Automations . 129

2.6.1 New automation . 132
2.6.2 Other options . 138

2.6.2.1 Events . 140
2.6.2.1.1 Alarm . 144
2.6.2.1.2 Area . 146
2.6.2.1.3 Button . 147
2.6.2.1.4 Mode . 148
2.6.2.1.5 Phase . 149
2.6.2.1.6 Route . 149
2.6.2.1.7 Timer . 150
2.6.2.1.8 Variable . 152

2.6.2.2 Actions . 153
2.6.2.2.1 Atmosphere calibration . 156
2.6.2.2.2 Change active sensor . 157
2.6.2.2.3 Command block . 158
2.6.2.2.4 Custom CAN TX . 161
2.6.2.2.5 Custom Serial TX . 162

ii

2.6.2.2.6 DEM calibration . 163
2.6.2.2.7 Enable/Disable Wind Estimation . 164
2.6.2.2.8 FTS-Activation . 165
2.6.2.2.9 Feature . 166
2.6.2.2.10 Format SD . 168
2.6.2.2.11 Go to . 169
2.6.2.2.12 Mode . 170
2.6.2.2.13 Navigation . 170
2.6.2.2.14 Obstacle avoidance . 172
2.6.2.2.15 Output . 173
2.6.2.2.16 Periodical . 174
2.6.2.2.17 Phase . 175
2.6.2.2.18 Ports . 176
2.6.2.2.19 Run block program . 176
2.6.2.2.20 Safety Bits . 178
2.6.2.2.21 Select Arcade axis . 179
2.6.2.2.22 Stick priority . 180
2.6.2.2.23 Terrain obstacle . 181
2.6.2.2.24 Track . 182
2.6.2.2.25 User Log . 185
2.6.2.2.26 Variable . 185
2.6.2.2.27 Yaw . 186

2.7 Communications . 187
2.7.1 Ports . 187
2.7.2 4G . 189
2.7.3 Comstats . 191
2.7.4 Iridium . 193

2.8 Stick . 194
2.8.1 Transmitter (0-3) . 194

2.8.1.1 PPM . 194
2.8.1.2 Exponential . 196
2.8.1.3 Trim . 197
2.8.1.4 Output . 198

2.8.2 Virtual Stick . 199
2.9 Block Programs . 200

2.9.1 Control blocks . 215
2.9.1.1 PID . 215
2.9.1.2 T-Sched PID . 219
2.9.1.3 ECU Control . 222
2.9.1.4 Fuzzy Logic Controller . 226
2.9.1.5 Driver Control Filter . 229
2.9.1.6 System Identification . 231
2.9.1.7 Predictive Control Block . 232
2.9.1.8 Quaternion Control . 234
2.9.1.9 Total Energy Control . 236

2.9.2 Data Source/Sink blocks . 238
2.9.3 Devices blocks . 240

2.9.3.1 Clock . 240
2.9.3.2 Gimbal . 240
2.9.3.3 Stick . 244

2.9.4 Execution Flow blocks . 247
2.9.4.1 On focus block . 248
2.9.4.2 Switch blocks . 249

2.9.5 Guidance blocks . 251

iii

2.9.5.1 Guidance blocks common configuration . 252
2.9.5.2 Climb . 258
2.9.5.3 Cruise . 264
2.9.5.4 Envelope . 266
2.9.5.5 Guidance Computation . 273
2.9.5.6 Landing . 274
2.9.5.7 Rendezvous . 279
2.9.5.8 Taxi . 283
2.9.5.9 VTOL . 286
2.9.5.10 Yawing current . 289
2.9.5.11 Yawing heading . 290
2.9.5.12 Yawing north . 291
2.9.5.13 Navigation guidance blocks . 292

2.9.6 Library blocks . 293
2.9.7 Logic blocks . 297

2.9.7.1 AND . 297
2.9.7.2 NOT . 298
2.9.7.3 OR . 298

2.9.8 Math blocks . 299
2.9.8.1 f(x) . 299
2.9.8.2 f(x,y) . 300
2.9.8.3 Polynomial . 301
2.9.8.4 Vectors . 301

2.9.9 Mode/AP Selection blocks . 306
2.9.9.1 AP Selection . 306
2.9.9.2 Arcade . 308
2.9.9.3 Arcade Bounce . 310
2.9.9.4 Arcade Extend . 312
2.9.9.5 Manual . 314
2.9.9.6 Mix . 314

2.9.10 Navigation blocks . 315
2.9.10.1 EKF Adapters . 315

2.9.10.1.1 Altitude . 316
2.9.10.1.2 GNSS compass . 318
2.9.10.1.3 Misalignment . 320
2.9.10.1.4 Position . 322
2.9.10.1.5 Static Pressure . 323
2.9.10.1.6 Terrain height . 326
2.9.10.1.7 Velocity . 327
2.9.10.1.8 Velocity down . 329

2.9.10.2 EKF Split . 331
2.9.10.3 Navigation . 332

2.9.11 Positions blocks . 338
2.9.11.1 Constant Position . 338
2.9.11.2 Move . 339
2.9.11.3 Relative Vector . 339
2.9.11.4 Read Feature . 339
2.9.11.5 Write Feature . 340

2.9.12 Sensors blocks . 341
2.9.12.1 Altimeter . 341
2.9.12.2 GNSS sensor . 343
2.9.12.3 Magnetic Field . 361
2.9.12.4 Magnetometer . 362
2.9.12.5 Relative position . 362

iv

2.9.12.6 SRTM height . 364
2.9.12.7 Static Pressure . 365

2.9.13 Servos blocks . 366
2.9.13.1 Actuator . 366
2.9.13.2 Arc Trim . 374
2.9.13.3 PWM . 376

2.9.14 Signals blocks . 377
2.9.14.1 3D Table Interpolation . 377
2.9.14.2 Acceleration limiter . 378
2.9.14.3 Bound . 379
2.9.14.4 Derivative . 380
2.9.14.5 EWMA Tau filter . 381
2.9.14.6 FFT . 382
2.9.14.7 Hysteresis . 383
2.9.14.8 IIR Filter . 384
2.9.14.9 Integrator . 386
2.9.14.10 Interpolation Vector . 386
2.9.14.11 Ramp . 387
2.9.14.12 Rate limiter . 388
2.9.14.13 Signal generator . 389

2.9.15 Type Casting blocks . 392
2.10 Devices . 393

2.10.1 Transponder/ADS-B . 394
2.10.2 Camera . 397
2.10.3 Board . 401

2.11 Telemetry . 403
2.11.1 Telemetry . 404

2.11.1.1 Data vectors . 405
2.11.1.2 Onboard Log . 407
2.11.1.3 User Log . 408
2.11.1.4 Fast Log . 409

2.11.2 Sniffer . 412
2.12 UI . 414

2.12.1 Operation elements . 414
2.12.2 Variables . 416

2.13 HIL . 419
2.13.1 Simulation variables . 422

2.14 Safety . 431
2.14.1 Checklist . 431
2.14.2 Config Manager . 433
2.14.3 Safety bits . 434

3 Integration examples 437
3.1 AP communication with PC . 437
3.2 ArcTrim Button . 438
3.3 CAN communication . 443

3.3.1 CAN messages transmission . 443
3.3.2 CAN messages reception . 444
3.3.3 CAN messages transmission via serial . 447
3.3.4 CAN messages reception via serial . 450

3.4 Data transmission between Veronte Autopilots 1x . 454
3.5 Flare and Decrab phase configuration . 456

3.5.1 Flare phase configuration . 459
3.6 RTK Configuration . 461

v

3.7 External devices . 464
3.7.1 Altimeters . 464

3.7.1.1 Lidar . 464
3.7.1.1.1 ADC lidar . 464
3.7.1.1.2 I2C lidar . 466

3.7.1.1.2.1 Lightware LW 20 Lidar . 467
3.7.1.1.3 Using lidar readings . 468

3.7.1.2 Radar . 470
3.7.1.2.1 Ainstein CAN Radar . 470
3.7.1.2.2 Smartmicro CAN Radar . 475

3.7.2 External sensors . 479
3.7.2.1 High Speed Pitot Sensor . 479
3.7.2.2 LM335 with Autopilot 4x . 481
3.7.2.3 Magnetometer Honeywell HMR2300 . 485

3.7.2.3.1 RS-232 . 485
3.7.2.3.2 RS-485 . 488

3.7.2.4 MEX as Magnetometer Honeywell HMR2300 . 489
3.7.2.4.1 Serial . 489
3.7.2.4.2 CAN . 491

3.7.2.5 OAT Sensor . 495
3.7.2.6 Vectornav VN-300 . 497

3.7.2.6.1 Vectornav VN-300 configuration . 500
3.7.3 Radios . 501

3.7.3.1 Digi internal radio . 501
3.7.3.1.1 Configuration . 501
3.7.3.1.2 Operational range . 507

3.7.3.2 Microhard internal radio . 507
3.7.3.3 External radios . 509

3.7.4 Servos . 511
3.7.4.1 PWM . 511
3.7.4.2 Serial . 514

3.7.4.2.1 Volz DA26 - RS485 . 514
3.7.5 Stick . 518

3.7.5.1 Joystick 16CH . 518
3.7.5.1.1 CAN Joystick configuration . 519
3.7.5.1.2 I/O Connections . 520
3.7.5.1.3 MEX address configuration . 523

3.7.5.2 PPM Stick . 525
3.7.5.2.1 General case . 525

3.7.5.2.1.1 Ground unit . 525
3.7.5.2.1.2 Air unit . 529

3.7.5.2.2 Simulation case (HIL) . 531
3.7.5.2.3 On-board PPM receiver case . 532

3.7.5.3 Stick widget . 537
3.7.5.4 USB joystick . 538
3.7.5.5 Virtual Stick . 539

3.7.6 Veronte products . 542
3.7.6.1 Autopilot 4x . 542

3.7.6.1.1 Autopilots 1x configuration . 544
3.7.6.1.1.1 Definition of the 4x group . 545
3.7.6.1.1.2 Control and communication between autopilots within the 4x group 546
3.7.6.1.1.3 Communication between Autopilots 1x and Arbiter 554

3.7.6.1.2 Configuration for external radio communication through RS232 564
3.7.6.1.2.1 Telemetry configuration . 565

vi

3.7.6.1.2.2 I/O ports configuration . 566
3.7.6.1.2.3 CAN communication configuration 570
3.7.6.1.2.4 Routing configuration . 574

3.7.6.1.3 Arbiters communication . 579
3.7.6.2 CEX/MEX . 587

3.7.6.2.1 1x PDI Builder side . 587
3.7.6.2.2 CEX PDI Builder side . 593

3.7.6.3 MC01 . 596
3.7.6.3.1 MC01 PDI Builder side . 597
3.7.6.3.2 1x PDI Builder side . 597

3.7.6.4 MC110/MC24 . 601
3.7.6.4.1 CAN commands from Autopilot 1x to MC110 602

3.7.6.4.1.1 1x PDI Builder side . 602
3.7.6.4.1.2 MC110 PDI Builder side . 604

3.7.6.4.2 CAN commands from MC110 to Autopilot 1x 606
3.7.6.4.2.1 MC110 PDI Builder side . 606
3.7.6.4.2.2 1x PDI Builder side . 607

3.7.6.5 Veronte Gimbal . 610
3.7.6.5.1 Controlling Veronte Gimbal movement 614
3.7.6.5.2 Communication with Veronte Gimbal camera video board 618

3.7.6.5.2.1 CAN commands sent by Autopilot 1x 618
3.7.6.5.2.2 CAN commands received on Autopilot 1x 620
3.7.6.5.2.3 Gimbal block program . 625

3.7.6.6 VSE (Veronte Stick Expander) . 625

4 Troubleshooting 627
4.1 Debug serial messages transmission . 627

4.1.1 1x PDI Builder side . 627
4.1.2 1x PDI Calibration side . 628

4.2 Internal Digi radio . 630
4.2.1 Communication lost with internal Digi radio . 631

4.3 Maintenance mode . 631
4.4 Maintenance mode (loaded with errors) . 632
4.5 Migrate configuration . 634
4.6 Radios paired but 1x air unit not showing . 634
4.7 Reducing GNC Task frequency . 635
4.8 Trajectory Overshoot . 635

5 FAQ 637
5.1 How to calculate a mask . 637
5.2 What does decimation mean? . 638
5.3 Automations evaluation and execution . 638

6 Software Changelog 641

vii

viii

1x PDI Builder, Release 6.12.62

1x PDI Builder is an autopilot configuration tool (control laws, flight phases, operation modes, failsafes, etc.) to adapt
it to a specific vehicle.

Warning: Select your version before reading any user manual for software. The following image shows where to
select a version from any Embention user manual.

CONTENTS 1

1x PDI Builder, Release 6.12.62

2 CONTENTS

CHAPTER

ONE

QUICK START

1x PDI Builder is the main configuration tool to adapt a Veronte Autopilot 1x to a specific vehicle, including user-
defined communication protocols. 1x PDI Builder includes:

• Telemetry: real-time onboard UAV metrics, such as sensors, actuators and control states.

• Configuration: edit vehicle settings, such as servo trim, interface/port management and modes.

• Automations: actions that are automatically executed when a set of configured conditions are accomplished.

• Block Programs: Veronte Autopilot 1x can be programmed (control laws) with a friendly-user programming
language.

Once Autopilot 1x has been detected on Veronte Link, install 1x PDI Builder.

1.1 System Requirements

Before executing this software, users should check the following sections with the minimum and recommended PC
hardware requirements.

Minimum requirements
• CPU: Intel Core i5-8365UE

• RAM: 8 GB DDR4

• STO: 256 GB SSD

Recommended requirements
• CPU: 12th Gen Intel(R) Core(TM) i7-12700H 14 cores up to 4,70 GHz

• RAM: 32,0 GB

• STO: 1TB SSD M.2 NVMe PCIe

1.2 Download

Once Veronte Autopilot 1x has been purchased, a GitHub release should be created for the customer with the
application.

To access to the release and download the software, read the Releases section of the Joint Collaboration Framework
manual.

3

https://manuals.embention.com/veronte-link/en/latest/index.html
https://manuals.embention.com/joint-collaboration-framework/en/0.1/releases/index.html

1x PDI Builder, Release 6.12.62

1.3 Installation

To install 1x PDI Builder on Windows just execute the “1xPDIBuilder.exe” file and follow the indications of the Setup
Wizard. Administrator rights are needed.

Warning: If users have any problems with the installation, please disable the antivirus and the Windows firewall.
Disabling the antivirus depends on the antivirus software.

To disable the firewall:

• Go to “Control Panel”→ “System and Security”→ “Windows Defender Firewall”

• Then, click on “Turn windows Defender Firewall on or off”.

Fig. 1: Windows Defender Firewall

Fig. 2: Windows Defender Firewall: Settings

4 Chapter 1. Quick Start

CHAPTER

TWO

CONFIGURATION

This section explains each option and parameter available in 1x PDI Builder.

Once the installation is finished, open 1x PDI Builder and select the unit.

Fig. 1: Autopilot 1x ID

If it is correctly connected, 1x PDI Builder will display the mode in which the connected unit is. In addition, a PDI

error button will appear:

5

1x PDI Builder, Release 6.12.62

Fig. 2: 1x PDI Builder

• 1x mode: 1x unit should appear in Normal mode, as shown in the figure above, or Maintenance mode.

It can also appear as Maintenance mode (loaded with errors) or Normal mode - Disconnected.

Note: Maintenance mode (loaded with errors) appears when something is wrong in the configuration. For
more information, see Maintenance mode (loaded with errors) - Troubleshooting section of this manual.

• PDI Errors button: The user can check if the connected unit has PDI Errors by simply clicking on it. If
there are no errors, the following message appears:

Fig. 3: 1x PDI Builder - PDI Errors message

The user can access now to 3 configuration options:

6 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 4: 1x PDI Builder options

• 1xVeronte: It allows the user to work with offline configurations. A previously exported 1x PDI configuration
can be opened and modified or it is possible to build a new one from the default configuration.

Note: When an offline configuration is opened, it is possible to select the hardware version the user wants to
work with:

7

1x PDI Builder, Release 6.12.62

Fig. 5: Hardware versions

When switching between hardware versions, the following confirmation message appears:

Fig. 6: Hardware versions - Confirmation message

• Upload PDI: A previously exported 1x PDI configuration can be imported to the linked 1x.

This option is also intended to upload to Autopilot 1x a calibration previously exported with the 1x PDI
Calibration software.

Warning: When a configuration is loaded into Veronte Autopilot 1x with a version older than the software
version being used, an automatic migration from the configuration version to the software version being
used will be performed.

8 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

For more information on this, see Migrate configuration - Troubleshooting section of this manual.

• Open 1xVeronte: By clicking on this option, 1x PDI Builder configuration menu opens with the configuration
(the PDI files) loaded in the connected 1x. Then, the user can modify it online.

Note: PDI files are 1x configuration files. These files allow for modular control with improved version management.
These PDI files are split in 2 folders. Each folder hold several .xml files:

• operation: This folder holds all the files related with the operations defined, such as waypoints, routes, operative
parameters, runways, etc.

• setup: This contains the configuration of the vehicle. All the control loops and their parameters, the definition
of the flight phases and guidance commands, and the automations defined are stored here.

Fig. 7: PDIs files

Finally, click on ‘1xVeronte’ to edit a configuration offline or ‘Open 1xVeronte’ to open the current configuration and
start editing it online. The different ‘buttons’ that can be seen in the initial menu of the 1x PDI Builder are explained
below.

9

1x PDI Builder, Release 6.12.62

Fig. 8: Initial menu

1. Save and close: After changes are done, press on the save button to apply the changes.

While saving, a percentage of saving process is displayed:

10 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 9: Save and close

In order to save the configuration, Veronte Autopilot 1x must enter in maintenance mode. Then, after saving
any changes, Autopilot 1x will RESET and 1x PDI Builder software will consequently close. Therefore, users
must accept the following confirmation panels for this to be possible:

11

1x PDI Builder, Release 6.12.62

Fig. 10: Save and close - Confirmation panels

12 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Danger: As Veronte Autopilot 1x is reset, it is not advisable to save changes during flight tests.

Note: This button will only appear if an Autopilot 1x is connected, i.e. when working offline this button will
not be available.

2. Downloads: After modifying a configuration, press the Downloads button to store the configuration in the local
storage. Users can store this configuration in an empty folder or in the folder where the previously imported
configuration is stored. With the latter option, the “original” configuration will be overwritten by the one with
the new changes.

The user can choose between:

• Download PDI: With this option the 2 folders with the PDI files are downloaded.

• Download VER file: Download a .ver file with the configuration in binary.

Fig. 11: Download option

Note: Depending on the mode the user is in, this option works differently.

In online mode, the option Download VER file is always available. While in offline mode, in order to
be able to download .ver, it is needed to have previously imported a .ver file (since this file has more
information).

13

1x PDI Builder, Release 6.12.62

Warning: The .ver files are specific and unique to each Autopilot 1x, therefore, they cannot be
interchanged. If a .ver file is uploaded into a different Autopilot 1x, the existing calibration will be
overwritten.

If the PDI or VER file has been downloaded successfully, the following message appears:

Fig. 12: Downloads - Succesfully exported message

3. Import PDI from repo: The user can import a configuration file from the GitHub repository and modify it.
After that, if the Save and close button (1) is pressed, this configuration will be uploaded on the 1x.

4. Import PDI from local storage: The user can import a configuration file from the local storage and modify it.
After that, if the Save and close button (1) is pressed, this configuration will be loaded into the 1x.

Warning: If users want to upload a configuration in this way (either from the repo or from local storage),
note that only the configuration ‘setup’ folder is uploaded, the ‘operation’ folder is not.

This means that the operation of the new configuration uploaded to the Autopilot 1x will not be saved, but
the previous operation will remain.

Important: When users import a configuration in a version different from the actual software version, an error
message will appear according to that version.

5. Feedback: Users can report a problem they have encountered by creating an issue in their own ‘Joint
Collaboration Framework’. The ‘Download’ button downloads a zipped folder with the current 1x
configuration and more information needed for Embention to resolve the issue. It is advisable to attach this
folder when creating the issue.

Note: The user’s ‘Joint Collaboration Framework’ is simply a own Github repository for each customer.

If the user has any questions about this Joint Collaboration Framework, please see Joint Collaboration Framework
user manual or contact sales@embention.com.

14 Chapter 2. Configuration

https://manuals.embention.com/joint-collaboration-framework/en/0.1/index.html
https://manuals.embention.com/joint-collaboration-framework/en/0.1/index.html
mailto:sales@embention.com

1x PDI Builder, Release 6.12.62

Fig. 13: Feedback

6. These are the different functions of Autopilot 1x. Each option will be explained in detail in the next sections.

Icon Item Description

Veronte Introduce Autopilot 1x information

Connections Configure I/O connections on Autopilot 1x

Sensors Configure parameter sensors

Input/Output Configure external sensors/devices and I/O signals

Control Introduce Phases, Modes and Arcade axis configuration

Automations Configure automatic actions on event detection (go home, change phase. . .)

Communications Configure alternative communication channels, statistics and routing

Stick Cusomize transmitter configuration

Block Programs Customize algorithms executed by Autopilot 1x

Devices Configure connected devices such as transponder/ADS-B, camera. . .

Telemetry Customize traffic such as log, telemetry. . .

UI Customize variable names

HIL Configure parameters for hardware in the loop simulations

Safety Customize checklist, block user control in PDI configuration and safety bits

15

1x PDI Builder, Release 6.12.62

2.1 Veronte

2.1.1 Unit name

Fig. 14: Unit name panel

• Vehicle name: The user can define the name of the configuration.

• PDI Mode: It can be enabled or disabled. PDI mode allows the user to change the setup if Autopilot 1x is not in
INI phase.

Warning:
• Not being in PDI mode, users cannot perform the following actions if they are not in INI phase:

– Reboot Autopilot 1x

– Change 1x setup (i.e. save to SD card)

– Enter manually in maintenance mode

• The variable ‘System error’ prevents operation in normal mode (not PDI mode). A list of all errors that can
cause this bit to be set can be found in the Activation System Error bits section of the 1x Software Manual.

• If Autopilot 1x has ‘sensors errors’ and is in normal mode (not PDI mode), the user will not be able to
switch to another flight phase, it will remain in INI phase.

16 Chapter 2. Configuration

https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#activation-system-error-bits

1x PDI Builder, Release 6.12.62

Danger: PDI mode is intended for development purposes since, as detailed above, it allows flight phase changes
with system, sensor and PDI errors.
It is highly recommended to limit its use to simulation and ground testing of peripherals during the development
phase.

Therefore, as it is not advisable to operate in PDI mode, please disable it once the configuration is finished and
intended to be used in flight.

2.1.2 Attitude

This menu allows the user to define the orientation of the autopilot with respect to the platform once it is installed.
Aircraft axis are defined according to international aviation convention. Autopilot 1x axis are drawn on the autopilot’s
external case as defined in the Orientation - Hardware Installation section of the 1x Hardware Manual.

Fig. 15: Attitude panel

1. Distance from the center of mass in aircraft body frame: The autopilot’s distance from the center of mass
must be defined. This distance is entered in meters and accordingly to aircraft axis.

If the autopilot is not located in the center of mass, it will measure a non-zero acceleration when turning. Distance
from the center of mass in aircraft body frame is used to compensate this value. An example is presented below:

2.1. Veronte 17

https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#orientation

1x PDI Builder, Release 6.12.62

Fig. 16: Distance from the center of mass in aircraft body frame - Example

Fig. 17: Distance from the center of mass in aircraft body frame - Example

2. Orientation: It is not compulsory to install the autopilot aligned with the aircraft axis. In order to indicate the
autopilot’s relative position inside the platform, select the advanced option (3). A matrix relating vehicle axis
and autopilot axis is needed to be filled in. The case of a non-orthogonal installation can be covered.

18 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 18: Advanced orientation

Note: If only a simple rotation is required, for example, a -90º rotation in the Z axis, it is simpler to select the correct
axis directly in the ‘plane’:

Fig. 19: Change orientation

2.1. Veronte 19

1x PDI Builder, Release 6.12.62

2.1.3 Frequencies

The frequency of the GNC task refers to the maximum working frequency of the core. In this case, 400 Hz, which is
the maximum possible.

Fig. 20: Frequencies panel

Warning: 400 Hz can be used only for simple configurations, so it is often necessary to reduce the frequency to
250-300 Hz. To find out why the user should reduce the GNC Task frequency, see Reduce GNC Task frequency -
Troubleshooting section of this manual.

2.1.4 Operator position

From the operator position defined in this panel, the distance allowed by the license to operate is calculated.

Remember that Veronte Autopilot 1x has limited-operation depending on the license status.

For more information on this limitation, please refer to the Limited Operation - Quick Start section of the 1x Hardware
Manual.
In addition, users can find information on how to update the license to operate in the Platform license - Platform section
of the Veronte Ops user manual.

20 Chapter 2. Configuration

https://manuals.embention.com/1x/en/4.8/quick%20start/index.html#limited-operation
https://manuals.embention.com/veronte-ops/en/6.12/panels/platform/index.html#platform-license

1x PDI Builder, Release 6.12.62

Fig. 21: Operator position panel

Users must set as Reference point the position that Autopilot 1x system onboard should take as the operator position;
this normally coincides with the Home point or the GCS location.

Tip: For operation, in the 1x air unit, it is recommended to set the position of the GCS position as the operator
position.

Autopilot 1x allows the user to define this position in two ways: by specifying an absolute position or by setting a
relative position to a known point.

• Absolute Position
The user can choose from the following systems:

– Decimal Degrees: Coordinates in decimal degrees for latitude and longitude.

– Degrees º’”: Coordinates in degrees, minutes, and seconds for latitude and longitude.

– UTM (Universal Transverse Mercator): Uses X (Easting) and Y (Northing) coordinates, UTM zone, and
hemisphere (North or South).

– MGRS (Military Grid Reference System): Uses a single alphanumeric string to define the position.

To establish the absolute position, configure the following parameters according to the selected system:

– Latitude and Longitude: (For Decimal or Degree systems) Enter the latitude and longitude in the
corresponding format.

– UTM Coordinates:

2.1. Veronte 21

1x PDI Builder, Release 6.12.62

∗ X (Easting) and Y (Northing): Enter the UTM coordinates.

∗ UTM Zone: Specify the corresponding UTM zone.

∗ Hemisphere: Indicate whether it is the Northern or Southern Hemisphere.

– MGRS Coordinate: Enter the complete alphanumeric string representing the location.

– Altitude: Height above the WGS84 ellipsoid expressed in meters.

Important: This parameter is common to all systems.

• Relative Position
The relative position allows the user to define the operator position with respect to another point. To do this, fill
in the following parameters:

– Reference Point: Select the reference point within the system that will be used to define the operator
relative position.

– North: Distance in meters north from the reference point.

– East: Distance in meters east from the reference point.

– Down: Distance in meters down from the reference point.

2.1.5 GPIO

In this tab each individual GPIO behavior can be configured:

22 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 22: GPIO panel

1. Signal: Pin ID as described in Pinout - Hardware Installation section of the 1x Hardware Manual.
2. GPIOId: GPIO ID of the microcontroller.

3. IO: Define GPIO as an input or output.

4. Pull-up: Enable or disable the pull-up resistance.

5. Function: Mux 0: GPIO, Mux 1: PWM, Mux 2, Mux 3, etc. These are the different functionalities that the
GPIO can have, this depends on the multiplexer.

Note: When users set Function to “Mux 1”, it indicates that the corresponding pin is disabled as GPIO and
enabled as PWM. Consequently, when saving this change, the corresponding PWM pin of the PWM panel
should automatically be added as PWM and “disappear” as GPIO.

This behavior also happens the other way around, i.e. when switching from PWM (Mux 1) to GPIO (Mux 0).

Warning: Once the change has been saved, check that the corresponding PWM pin has been added to the
PWM panel or that the corresponding GPIO pin has been added to the GPIO panel, depending on the change
that has been made.

6. Qsel: This is the “input qualification”, it is used to control how the value of a GPIO is evaluated. The available
options are:

• Sync: The value is taken as whatever is present at the time it is checked (synchronously). This is the default
mode of all GPIO pins.

• 3 Samples: The value is checked 3 times and the value is only changed when the 3 times are the same.

2.1. Veronte 23

https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#pinout

1x PDI Builder, Release 6.12.62

• 6 Samples: Same as before, but checking 6 times instead of 3.

• ASync: No checks are performed. It is used when it is not used as GPIO.

2.1.6 Status

This option enables the periodic sending of the status message that Veronte Link uses to recognize the Autopilot 1x.

Fig. 23: Status panel

• Period: Enter a desired period to send repeatedly the status message.

Note: VCP is the Veronte Communication Protocol. To know more, read the VCP user manual.

2.2 Connections

Here the Input/Output ports of the autopilot can be configured. Depending on the configurable port selected, the user
will need to provide different parameters.

Each connection is associated with a specific pin number. For more details see the Pinout - Hardware Installation
section of the 1x Hardware Manual.

24 Chapter 2. Configuration

https://manuals.embention.com/vcp/en/latest/index.html
https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#pinout

1x PDI Builder, Release 6.12.62

2.2.1 ADC

ADC stands for Analog-to-Digital Converter. This connection is used by analog sensors. These sensors provide a
voltage readout that needs to be converted into the actual measured variable, e.g. temperature, fuel volume, etc.

Autopilot 1x is equipped with 5 connections of this kind. Every ADC connection that is set requires an integer variable
associated where the voltage readout will be stored. The maximum voltage of the ADC connection is 3.3 V.

Fig. 24: ADC panel

To convert the input ADC value to the physical variable it represents, the user needs to create a new program. See more
information about programs in the Block Programs section of this manual.

Application example
Let us consider a Fuel Level Sensor whose datasheet provides a direct relation of the voltage readout and the fuel
volume (in L) through the polynomial 𝑦 = −0.0498𝑥4 + 0.3002𝑥3 − 0.3083𝑥2 + 1.2123𝑥+ 0.15, where 𝑦 is the fuel
volume and 𝑥 is the sensor voltage.

Creating a new program, the above equation can be reproduced. An example of how to do it is presented below.

2.2. Connections 25

1x PDI Builder, Release 6.12.62

Fig. 25: Create ADC program

When the ADC program is created, a default block program is also created.

26 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 26: ADC default program

Now, the program has to be customized for this application. See more information about programs in the Block
Programs section of this manual.

2.2. Connections 27

1x PDI Builder, Release 6.12.62

Fig. 27: ADC conversion for a Fuel Level Sensor

The fuel remaining in the tank is saved in a user variable, which can be used for displaying or warning purposes.

Note:
• The ADC variable is first converted from integer to real, and then the polynomial is applied.

• This program can now be modified by clicking in ‘Setup’ in this menu or in the Block Programs menu.

28 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 28: ADC program in Block Programs

2.2.2 Arbiter

Pins 45 and 46 are dedicated pins to allow the UART communication with the Safety micro Controller (SuC). This
microcontroller is in charge of monitoring the state of the main microcontroller and providing the Flight Termination
Signals (FTS).

2.2. Connections 29

1x PDI Builder, Release 6.12.62

Fig. 29: Arbiter panel

2.2.3 FTS

The FTS (Flight Termination System) is a signal that is activated when a sytem error occurs (System Error bit is False).
There is a group of bits that, when failed, cause the system error. To see more about the conditions that make the system
error happen, go to Activation System Error bits section of the 1x Software Manual.

30 Chapter 2. Configuration

https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#activation-system-error-bits

1x PDI Builder, Release 6.12.62

Fig. 30: FTS panel

Pins 42 and 43 are related to the FTS:

• Pin 42: Deadman signal from comicro, monitors main MPU encoding its product-level bit. This signal is a
square wave at [100,125] Hz. It can be higher at rebooting (about 300-400Hz) but should never be less than
100Hz.

• Pin 43: !SystemOK Bit. 0 when Ok (no failure detected) and 1 (high, 3.3 V) when an error is detected. This pin
goes high if the deadman signal sent by the MPU (main processor unit) is lower than 63Hz. That means there is
a critical error.

2.2.4 GPIO

Output pins produce PWM or GPIO signals that are used to move the different servos and actuators of the platform.

A GPIO (General Purpose Input/Output) is a generic pin that can be configured as an input or output pin. When this
option is configured as an output pin, the value sent will be different from the one sent if it was a PWM.

GPIO pins admit up to 4 different states:

• ON: A continuous signal of value 1, made by 3.3V.

• OFF: A continuous signal of value 0, made by Ground.

• PULSE ON: A single pulse of value 1, with a width specified in seconds.

• PULSE OFF: A single pulse of value 0, with a width specified in seconds.

The configuration of the pin output value is done with an Output action in the Automations menu.

2.2. Connections 31

1x PDI Builder, Release 6.12.62

Fig. 31: GPIO panel

• Direction: Defines GPIO as an input or output.

Autopilot 1x admits up to 20 I/O PWM/GPIO signals. To configure a pin as GPIO after it has been changed to PWM,
click Add and select GPIO:

32 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 32: Add GPIO

2.2. Connections 33

1x PDI Builder, Release 6.12.62

Note: When a pin is added as GPIO, it is disabled as PWM and enabled as GPIO. Hence, in the GPIO panel of
Veronte menu, the “Function” parameter shall change to “Mux 0”.

2.2.5 I2C

I2C stands for Inter-Integrated Circuit bus. It is a bus interface connection protocol incorporated into devices for serial
communication. It operates in 2 modes: master and slave.

I2C uses only 2 bi-directional open-drain lines for data communication called SDA and SCL. Both these lines are
pulled high.

• Pin 31 - SCL: Clock line for I2C bus (0.3V to 3.3V), it carries the clock signal.

• Pin 32 - SDA: Data line for I2C bus (0.3V to 3.3V), transfer of data takes place through this pin.

Fig. 33: I2C panel

Tip: These pins are very useful for forcing maintenance mode. For more information, refer to the Using the I2C
pins to enter in maintenance mode - Troubleshooting section of the 1x Hardware Manual.

34 Chapter 2. Configuration

https://manuals.embention.com/1x/en/4.8/troubleshooting/index.html#using-the-i2c-pins-to-enter-in-maintenance-mode
https://manuals.embention.com/1x/en/4.8/troubleshooting/index.html#using-the-i2c-pins-to-enter-in-maintenance-mode

1x PDI Builder, Release 6.12.62

2.2.6 Others

• GND: Ground.

• Power.

Fig. 34: Others panel

2.2.7 PWM

Output pins produce PWM or GPIO signals that are used to move the different servos and actuators of the platform.

The acronym PWM corresponds to Pulse Width Modulation. 1x sends a pulse with a certain width that is received by
the servo/actuator, and according to the width of such pulse, it changes its behavior. A wide pulse will correspond to a
big movement and a narrow one to a small movement.

By default, all PWM/GPIO pins are configured as GPIO output. So, to configure them as PWM, it is necessary to click
Add:

2.2. Connections 35

1x PDI Builder, Release 6.12.62

Fig. 35: Add PWM

Then, select the GPIO pin the user want to change to PWM. As can be seen, pins are interchangeable.

36 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 36: PWM change

Note: When a pin is added as PWM, it is disabled as GPIO and enabled as PWM. Hence, in the GPIO panel of
Veronte menu, the “Function” parameter shall change to “Mux 1”.

As shown in the image below, the GPIO 1 output is now missing as it has been changed to a PWM output.

2.2. Connections 37

1x PDI Builder, Release 6.12.62

Fig. 37: PWM panel

In this menu the following parameters can be configured:

1. Frequency: PWM output frequency. This option determines the period of the pulses sent by the autopilot.
The PWM is built in pairs inside the autopilot, and that is why the frequency is indicated in pairs, i.e when the
frequency of PWM 0 is changed, the one of PWM 1 also changes. The following table shows the PMW pairs as
configured in Autopilot 1x.

PWM 0 PWM 1
PWM 2 PWM 3
PWM 4 PWM 5
PWM 6 PWM 7
PWM 8 PWM 9
PWM 10 PWM 11
PWM 12 PWM 13
PWM 14 PWM 15
PWM 16 PWM 17
PWM 18 PWM 19

2. Active High: Polarity high or low (high if enabled).

3. Mode: The available options are Time and Duty cycle.

• Time: The values indicated in Min and Max parameters are expressed in time units.

38 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 38: PWM panel - Time units

• Duty cycle: This option is a different way of indicating the pulse width. Now the value indicated in Min
and Max parameters is a percentage which corresponds to the relation between the pulse width over the
total period of the sent signal.

So a 100% duty cycle will correspond to a signal with a constant value of 1, while a 0% duty cycle implies
a constant signal with value 0. Between this two extremes, the pulse width can vary as in the examples
shown in the following figure.

Fig. 39: Duty cycle

2.2. Connections 39

1x PDI Builder, Release 6.12.62

Note: Duty cycle percentages can be expressed in percent and per unit.

Fig. 40: PWM panel - Duty cycle units

4. Min/Max: These parameters are the pulse width values that will make the servo/actuator go to its lowest/highest
position. It will be the output when the PWM message specifies 0/4095.

As an example let’s consider the servo of an aircraft elevator, a pulse sent by Autopilot 1x of 0.9 ms will
correspond with the lowest point of the servo range (-30 degrees for example). On the other hand, a pulse
of 2.1 ms will make the servo go to its top position (for example 30 degrees).

Summary
A PWM is a signal which consists of a series of pulses having a width determined by a percentage over a range specified
by the parameters Min and Max. On the other hand, the GPIO is a signal with a constant value (1,0) or with a single
pulse (1,0).

40 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

2.2.8 Serial

Two serial interfaces are available with Autopilot 1x, 1 port RS-232 and 1 port RS-485, however more can be added by
using a CEX or MEX. Each one of the serial interfaces is associated with a set of pins. To configure these serial ports,
go to Serial panel in the Input/Output menu.

Fig. 41: Serial panel

2.2. Connections 41

1x PDI Builder, Release 6.12.62

2.2.9 USB

Fig. 42: USB panel

2.3 Sensors

Sensors menu allows to configure any external or internal sensor of Veronte Autopilot 1x.

2.3.1 Accelerometer

Veronte Autopilot 1x incorporates 3 Inertial Measurement Units (IMUs) that allow the 1x system to measure different
variables and that are the main navigation data source. In addition, external IMUs can also be used for this purpose.

From the IMU, the user can configure the accelerometer and gyroscope. The first one is explained below.

The user can choose between 3 types of source for the accelerometer:

• Internal (Secondary/BMI088/ADIS16505-3 Accelerometer): Autopilot 1x uses the internal sensor.

Warning: If the user has an Autopilot 1x with hardware version 4.5, the Main Accelerometer is
available instead of the ADIS16505-3 Accelerometer, which has the same configurable parameters as the
Secondary Accelerometer.

• External sensor 0-1: Autopilot 1x uses values received from custom messages from a no-integrated external
sensor.

42 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

• Decimal var sensor 0-1: Autopilot 1x uses a decimal value provided by an external sensor.

Hint: Depending on the hardware version, the following accelerometer is suggested:

• 4.5 version BMI088 Accelerometer

• 4.8 version ADIS16505-3 Accelerometer

It is possible to select multiple of these sensors for the navigation algorithm, so that Veronte Autopilot 1x performs
a combination of all the measurements of the selected accelerometers. This combination consists of calculating the
means and variances of each of these accelerometers in a given time (time constant for mean and time constant for
variance) to obtain a mean weighted with the inverse of the variance. The lower the variance, the greater the weight
of that sensor in the mean.

2.3.1.1 Common accelerometers configuration

First of all, the parameters to be configured in the accelerometer panel regardless of the selected accelerometer are
presented:

Fig. 43: Accelerometer panel

• Def. sensor: A default sensor must be chosen. If all selected sensors fail, the measurement value will be that of
the default sensor.

• Time constant for mean/variance: Time taken by the Autopilot 1x system to estimate the mean/variance.

• Initial variance: Initial value of the variance from which the calculation of the combination of the measures is
started.

• Minimum variance: The value estimated by the system for the variance cannot be less than the one set here.

2.3. Sensors 43

1x PDI Builder, Release 6.12.62

To select the desired accelerometers, simply add them to the list. To do this, click on the icon and select them in
the panel displayed:

Fig. 44: Accelerometer panel - Add accelerometers

2.3.1.2 Common configuration of the internal accelerometers

Secondly, some configuration parameters that are common to all Internal Accelerometers (Secondary, BMI088 and
ADIS16505-3) are explained:

44 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 45: Accelerometer panel - Internal accelerometers configuration

• Notch filter: It is a filter that dampens signals only at a specific frequency.

– Mode: The available options are:

∗ Disabled: Notch filter disabled.

∗ Main frequency: Only one filter is created on the main frequency.

∗ Main frequency + 1st harmonic: Two filters are created, one at the main frequency and one at the
first harmonic, i.e. at the frequency which is twice the main frequency.

– Main Frequency: Main frequency (Hz) at which the notch filter reaches its maximum damping.

– Bandwidth: Design parameter. There is a damping of at least 3 dB within the bandwidth. The main
frequency at which the maximum damping (notch gain) is reached, lies in the center of this spectrum.

– Notch gain: Design parameter. This parameters sets the maximum damping (dB) for the main frequency.

Note: Setting this parameter to zero disables the filter.

2.3. Sensors 45

1x PDI Builder, Release 6.12.62

Fig. 46: Notch filter

• Sensor filter: Enables a low pass filter which its cutoff frequency is configured manually, allowing the user to
input any desired value in Hz. It is a software filter.

2.3.1.3 Sensor

Secondary Accelerometer
This panel displays the possible parameters that can be configured only for the internal Secondary Accelerometer.

46 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 47: Accelerometer panel - Secondary Accelerometer configuration

In this panel, it is possible to configure different options related to the range and filters of the accelerometer. The
parameters that can be modified are:

Note: The configuration parameters common to all accelerometers and also the common to all internal accelerometers,
are not explained again.

• Range: Selectable range of forces that the accelerometer can measure, high ranges implies less precision while
small ranges might mean the system saturates. Values allowed are 2g, 4g, 8g and 16g.

• Antialising filter bandwith: It is the bandwidth of the antialiasing low pass filter. The options available are
50Hz, 100Hz, 200Hz and 400Hz, the greater the value selected the worse the filtering will be.

• Enable digital filter sensor: Enables a low pass filter which its cutoff frequency is configured from the options
16.65Hz, 66.6Hz, 133.2Hz and 740.0Hz. This is a hardware filter, included directly in the accelerometer.

BMI088 Accelerometer
This panel displays the possible parameters that can be configured for the internal BMI088 Accelerometer.

2.3. Sensors 47

1x PDI Builder, Release 6.12.62

Fig. 48: Accelerometer panel - BMI088 Accelerometer configuration

In this panel, it is possible to configure different options related to the range and filters of the accelerometer. The
parameters that can be modified are:

Note: The configuration parameters common to all accelerometers and also the common to all internal accelerometers,
are not explained again.

• Range: Selectable range of forces that the accelerometer can measure, high ranges implies less precision while
small ranges might mean the system saturates. Values allowed are 3g, 6g, 12g and 24g.

• Sampling frequency: That is the frequency at which the measurements are read out. Values allowed are 12.5Hz,
25Hz, 50Hz, 100Hz, 200Hz, 400Hz, 820Hz and 1600Hz. We recommend the highest.

• Low pass frequency: This is a hardware filter, included directly in the accelerometer, which its cutoff
frequency is configured from the options 145Hz, 234Hz (215Hz for Z axis) and 280Hz (245Hz for Z axis).

ADIS16505-3 Accelerometer
This panel displays the possible parameters that can be configured for the internal ADIS16505-3 Accelerometer.

48 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 49: Accelerometer panel - ADIS16505-3 Accelerometer configuration

In this panel it is possible to set different options regarding range and filters from the accelerometer. The parameters
that can be modified are:

Note: The configuration parameters common to all accelerometers and also the common to all internal accelerometers,
are not explained again.

• Mode 32 bits: Enable or disable. With 32 bits of precision. We recommend enabling it.

• Limit bandwith to 370Hz: Enable or disable. It can only be used without using a Low Pass Filter Stages. We
recommend disabling it.

• Max Non-variation Samples: It is configured manually.

• Low Pass Filter Stages: IMU’s Hardware filter. The options available are:

– No filter

– 1 stage (Cutoff f=364Hz)

– 2 stages (Cutoff f=165Hz)

– 3 stages (Cutoff f=80Hz)

– 4 stages (Cutoff f=40Hz)

– 5 stages (Cutoff f=20Hz)

– 6 stages (Cutoff f=10Hz)

We recommend 4 stages (Cutoff f=40Hz) option.

2.3. Sensors 49

1x PDI Builder, Release 6.12.62

Warning:
• It is recommended to choose the hardware filter (Low Pass Filter) except if a lower cutoff frequency is

needed (< 10 Hz).

• It is not recommended flying without a filter.

External sensor 0-1
In this panel, the user must configure some parameters in order to correctly receive and manage the measurements from
the external sensor.

Fig. 50: Accelerometer panel - External sensor 0-1 configuration

Note: The configuration parameters common to all accelerometers are not explained again.

• Edit Rotation Matrix: Users must set the position of the external sensor with respect to the orientation of the
Veronte Autopilot 1x.

Error: The rotation matrix cannot be a zero matrix and must respect the orthogonality of the axes.
Not complying with this requirement means an invalid rotation and, consequently, the calibration of this
magnetometer will not be possible.

For more information on Autopilot 1x orientation, please refer to the Orientation - Hardware Installation section
of the 1x Hardware Manual.

50 Chapter 2. Configuration

https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#orientation

1x PDI Builder, Release 6.12.62

• Enable: Users must enable it if they want this sensor to be selected.

– Desired frequency: The sensor measurement shall only be considered correct if the frequency at which the
message with this measurement is received is ≥ 90% of the desired frequency defined here by the user.

This frequency is stored in the RVars 1488-1489. For more information on these variables, see the Real
Variables (RVar) - 32 Bits section of the 1x Software Manual.

– Enable filter: Enables a butterworth second order low-pass filter which its cutoff frequency is configured
manually, allowing the user to input any desired value in Hz.

Decimal var sensor 0-1
In this panel it is possible to configure real variables provided by an external sensor.

Fig. 51: Accelerometer panel - Decimal var sensor 0-1 configuration

Note: The configuration parameters common to all accelerometers are not explained again.

• Edit Rotation Matrix: Users must set the position of the external sensor with respect to the orientation of the
Veronte Autopilot 1x.

Error: The rotation matrix cannot be a zero matrix and must respect the orthogonality of the axes.
Not complying with this requirement means an invalid rotation and, consequently, the calibration of this
magnetometer will not be possible.

2.3. Sensors 51

https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#real-variables-rvar-32-bits
https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#real-variables-rvar-32-bits

1x PDI Builder, Release 6.12.62

For more information on Autopilot 1x orientation, please refer to the Orientation - Hardware Installation section
of the 1x Hardware Manual.

Fig. 52: Accelerometer panel - Rotation matrix

• Enable: When enabled, the user must select the real user variables for each axis (X,Y,Z) in which the values
have been stored.

The configuration process must be done using custom messages. This is to be configured in the Custom Messages panel
of the Input/Output menu. The configuration will depend on the device in use and its communication protocol.

2.3.2 Gyroscope

The gyroscope from the IMU can be configured as explained in the panels shown below.

The user can choose between 3 types of source for the gyroscope:

• Internal (Secondary/BMI088/ADIS16505-3 Gyroscope): Autopilot 1x uses the internal sensor.

Warning: If the user has an Autopilot 1x with hardware version 4.5, the Main Gyroscope is available
instead of the ADIS16505-3 Gyroscope, which has the same configurable parameters as the Secondary
Gyroscope.

• External sensor 0-1: Autopilot 1x uses values received from custom messages from a no-integrated external
sensor.

• Decimal var sensor 0-1: Autopilot 1x uses a decimal value provided by an external sensor.

Hint: Depending on the hardware version, the following gyroscope is suggested:

• 4.5 version BMI088 Gyroscope

• 4.8 version ADIS16505-3 Gyroscope

It is possible to select multiple of these sensors for the navigation algorithm, so that Veronte Autopilot 1x performs a
combination of all the measurements of the selected gyroscopes. This combination consists of calculating the means
and variances of each of these gyroscopes in a given time (time constant for mean and time constant for variance)
to obtain a mean weighted with the inverse of the variance. The lower the variance, the greater the weight of that sensor
in the mean.

52 Chapter 2. Configuration

https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#orientation

1x PDI Builder, Release 6.12.62

2.3.2.1 Common gyroscopes configuration

First of all, the parameters to be configured in the gyroscope panel regardless of the selected gyroscope are presented:

Fig. 53: Gyroscope panel

• Def. sensor: A default sensor must be chosen. If all selected sensors fail, the measurement value will be that of
the default sensor. Default senor must be chosen.

• Time constant for mean/variance: Time taken by the Autopilot 1x system to estimate the mean/variance.

• Initial variance: Initial value of the variance from which the calculation of the combination of the measures is
started.

• Minimum variance: The value estimated by the system for the variance cannot be less than the one set here.

To select the desired gyroscopes, simply add them to the list. To do this, click on the icon and select them in the
panel displayed:

2.3. Sensors 53

1x PDI Builder, Release 6.12.62

Fig. 54: Gyroscope panel - Add gyroscopes

2.3.2.2 Common configuration of the internal gyroscopes

Secondly, some configuration parameters that are common to all Internal Gyroscopes (Secondary, BMI088 and
ADIS16505-3) are explained:

54 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 55: Gyroscope panel - Internal gyroscopes configuration

• Notch filter: It is a filter that dampens signals only at a specific frequency.

– Mode: The available options are:

∗ Disabled: Notch filter disabled.

∗ Main frequency: Only one filter is created on the main frequency.

∗ Main frequency + 1st harmonic: Two filters are created, one at the main frequency and one at the
first harmonic, i.e. at the frequency which is twice the main frequency.

– Main Frequency: Main frequency (Hz) at which the notch filter reaches its maximum damping.

– Bandwidth: Design parameter. There is a damping of at least 3 dB within the bandwidth. The main
frequency at which the maximum damping (notch gain) is reached, lies in the center of this spectrum.

– Notch gain: Design parameter. This parameters sets the maximum damping (dB) for the main frequency.

Note: Setting this parameter to zero disables the filter.

2.3. Sensors 55

1x PDI Builder, Release 6.12.62

Fig. 56: Notch filter

• Sensor filter: Enables a low pass filter which its cutoff frequency is configured manually, allowing the user to
input any desired value in Hz. It is a software filter.

2.3.2.3 Sensor

Secondary Gyroscope
This panel displays the possible parameters that can be configured for the internal Secondary Gyroscope.

56 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 57: Gyroscope panel - Secondary Gyroscope configuration

In this panel it is possible to set different options regarding range and filters from the gyroscope. The parameters that
can be modified are:

Note: The configuration parameters common to all gyroscopes and also the common to all internal gyroscopes, are
not explained again.

• Range: Sets the maximum range of performance, high ranges implies less precision while small ranges might
mean the system saturates. Values allowed are 125°/s, 250°/s, 500°/s, 1000°/s and 2000°/s.

BMI088 Gyroscope
This panel displays the possible parameters that can be configured for the internal BMI088 Gyroscope.

2.3. Sensors 57

1x PDI Builder, Release 6.12.62

Fig. 58: Gyroscope panel - BMI088 Gyroscope configuration

In this panel it is possible to set different options regarding range and filters from the gyroscope. The parameters that
can be modified are:

Note: The configuration parameters common to all gyroscopes and also the common to all internal gyroscopes, are
not explained again.

• Range: Sets the maximum range of performance, high ranges implies less precision while small ranges might
mean the system saturates. Values allowed are 125°/s, 250°/s, 500°/s, 1000°/s and 2000°/s.

• Sampling: That is the angular velocity at which the measurements are read out. Values allowed are 100°/s filter
at 32 Hz, 200°/s filter at 64 Hz, 100°/s filter at 12 Hz, 200°/s filter at 32 Hz, 400°/s filter at 47 Hz, 1000°/s filter
at 116 Hz, 2000°/s filter at 230 Hz and 2000°/s filter at 532 Hz.

ADIS16505-3 Gyroscope
This panel displays the possible parameters that can be configured for the internal ADIS16505-3 Gyroscope.

58 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 59: Gyroscope panel - ADIS16505-3 Gyroscope configuration

In this panel it is possible to set different options regarding range and filters from the gyroscope. The parameters that
can be modified are:

Note: The configuration parameters common to all gyroscopes and also the common to all internal gyroscopes, are
not explained again.

• Mode 32 bits: Enable or disable. With 32 bits of precision. We recommend enabling it.

• Limit bandwith to 370Hz: Enable or disable. It can only be used without using a Low Pass Filter Stages. We
recommend disabling it.

• Max Non-variation Samples: It is configured manually.

• Low Pass Filter Stages: IMU’s Hardware filter. The options available are:

– No filter

– 1 stage (Cutoff f=364Hz)

– 2 stages (Cutoff f=165Hz)

– 3 stages (Cutoff f=80Hz)

– 4 stages (Cutoff f=40Hz)

– 5 stages (Cutoff f=20Hz)

– 6 stages (Cutoff f=10Hz)

We recommend 4 stages (Cutoff f=40Hz) option.

2.3. Sensors 59

1x PDI Builder, Release 6.12.62

Warning:
• It is recommended to choose the hardware filter (Low Pass Filter) except if a lower cutoff frequency is

needed (< 10 Hz).

• It is not recommended flying without a filter.

External sensor 0-1
In this panel, the user must configure some parameters in order to correctly receive and manage the measurements from
the external sensor.

Fig. 60: Gyroscope panel - External sensor 0-1 configuration

Note: The configuration parameters common to all gyroscopes are not explained again.

• Edit Rotation Matrix: Users must set the position of the external sensor with respect to the orientation of the
Veronte Autopilot 1x.

Error: The rotation matrix cannot be a zero matrix and must respect the orthogonality of the axes.
Not complying with this requirement means an invalid rotation and, consequently, the calibration of this
magnetometer will not be possible.

For more information on Autopilot 1x orientation, please refer to the Orientation - Hardware Installation section
of the 1x Hardware Manual.

60 Chapter 2. Configuration

https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#orientation

1x PDI Builder, Release 6.12.62

• Enable: Users must enable it if they want this sensor to be selected.

– Desired frequency: The sensor measurement shall only be considered correct if the frequency at which the
message with this measurement is received is ≥ 90% of the desired frequency defined here by the user.

This frequency is stored in the RVars 1488-1489. For more information on these variables, see the Real
Variables (RVar) - 32 Bits section of the 1x Software Manual.

– Enable filter: Enables a butterworth second order low-pass filter which its cutoff frequency is configured
manually, allowing the user to input any desired value in Hz.

Decimal var sensor 0-1
In this panel it is possible to configure real variables provided by an external sensor.

Fig. 61: Gyroscope panel - Decimal var sensor 0-1 configuration

Note: The configuration parameters common to all gyroscopes are not explained again.

• Edit Rotation Matrix: Users must set the position of the external sensor with respect to the orientation of the
Veronte Autopilot 1x.

Error: The rotation matrix cannot be a zero matrix and must respect the orthogonality of the axes.
Not complying with this requirement means an invalid rotation and, consequently, the calibration of this
magnetometer will not be possible.

2.3. Sensors 61

https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#real-variables-rvar-32-bits
https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#real-variables-rvar-32-bits

1x PDI Builder, Release 6.12.62

For more information on Autopilot 1x orientation, please refer to the Orientation - Hardware Installation section
of the 1x Hardware Manual.

Fig. 62: Gyroscope panel - Rotation matrix

• Enable: When enabled, the user must select the real user variables for each axis (X,Y,Z) in which the values
have been stored.

The configuration process must be done using custom messages. This is to be configured in the Custom Messages panel
of the Input/Output menu. The configuration will depend on the device in use and its communication protocol.

2.3.3 Magnetometer

Veronte Autopilot 1x incorporates three internal magnetometers (only two are available on Autopilots 1x with
hardware version 4.5) that allow the 1x system to measure the magnetic field. In addition, external magnetometers
can also be used for this purpose.

The user can choose between 4 types of source for the magnetometer.

• Internal (LIS3MDL/MMC5883MA/RM3100): Autopilot 1x uses the internal sensor.

Warning: If the user has an Autopilot 1x with hardware version 4.5, Internal RM3100 Magnetometer
is not available.

• External sensor 0-1: Autopilot 1x uses values received from custom messages from a no-integrated external
sensor.

• Decimal var sensor 0-1: Autopilot 1x uses a decimal value provided by a no-integrated external sensor.

• External (HMR2300/LIS3MDL/HSCDTD008A/MMC5883MA/RM3100): Autopilot 1x uses the
information from one of the compatible external magnetometers.

It is possible to select multiple of these sensors for the navigation algorithm, so the user will have redundancy in
magnetometer sensor.

Hint: Depending on the hardware version, the following magnetometer is suggested:

• 4.5 version Internal MMC5883MA Magnetometer

• 4.8 version Internal RM3100 Magnetometer

62 Chapter 2. Configuration

https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#orientation

1x PDI Builder, Release 6.12.62

Note: LIS3MDL and HSCDTD008A Magnetometer are integrated in Autopilot 1x with the I2C interface. They
are inside the 1x, but mounted externally to avoid the possible interferences from being close to electronic components.

• Magnetometer LIS3MDL: It is a three-axis magnetic sensor with a very small package.

• Magnetometer HSCDTD008A: It is a three-axis terrestrial magnetism sensor of the digital output.

It is very important to know that address cannot be chosen in the software and must be as follows:

• Magnetometer LIS3MDL: 0x1C.

• Magnetometer HSCDTD008A: 0x0C.

Important: In this panel, the user can only modify some configurable parameters, the selection of the magnetometer
and the configuration of the Variance are done in the Magnetometer - Sensors blocks of the Block Programs menu.

Fig. 63: Magnetometer block

2.3. Sensors 63

1x PDI Builder, Release 6.12.62

2.3.3.1 Sensor

Internal LIS3MDL/MMC5883MA/RM3100
This panel displays the possible parameters that can be configured for the internal magnetometers.

Fig. 64: Magnetometer panel - Internal magnetometers configuration

In this panel it is possible the following options regarding the digital filter:

• Digital filter: By enabling the Sensor filter checkbox, the user enables a low pass filter which its cutoff
frequency is configured manually, allowing the user to input any desired value in Hz. It is a software filter.

External sensor 0-1
In this panel, the user must configure some parameters in order to correctly receive and manage the measurements from
the external sensor.

64 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 65: Magnetometer panel - External sensor 0-1 configuration

• Edit Rotation Matrix: Users must set the position of the external sensor with respect to the orientation of the
Veronte Autopilot 1x.

Error: The rotation matrix cannot be a zero matrix and must respect the orthogonality of the axes.
Not complying with this requirement means an invalid rotation and, consequently, the calibration of this
magnetometer will not be possible.

For more information on Autopilot 1x orientation, please refer to the Orientation - Hardware Installation section
of the 1x Hardware Manual.

• Enable: Users must enable it if they want this sensor to be selected.

– Desired frequency: The sensor measurement shall only be considered correct if the frequency at which the
message with this measurement is received is ≥ 90% of the desired frequency defined here by the user.

This frequency is stored in the RVars 1488-1489. For more information on these variables, see the Real
Variables (RVar) - 32 Bits section of the 1x Software Manual.

– Enable filter: Enables a butterworth second order low-pass filter which its cutoff frequency is configured
manually, allowing the user to input any desired value in Hz.

Decimal var sensor 0-1
In this panel it is possible to configure real variables provided by an external sensor.

2.3. Sensors 65

https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#orientation
https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#real-variables-rvar-32-bits
https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#real-variables-rvar-32-bits

1x PDI Builder, Release 6.12.62

Fig. 66: Magnetometer panel - Decimal var sensor 0-1 configuration

• Edit Rotation Matrix: Users must set the position of the external sensor with respect to the orientation of the
Veronte Autopilot 1x.

Error: The rotation matrix cannot be a zero matrix and must respect the orthogonality of the axes.
Not complying with this requirement means an invalid rotation and, consequently, the calibration of this
magnetometer will not be possible.

For more information on Autopilot 1x orientation, please refer to the Orientation - Hardware Installation section
of the 1x Hardware Manual.

Fig. 67: Magentometer panel - Rotation matrix

66 Chapter 2. Configuration

https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#orientation

1x PDI Builder, Release 6.12.62

• Enable: When enabled, the user must select the real user variables for each axis (X,Y,Z) in which the values
have been stored.

The configuration process must be done using custom messages. This is to be configured in the Custom Messages panel
of the Input/Output menu. The configuration will depend on the device in use and its communication protocol.

External HMR2300/LIS3MDL/HSCDTD008A/MMC5883MA/RM3100
Autopilot 1x has been designed to have compatibility with these external magnetometers.

Fig. 68: Magnetometer panel - External magnetometers configuration

The user can modify the following parameters:

• Edit Rotation Matrix: It must be modified in the case that the axes of the magnetometer do not coincide with
those of the aircraft.

Error: The rotation matrix cannot be a zero matrix and must respect the orthogonality of the axes.
Not complying with this requirement means an invalid rotation and, consequently, the calibration of this
magnetometer will not be possible.

• Digital filter: By enabling the Sensor filter checkbox, the user enables a low pass filter which its cutoff
frequency is configured manually, allowing the user to input any desired value in Hz. It is a software filter.

2.3. Sensors 67

1x PDI Builder, Release 6.12.62

2.3.4 Dynamic Pressure

Autopilot 1x has three pressure input lines, two for static pressure to determine the absolute pressure and one for pitot
in order to determine the dynamic pressure.

This panel allows the user to configure a Dynamic Pressure sensor input in 1x.

2.3.4.1 Navigation

The Navigation panel has 5 parameters that are configured independently from the Dynamic Pressure sensor selected.

Fig. 69: Dynamic Pressure panel - Navigation parameters

• Enable: User can choose from Disabled, values from the sensor will be received, but they will not enter the
Navigation Filter, or Custom settings, which will take into account all the following parameters.

• Square Error: Sensor error square, which defines the weight if the measurement into the Navigation filter.

• Decimation: Defines the bunch of data from which 1 value will be stored. For example, if decimation is 10,
every 10 measurements 1 will be taken into account. This procedure is used to reduce the number of samples.

If users have any questions about decimation, please refer to the What does decimation mean? - FAQ section of
this manual.

• Minimum pressure: Minimum pressure readable from the sensor.

• Pitot Orientation (X,Y,Z): Vector defining the Pitot orientation on the platform.

68 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

2.3.4.2 Sensor

The user can choose between 3 types of source:

• Internal: Autopilot 1x uses the internal sensor.

• Integer var sensor 0-1: Autopilot 1x uses a integer value provided by an external sensor.

• Decimal var sensor 0-1: Autopilot 1x uses a decimal value provided by an external sensor.

Internal
This panel displays the possible parameters that can be configured for the internal Dynamic Pressure sensor.

Fig. 70: Dynamic Pressure panel - Internal sensor configuration

In this panel it is possible to set different options regarding filters.

• Sensor filter: Enables a low pass filter which its cutoff frequency is configured manually, allowing the user to
input any desired value in Hz. It is a software filter.

Integer var sensor 0-1
In this panel it is possible to configure integer variables provided by an external sensor.

2.3. Sensors 69

1x PDI Builder, Release 6.12.62

Fig. 71: Dynamic Pressure panel - Integer var sensor 0-1 configuration

When Integer var sensor 0 or 1 are selected, the previous panel will be shown. In this panel, the user selects the variable
that has been stored in a user variable (Green Box) and the operations that will be carried on (Red Box). It is possible
to use the signal through a linear or quadratic relation. The following image shows an example of a linear relation:

Fig. 72: Linear relation of 2 variables

In addition, users must indicate whether the integer value is with sign or without sign. That is, if the “Signed” box
is:

70 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

• Enabled: Integer value with sign.

• Disabled: Integer value without sign.

The process of configuration has to be done using custom messages. This is to be configured in the Custom Messages
panel of the Input/Output menu. The configuration will depend on the device in use and its communication protocol.

Decimal var sensor 0-1
In this panel, the user selects a real variable, this does not require a signal treatment. The process of configuration is
similar to the one carried out when configuring a Integer Variable.

Fig. 73: Dynamic Pressure panel - Decimal var sensor 0-1 configuration

2.3.5 Static Pressure

Autopilot 1x has three pressure input lines, two for static pressure to determine the absolute pressure and one for pitot
in order to determine the dynamic pressure.

This panel allows the user to configure a static pressure sensor input in 1x.

Important: In this panel, the user can only modify some configurable parameters, the selection of the static pressure
sensor and the configuration of the Variance are done in the Static Pressure Sensor - Sensors blocks of the Block
Programs menu.

2.3. Sensors 71

1x PDI Builder, Release 6.12.62

Fig. 74: Static Pressure Sensor block

2.3.5.1 Atmospheric calibration export

The Atmospheric calibration export allows, in a standard ground-air configuration, to continuously send information
regarding the static pressure configured on the ground platform to the desired air platform. Therefore, it is a
configuration that must be performed on the Veronte Autopilot 1x ground unit.
This function is useful when making long flights as the static pressure varies significantly throughout the day and
therefore the altitude estimation will also vary.

Warning: For correct operation both Veronte Autopilots 1x (ground and air units) must measure the same pressure
at the same height (this must be checked).

This option is configured independently of the selected Static Pressure sensor.

72 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 75: Static Pressure panel - Atmospheric calibration export parameters

• Export atmospheric correction: Enables this feature.

This panel has 5 parameters that need to be configured:

• Send to: Points to the address where the correction will be sent. For more information on the available addresses,
see List of Addresses section of the 1x Software Manual.

• Period: Period of time spent between sending each correction.

• Altitude: There are 2 options available for this parameter:

– External: Users can manually enter the altitude if known.

– Computed: By selecting this option, the altitude will be computed by the system.

Warning: When this option is selected, it is necessary to add an automation in the 1x ground unit to
calibrate the atmosphere periodically (see Atmosphere Calibration action of the Automations menu),
to prevent the MSL from drifting.

• MSL: Can be entered manually or by a system variable.

Important: This parameter is only enabled when the External option is selected as Altitude.

• OAT: Outside Atmospheric Temperature, to be defined by the user.

2.3. Sensors 73

https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#list-of-addresses

1x PDI Builder, Release 6.12.62

2.3.5.2 Sensor

The user can choose between 3 types of source:

• Internal Sensor (MS56/DPS310): Autopilot 1x uses the internal sensor.

• Integer var sensor 0-1: Autopilot 1x uses a integer value provided by an external sensor.

• Decimal var sensor 0-1: Autopilot 1x uses a decimal value provided by an external sensor.

Hint: The following static pressure sensors are suggested:

• Internal Sensor MS56
• Internal Sensor DPS310

Internal Sensor MS56/DPS310
This panel displays the possible parameters that can be configured for the internal Static Pressure sensors.

Autopilot 1x has embedded 2 digital static pressure sensors: the DPS310 and the MS56. See more information on the
pressure ports in Pressure lines - Hardware Installation of the 1x Hardware Manual.

Fig. 76: Static Pressure panel - Internal sensors configuration

In this panel it is possible to set different options regarding filters.

• Sensor filter: Enables a low pass filter which its cutoff frequency is configured manually, allowing the user to
input any desired value in Hz. It is a software filter.

74 Chapter 2. Configuration

https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#pressure-lines

1x PDI Builder, Release 6.12.62

Integer var sensor 0-1
In this panel it is possible to configure integer variables provided by an external sensor.

Fig. 77: Static Pressure panel - Integer var sensor 0-1 configuration

When Integer var sensor 0 or 1 are selected, the previous panel will be shown. In this panel, the user selects the variable
that has been stored in a user variable (Green Box) and the operations that will be carried on (Red Box). It is possible
to use the signal through a linear or quadratic relation. The following image shows an example of a linear relation:

Fig. 78: Linear relation of 2 variables

2.3. Sensors 75

1x PDI Builder, Release 6.12.62

In addition, users must indicate whether the integer value is with sign or without sign. That is, if the “Signed” box
is:

• Enabled: Integer value with sign.

• Disabled: Integer value without sign.

The process of configuration has to be done using custom messages. This is to be configured in the Custom Messages
panel of the Input/Output menu. The configuration will depend on the device in use and its communication protocol.

Decimal var sensor 0-1
In this panel, the user selects a real variable, this does not requiere a signal treatment. The process of configuration is
similar to the one carried out when configuring a Integer Variable.

Fig. 79: Static Pressure panel - Decimal var sensor 0-1 configuration

76 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

2.3.6 RPM

Autopilot 1x can measure RPMs by reading from up to 6 input sources:

Fig. 80: RPM panel

• Units: Sensor conversion factor. It can be Custom, Radians per pulse or Pulses per cycle.

• Average: Filter to prevent voltage spikes. The readout of the pulse can be filtered as an average output. The
amount of measurements to do the average needs to be specified.

• Minimum: Here the minimum expected pulse period needs to be specified. This will discard spurius pulses
(e.g. induced by EMI) which are smaller than this minimum pulse.

• Maximum: This is the maximum period of time allowed without capturing. If no incoming pulse is received for
more than this time, the output RPMs will be 0.

2.3.7 Lidar

The I2C bus allows the connection of several devices with different addresses to the same line via master-slave
communication. At this moment, Autopilot 1x supports the following Lidar devices:

• Garmin Lidar Lite v3: Optical distance measurement sensor with a range of 5 cm to 40 m.

• SF11 Lidar: Long range laser altimeter. Supported SF11/B and SF11/C with a range of maximum 50 m and 0.2
m to 120 m respectively.

• SF20 Lidar: OEM laser altimeter module. Supported SF20/C with a range of 0.2 m to 100 m.

1x allows up to 5 Lidar devices to be connected to the system at the same time. The configuration panel can be seen
below:

2.3. Sensors 77

1x PDI Builder, Release 6.12.62

Fig. 81: Lidar panel

After enabling the needed number of Lidar devices, configurable parameters are:

• Type of Lidar.

• Address: With an accepted value between 16 - 239, this is the origin address from the Lidar being configured.

• Digital filter: By enabling the Sensor filter checkbox, the user enables a low pass filter which its cutoff
frequency is configured manually, allowing the user to input any desired value in Hz. It is a software filter.

Fig. 82: Lidar panel - Digital filter

Warning: I2C address will be different for different devices. Make sure to define it properly by checking the
manufacturer documentation.

Note: The Lidar number (Lidar 0/4) needs to be kept in order to properly configure the Altimeter later (this must be

78 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

done in the Altimeter - Sensors blocks of the Block Programs menu).

2.3.8 Internest

An ultrasound sensor computes Veronte Autopilot 1x position by measuring the time the signal sent out takes to return.
The following panel together with Relative position sensor block (see Relative position sensor - Block Programs section)
allows the user to configure an Internest system with Veronte Autopilot 1x.

This panel allows the user to choose the version of Internest to be used, its range and the rotation matrix:

Fig. 83: Internest panel

• Version: Users must choose the version of the Internest system, the available options are Base and Explore.

• Range: Defines the distance at which Internest values will start to be valid.

• Sensor to base rotation matrix: Matrix to rotate the system to match the Veronte Autopilot 1x coordinate
system.

2.3. Sensors 79

1x PDI Builder, Release 6.12.62

Fig. 84: Internest panel - Rotation matrix

2.4 Input/Output

This section of the manual contains the information about external sensors/devices configuration. These devices are
configured on the different ports available in Veronte Autopilot 1x:

Port/Manager Description
I/O Setup Configuration of serial port connections, Serial Custom Messages, etc.
CAN Setup Configuration of the two CAN buses (A and B), CAN Custom Messages and Mailboxes
Digital Input Configuration of PPM signals, pulses or RPM sensors
Serial Configurable Veronte LOS, RS232 and RS485 serial ports

As Custom Messages need to be defined for both serial and CAN communication, there will be a specific section for
this after the CAN Setup section⇒ Custom Messages types.

2.4.1 I/O Setup

In this panel the user can establish the relationship between a determined signal with a I/O port. This allows users to
configure external sensors, messages between 1x units (Tunnel) and custom messages.

80 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 85: I/O Setup panel

• Priority: Connections between I/O ports can be marked with high priority with this checkbox. If enabled, they
will run at high frequency: 1000 Hz.

The following table shows which connections can be selected as high or low priority (marked with S) and which
connections are always marked as high (marked with H), so they cannot change to low priority.

2.4. Input/Output 81

1x PDI Builder, Release 6.12.62

Producer\ConsumerUSB Veronte
LOS

External
UART

RS232RS485Commgr
port
0-
5

RS
custom
message
0-
2

Tunnel
0-
2

GPS
0-
1
RTCM

External
HMR2300
magnetometer

Y
0-
2
splitter

IridiumVectornav
VN-
300

Unescape
port

Serial
to
CAN
0-
5

CAN
unwrapper
0-
1

NMEA
parser

Veronte
LTE

Veronte
LTE
Auxiliary

External
ultrasound

USB S S S S S H S S H S S S S S S H
Veronte
LOS

S S S S S H S S H S S S S S S H

External
UART

S S S S S H S S H S S S S S S H

RS232S S S S S H S S H S S S S S S H
RS485S S S S S H S S H S S S S S S H
Commgr
port
0-
5
RS
custom
message
0-
2
Tunnel
0-
2

S S S S S S H S S H S S S S S S H

GPS
0-
1
RTCM

S S S S S S H S H H

External
HMR2300
magnetometer

S S S S S S S H S H

Y
0-
2
splitter
A-
B

S S S S S S H S S H S S S S S S H

IridiumS S S S S S H S H S S H
Unescape
port

S S S S S S H S S H S S S S S H

CAN
to
serial
0-
5

S S S S S S H S S H S S S S S S H

CAN
wrapper
0-
1

S S S S S S H S S H S S S S S S H

Veronte
LTE

S S S S S S H S S H S S S S S H

Veronte
LTE
Auxiliary

S S S S S S H S S H S S S S S H

82 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

• Producer: Functions for creating and sending messages.

• Consumer: Functions for receiving and parsing messages

• Bit: This assigns each connection a bit in a way that allows this connection to be activated/deactivated depending
on the status of the selected bit.

By default, the ‘Always Ok’ bit is set to all connections so that they are always active.

The following are the steps to setting up reception or transmission between ports:

1. Choose the Producer to use.

Fig. 86: I/O Setup panel - Producers

2. To configure the desired Consumer that will be bind to the chosen Producer, it is first required to establish the
relationship between them:

• Bind→: Unidirectional relationship.

• Bind Bidirectional↔: Bidirectional relationship. This enables a port to receive or send information.

Note: Once the Consumer has been selected, it is possible to undo the selection by pressing the Clear button.

2.4. Input/Output 83

1x PDI Builder, Release 6.12.62

Fig. 87: I/O Setup panel - Consumer options

3. Select the desired Consumer element.

4. (optional) Configure the Bit parameter.

The following I/O ports are available:

84 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Field Description
USB USB Port
Veronte LOS Radios
External UART External UART Port (UART A pin)

For more information, see Pinout - Hardware Installation section of the 1x Hardware
Manual

RS232 Serial Port 232
RS485 Serial Port 485
Commgr port COM Manager ports send and receive VCP messages. VCP is the protocol used by Veronte

products to communicate.
For more information on this, read the VCP user manual

RS Custom Message This allows user to send/receive a serial custom message, see Serial Custom Messages
Tunnel Creates a bidirectional brigde between two devices, see Tunnel
GPS RTCM This allows the user to send/receive RTK information from GND unit to AIR unit
External HMR2300
magnetometer

External magnetometer sensor, see the Magnetometer Honeywell HMR2300 - Integration
examples section

External ultrasound External ultrasound sensor, see the Internest - Sensors section
Y Splitter Used to split a signal into 2
Iridium Iridium communication, see the Iridium - Communications section
Vectornav VN-300 Vectornav VN-300 is an external IMU.

For more information, see the Vectornav VN-300 - Integration examples section
Unescape port This allows user to reconstruct a byte stream with an escape logic, see Unescape port
CAN to serial /
Serial to CAN

Serial to CAN sends serial streams over a CAN Bus / CAN to serial undoes the
transformation ‘Serial to CAN’

CAN wrapper /
CAN unwrapper

CAN wrapper sends CAN streams over a serial Bus / CAN unwrapper undoes this
transformation, see the CAN wrapper/CAN unwrapper section

NMEA Parser NMEA 0183 messages parser, see NMEA Parser
Veronte LTE 4G Connection. For more information, see the 4G - Communications section.

Warning: The configuration for a Veronte Autopilot
1x hardware version 4.8 is different than for one with
hardware version 4.5. If the user has any questions,
please contact the support team following the user’s Joint
Collaboration Framework

Veronte LTE
Auxiliary

Warning: Reserved port

More information about some elements can be found in the following sections.

2.4. Input/Output 85

https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#pinout
https://manuals.embention.com/vcp/en/latest/index.html
https://manuals.embention.com/joint-collaboration-framework/en/0.1/index.html
https://manuals.embention.com/joint-collaboration-framework/en/0.1/index.html

1x PDI Builder, Release 6.12.62

2.4.1.1 Serial Custom Messages

Warning:
• Autopilot 1x has a serial limitation of 64 vectors (fieldset) per Custom.

In addition, there is a limit shared with all Customs, including CAN Custom Messages:
– Maximum number of vectors (fieldset): 104
– Maximum number of fields: 2000

It is possible to configure the messages sent/received through the serial port and its conversion to system variables by
selecting the option RS Custom message and configuring the I/O port.

Fig. 88: Serial Custom Messages

In the image above two possible configurations using an RS Custom Message can be seen. The ‘red’ one is configured
to receive a given message from an RS232 serial port and the ‘green’ is used to send a RS Custom Message through an
RS485 serial port. It is also possible to use the same RS Custom Message for both tasks if the bidirectional relationship
is selected (the arrow indicates this (Bind Bidirectional↔)).

To configure a RS Custom message, the user must follow the next steps:

1. Press the configuration button (icon) and a pop-up window will be displayed.

In this window press the icon to add a custom message, the user can choose between System variables,
ADSB Vehicle or External Sensor.

86 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 89: Serial Custom Message configuration

Note: The difference between choosing System Variables, ADSB Vehicle or External Sensor is that when
the user selects Variable as the custom message type, only system variables will appear when System Variables
is selected, only ADSB variables when ADSB Vehicle is selected and only variables related to external sensors
if External Sensor is selected.

2. When it is already added, the following options are available to configure a custom message:

Fig. 90: Producer RS Custom Message configuration

Fig. 91: Consumer RS Custom Message configuration

2.4. Input/Output 87

1x PDI Builder, Release 6.12.62

• Endianness: Depending on the order in which the device issue the message, it is possible to select:

– Big endian: Set the value from left to right.

– Little endian: Set the value from right to left.

– Mixed endian: Some devices use this format. If users need to configure it, please contact the support
team (create a ticket in the customer’s Joint Collaboration Framework; for more information, see
Tickets section of the JCF manual).

• Period/Time out: This option has a dual role depending on if it is used to transmit or receive data.

– Period - Producer: It is the inverse of the send frequency.

– Time out - Consumer: This is the threshold time between receptions to consider that the message is
not being received correctly.

• Delay/Time to Idle: The purpose of this feature is ensuring half-duplex communication. This option has
a dual role depending on if it is used to transmit or receive data.

– Delay - Producer: After sending the message, the Serial bus will be disabled for this amount of time
in order to allow half-duplex communication.

Warning: Delay time must not be longer than the specified period, since this will result in out-
of-order message sending.

– Time to Idle - Consumer: This is the time Autopilot 1x waits before discarding partially parsed bytes.

• Bit ID: This option is only available when a message is configured as Consumer. The user bit selected in
Bit ID box will be true if the message is being received correctly.

Warning: Pay attention that the user bit selected in Bit ID is not in use for another task.

3. To create the structure of the message, click on the edit message button (icon) and then press the icon
to add fields to it. The following type of messages are available to configure a structure: Variable, Checksum,
Matcher, Skip, Parse ASCII and Position.

The configuration of each structure is covered in the Custom Messages types - Input/Output section of this manual.

Warning: Before configuring any message, user has to know the structure it has to have according to the device that
is connected to the port. Each device may have a different message structure when it sends or receives information.

To check serial messages transmission, see the Debug serial messages transmission - Troubleshooting section of this
manual.

88 Chapter 2. Configuration

https://manuals.embention.com/joint-collaboration-framework/en/0.1/tickets/index.html

1x PDI Builder, Release 6.12.62

2.4.1.2 Tunnel

It is possible to configure a Tunnel, which is a bidirectional bridge between 1x units that communicate to each other
sharing information about an external device connected to the Serial or Digital port.

Imagine that it is desired to have a button connected to the 1x air unit to launch a parachute. It is not possible to
physically connect the button because the air autopilot is in the flying platform, so a different option is needed. Here
is where the tunnel becomes useful. The button could be connected through the Serial or Digital port to the 1x ground
unit, and then the signal is sent through the tunnel to the air unit. With this configuration it would be like if the button
were physically connected to the aircraft.

Let’s consider the following image:

Fig. 92: Tunnel configuration

In the image above there is a device connected to the RS232 (Producer) and there is a Tunnel (Consumer) which
sends that information to other Autopilot 1x with a determined ID. On the other hand, 1x air unit has to be configured
to receive the signal sent by other device. In that case the Producer will be Tunnel and Consumer will be the port
or destination tunnel where the device is connected.

The options available when configuring Tunnel as Consumer are:

• Veronte ID: Enter the address that will receive the information. The following options are the most common:

– App 2: Veronte applications address.

– Broadcast: All units on the network. Select this option for a generic configuration.

– Address of a specific Veronte unit, it can be a 1x, a 4x, a CEX, etc.

For more information on the available addresses, see List of Addresses section of the 1x Software Manual.
• Parser: The user can choose protocol to parse message data. The options available are:

– No protocol

– RTCM3

2.4. Input/Output 89

https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#list-of-addresses

1x PDI Builder, Release 6.12.62

– CANserial

• Destination tunnel: Number of port is used to avoid mistakes and identify a Tunnel when using more than one,
Tunnel 0, 1 and 2 are available.

• Time between messages.
• Bytes to send: Sets the message size to send.

When configuring Tunnel as Producer (i.e. on the unit that receives the information), no configuration is required. It
is only necessary to connect it to a Consumer, usually to a serial port.

2.4.1.3 Unescape port

To understand what unescape is, the user must first understand what an escape byte is.

Let’s consider that there is a protocol that defines a ‘Flag’ as the start and end byte of the frame. In case the flag or an
escape value appears in the frame data, and in order not to misinterpret the message, an escape byte or the same value
repeated will be added before them so that, at the time of parsing, it will be reconstructed with the original byte.

Fig. 93: Escape byte

In 1x PDI Builder, an Unescape port has been implemented to allows to reconstruct a byte stream with an escape logic.

90 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 94: Unescape port configuration

Two modes of escapes are supported:

• SkipChar: The unfolding of the value to be escaped, the byte to escape has been repeated in the message.

• SkipAndXOR: In this case, the escape byte is entered first and then the value to escape (i.e. the value to escape
XOR escape byte).

In addition to this, two more options are available in this pop-up window:

• Escape byte: Escape byte added.

• XOR value: Only available when ‘SkipAndXOR’option is selected.

2.4.1.4 NMEA Parser

NMEA Parser is another way to add an external GNSS device. This consumer allows to receive NMEA 0183 messages
and parses them directly. The NMEA Parser configuration menu includes the following parameters:

2.4. Input/Output 91

1x PDI Builder, Release 6.12.62

Fig. 95: NMEA Parser configuration

• Time out: Defines the period of incoming information from the external system.

• Feature: Variable extracted from the message defining the GNSS position. Usually Moving Object variables
are used.

• Utc: Variable extracted from the message defining the UTC.

• Fix: Data provided by the external device which is important to know the status of the positioning.

Once the NMEA message has been parsed, the variables used for Fix and Feature can be selected in the GPS External
configuration of the GNSS block as Fix Bit and GPS Position. For more information about this configuration, see
Sensors blocks - Block Programs section of this manual.

2.4.1.5 CAN wrapper/CAN unwrapper

The CAN wrapper and CAN unwrapper ports allow CAN communication via serial. For this, CAN wrapper creates
a message with a specific sequence which ensures the transmission of CAN message data; and CAN unwrapper undoes
this transformation to a regular CAN message.

The structure of the messages sent/received by the CAN wrapped and CAN unwrapped respectively is the following:

Fig. 96: CAN wrapper/unwrapper - Message structure

92 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Content Size
Matcher: 0xCA 1 byte
CAN ID 4 bytes
Data size 1 byte
Data N bytes
CRC 2 bytes

Note: For further details on how to use these ports, consult the CAN message transmission via serial - Integration
examples and the CAN message reception via serial - Integration examples sections of the present manual.

2.4.2 CAN Setup

A CAN (Controller Area Network) Bus is a robust vehicle bus standard widely used in the aviation sector. Autopilot
1x is fitted with two CAN buses that can be configured independently.

The structure of a CAN message can be seen in the following image:

Fig. 97: CAN message structure

Only the ID is introduced in the system, the rest of the message layout is already coded. The data field is the one build
by the user to send, and parsed when received.

The baud rate of both CAN buses can be configured in the Mailboxes panel.

The steps to be followed from the moment a CAN message arrives at or is sent from the Autopilot 1x are described in
the CAN communication - Integration examples section of this manual.

2.4.2.1 Configuration

This panel allows the configuration of communications between different devices.

2.4. Input/Output 93

1x PDI Builder, Release 6.12.62

Fig. 98: Configuration panel

In this panel, the user can find the same ‘columns’ (Priority, Producer, Consumer and Bit) as in the I/O Setup panel.
In addition, the process for configuring producers and consumers is also the same as described in the I/O Setup -
Input/Output section.

Regarding the Priority option, users should note:

• Connections that are automatically configured as high priority (checkbox marked) and cannot change to low
priority:

– Input filter 0-5→ CAN to serial 0-5
– Serial to CAN 0-5→ Output filter 0-5

• Connections that can be enabled as high priority (checkbox marked):

– CAN custom message 0-2→ Output filter 0-5
– CAN custom message 0-2→ CAN wrapper 0-1
– Input filter 0-5→ Output filter 0-5
– Input filter 0-5→ CAN wrapper 0-1
– Input filter 0-5→ CAN 4x
– CAN unwrapper 0-1→ Output filter 0-5
– CAN GPIO remote 0-1→ Output filter 0-5
– CAN GPIO remote 0-1→ CAN wrapper 0-1
– CAN 4x→ CAN to serial 0-5
– CAN 4x→ Output filter 0-5

94 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

– CAN 4x→ CAN wrapper 0-1
– CAN 4x→ CAN 4x

For some connections the priority option is not available due to computational burden.

Warning: In CAN, while the specified period is not guaranteed in the Low state, in the High state it is.

However, only those messages that are critical for external devices should be set as high priority, as this may
disrupt the proper functioning of Veronte Autopilot 1x.

On the one hand, Autopilot 1x has the producers shown below:

• Serial to CAN: Serial messages over CAN output, it has to be connected to I/O Setup consumer. It can be

configured in the configuration button (icon), a pop-up window will appear:

Fig. 99: Serial to CAN configuration

– Id: CAN Id must be set and it is used to identify messages. The value set has to be decimal format.
– Extended: If enabled, the frame format will be this, ‘Extended’, i.e. with a 29-bit identifier. Otherwise,

the frame format ‘Standard’ (11-bit identifier) is set by default.

– Time out: This is the threshold time between receptions to consider that it is not being received correctly.

• CAN custom message: CAN custom messages transmission. They are configured in the Custom message tabs,
explained in Custom Messages section.

• Input filter: CAN input filters. Those CAN messages received in one filter can no longer be received in

subsequent filters. Input filter must be configured in the configuration button (icon), a pop-up window
will appear:

Fig. 100: Input filter configuration

– Port: It is required to configure the CAN bus from which it listens, the user can choose between CAN A,
CAN B or BOTH.

2.4. Input/Output 95

1x PDI Builder, Release 6.12.62

– Id: CAN Id must be set and it is used to identify messages. The value set has to be decimal format.
– Mask: Here a CAN Id mask can be set to filter messages. The mask marks which bits of the message id

(in binary) are matched.

For example, to admit standard Ids (11 bits) from 8 to 11 (100 to 111 in binary) the user should set the
mask to binary 11111111100, that is 2044 in decimal.

Warning: Make sure that mask is set properly to be able to receive the desired CAN messages.

The mask should be 11 bits for Standard frame format and 29 bits for Extended frame format.

More information about this can be found in How to calculate a mask - FAQ section of this manual.

– Filter type: The options available are Standard, Extended and Both.

• CAN unwrapper: This undoes the ‘CAN wrapper’ action, it has to be connected to I/O Setup consumer.

• CAN GPIO remote: CAN messages to GPIO peripherals such as CEX, MEX and Arbiter. It can be configured

in the configuration button (icon), a pop-up window will appear:

Fig. 101: CAN GPIO remote configuration

– Period: This is the period of sending messages.

– Id of the generated CAN message: CAN Id must be set and it is used to identify messages.

– Extended: If enabled, the frame format will be this, ‘Extended’, i.e. with a 29-bit identifier. Otherwise,
the frame format ‘Standard’ (11-bit identifier) is set by default.

– Destination: Here the user select the destination CEX (or other Veronte peripheral) pins.

– Value: The user must select the 1x pin to be connected to the CEX (or other Veronte peripheral) pin.

• CAN 4x: CAN message transmission already configured for correct communication between the Autopilots
1x within the Veronte Autopilot 4x. If the user has any questions, please contact the support team following
the Joint Collaboration Framework.

On the other hand, the consumers are the following:

• CAN to serial: This undoes the ‘Serial to CAN’ action, it has to be connected to I/O Setup producer.

96 Chapter 2. Configuration

https://manuals.embention.com/joint-collaboration-framework/en/0.1/index.html

1x PDI Builder, Release 6.12.62

• Custom message: CAN custom messages reception. They are configured in the Custom message panels,
explained in Custom Messages section.

• Output filter: CAN output filters. The user can choose between CAN A, CAN B or BOTH in the configuration

button (icon).

Fig. 102: Output filter configuration

• CAN wrapper: CAN messages over serial output, it has to be connected to I/O Setup producer.

• CAN 4x: CAN message reception already configured for correct communication between the Autopilots 1x
within the Veronte Autopilot 4x. If the user has any questions, please contact the support team following the
Joint Collaboration Framework.

2.4.2.2 Custom Messages

In the custom message tabs (there are 3 available), the user chooses the variables to be sent/received over the CAN
buses. The following elements can be configured:

• TX Ini: Used to configure transmitted messages that are only sent once at the beginning of the operation (sent
when the autopilot boots up). They can be used to initialize some devices.

• TX: Used to configure transmitted messages.

• RX: Used to configure the reception messages (where they are stored).

Warning:
• The maximum capacity of a CAN message is 64 bits (8 bytes), so to send more information it must be

divided into several messages.

• Autopilot 1x has a CAN limitation of 40 TX messages per Custom, 40 TX Ini messages per Custom and
80 RX messages per Custom.

In addition, there is a limit shared with all Customs, including RS Custom Messages:
– Maximum number of vectors (fieldset): 104
– Maximum number of fields: 2000

2.4. Input/Output 97

https://manuals.embention.com/joint-collaboration-framework/en/0.1/index.html

1x PDI Builder, Release 6.12.62

Fig. 103: Custom Message panel

TX/TX Ini Messages

98 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 104: CAN Custom Message - TX

In order to add a new custom message the user needs to press and a new element will be added into the panel.

1. Period: This is the time in seconds between TX messages delivery.

2. Endianness: The endianness of the message must be configured, which indicates how the bytes that it contains
are sent/read:

• Big endian: Set the value from left to right.

• Little endian: Set the value from right to left.

• Mixed endian: Some devices use this format. If users need to configure it, please contact the support
team (create a ticket in the customer’s Joint Collaboration Framework; for more information, see Tickets
section of the JCF manual).

3. Can id: 11-bits (Standard) or 29-bits (Extended) ID used to identify TX messages. The value set has to be
decimal format.

4. Ext: If enabled, the frame format will be ‘Extended’, i.e. with a 29-bit identifier. Otherwise, the frame format
‘Standard’ (11-bit identifier) is set by default.

5. Copy: This message will be duplicated.

6. Edit : Displays the menu to configure how the bits/bytes of the message are divided and sent.

There are six different options that can be added when setting up a custom message: Variable, Checksum,
Matcher, Skip, Parse ASCII and Position.

The explanation of how to configure these different types of custom messages is detailed in the following section
⇒ Custom Messages types.

2.4. Input/Output 99

https://manuals.embention.com/joint-collaboration-framework/en/0.1/tickets/index.html

1x PDI Builder, Release 6.12.62

RX Messages
The procedure is similar to the one followed in TX messages.

Fig. 105: CAN Custom Message - RX

The options and parameters to configure here are almost the same as those described in TX/TX Ini Messages above,
except for one:

• Can id: The custom message needs to have the expected ID with which the external device/sensor is going to be
sending information.

Attention: It is important to configure a mailbox for every single reception ID. See Mailboxes section for
more information.

Also, unlike TX messages there is two additional variables per message:

• Time out: for RX messages. This is the threshold time between receptions to consider that it is not being received
correctly. For example, if time out is set to 1s and it passes more than 1s since the last reception, the Bit ID will
be set to false.

• Bit ID: The user bit selected in Bit ID box will be true if the message is being received correctly.

Warning: Pay attention that the user bit selected in Bit ID is not in use for another task.

The custom message structure needs to match the reception data-format. User variables (real - 32 bits , integer - 16
bits or boolean - 1 bit) may be used to store that data.

100 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

2.4.2.3 Mailboxes

Main screen to configure baudrate and reception mailboxes of each CAN bus (CAN A or CAN B) and enable an internal
CAN resistor.

Since Veronte Autopilot 1x is going to receive data on the CAN Bus, it is mandatory to configure a certain number of
mailboxes to store that data until Autopilot 1x reads it. A mailbox can be configured for multiple CAN message IDs
as long as the mask is configured correctly and these messages are sent spaced out with enough time between them to
allow the high priority core to read each one individually. More information on masks can be found in How to calculate
a mask - FAQ section of this manual.

Warning: Since 1x PDI Builder allows up to 32 mailboxes, users should make sure to leave at least one mailbox
free for transmission (TX).
If any mailbox is full and another message arrives, the new message is discarded.

Fig. 106: Mailboxes panel

In order to add a mailbox, press the icon.

The configurable parameters when adding a new mailbox are:

1. Mailboxes: Number of mailboxes assigned to that ID.

2. Extended: If enabled, the frame format will be this, ‘Extended’, i.e. with a 29-bit identifier. Otherwise, the
frame format ‘Standard’ (11-bit identifier) is set by default.

3. ID: 11-bits (Standard) or 29-bits (Extended) ID used to identify RX messages. The value set can be defined in
different units, this is configured in (5).

2.4. Input/Output 101

1x PDI Builder, Release 6.12.62

4. Mask: This filter is configured for reception messages; received data will be stored on mailboxes where message
ID coincides with mailbox ID.

Mask adds some flexibility on the reception, when comparing message with mailbox data, only the value of
binary digits configured as 1 on the mask will be taken into account. The value set can be defined in different
units, this is configured in (6).
For example, for a configuration mask: 11 000 and ID: 10 110, all incoming messages addressed to 10 XXX
will be received in this mailbox.

Warning: Make sure that mask is set properly to be able to receive the desired CAN messages.

The mask should be 11 bits for Standard frame format and 29 bits for Extended frame format.

More information about this can be found in How to calculate a mask - FAQ section of this manual.

5. Units ID: Units available are Decimal, Hexadecimal or Binary.

6. Units Mask: Units available are Decimal, Hexadecimal or Binary.

7. Baudrate: CAN Baudrate can be configured here.

Example
Regarding the configuration of masks for mailboxes, it is possible to have only 1 mailbox for the reception of several
messages in order to have more mailboxes available.

To do so, let’s take as an example the configuration in the image above, with ID: 0010 0101 1000 (600 in DEC) and
Mask: 1111 1111 1100, all incoming messages addressed to 0010 0101 10XX will be received in this mailbox.

This is because the mask that has been configured, looks for the first 10 bits to match the configured ID, and ignores
the last 2 bits.
So, the following messages with CAN ID 600, 601, 602 and 603 could be stored in this mailbox (one at time), because:

• 600 DEC in Binary is⇒ 0010 0101 1000
• 601 DEC in Binary is⇒ 0010 0101 1001
• 602 DEC in Binary is⇒ 0010 0101 1010
• 603 DEC in Binary is⇒ 0010 0101 1011

102 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 107: Mailboxes panel - Mask example

2.4.3 Custom Messages types

There are six different options that can be added when setting up a custom message: Variable, Checksum, Matcher,
Skip, Parse ASCII and Position.

2.4.3.1 Variable

Used to store certain nº bits in a system variable (RX) or to send a certain variable (TX).

Caution: Users must take into account that Veronte system can handle float variables up to 32 bits (single precision
float). Therefore, compression option must be considered to avoid data loss.

2.4. Input/Output 103

1x PDI Builder, Release 6.12.62

Fig. 108: Variable configuration - CAN Custom Message

The following parameters are configurable:

• Variable: Here the user select the desired system variable.

• Compression: The first step is to configure which kind of compression will be used for this variable:

– Uncompress: The variable is taken in its full length, with no value modification.

– Uncompress - 64 bits: Converts the selected variable type to a double precision float:

∗ Real variables (32 bits): In TX, uncompress from 32 to 64 bits. In RX, uncompress from 64 to 32
bits.

∗ Integer variables (16 bits): In TX, uncompress from uint 16 to float 64 bits. In RX, uncompress from
float 64 to uint 16 bits.

∗ Bit variables (1 bit): In TX, uncompress from 1 to 64 bits. In RX, uncompress from 64 to 1 bit.

Warning: Be careful! This transformation implies a loss of precision in both directions.

– Compress: Compress to the specified number of bits. Users have to specify it in the field Max of the
Encode parameter as follows: 2𝑛 − 1, where 𝑛 is the desired number of bits to use to send/receive the
variable.

Note that this value (Max field) is the maximum value that can be obtained with the desired number of bits
(𝑛).

Important: This is only available when Integer variables (16 bits) are selected.

– Compress - Decimals: The variable is compressed according to the number of decimals specified and
the range specified (max and min values). The resultant compression (number of bits) follows the relation
(𝑚𝑎𝑥−𝑚𝑖𝑛) · 10𝑑𝑒𝑐𝑖𝑚𝑎𝑙𝑠, which yields the encoding of the maximum value of the range (and the number
of bits necessary for that). The range needs to be specified on the Encode - Min/Max field.

– Compress - Bits Signed: Specify the number of bits to be compressed to (negative values accepted). It
is necessary that the user configures Encode/Decode options.

– Compress - Bits Unsigned: Specify the number of bits to be compressed to (no negative values accepted).
It is necessary that the user configures Encode/Decode options.

104 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Important: The compression options Compress - Decimals, Compress - Bits Signed and Compress - Bits
Unsigned are not available when an Integer variable (16 bits) is selected.

– Uncompress - 16 bits: Converts the selected variable type to a half precision float:

∗ Real variables (32 bits): In TX, uncompress from 32 to 16 bits. In RX, uncompress from 16 to 32
bits.

∗ Integer variables (16 bits): In TX, uncompress from uint 16 to float 16. In RX, uncompress from
float 16 to uint 16.

∗ Bit variables (1 bit): In TX, uncompress from 1 to 16 bits. In RX, uncompress from 16 to 1 bit.

• Encode/Decode: These values are used to apply a scaling factor after the transformation from binary to decimal
value, or before the transformation from decimal to binary value.

Note: If no compression is desired, the same values must be set in min/max Encode and min/max Decode. For
example, Encode min=0 / max=1 and Decode min=0 / max=1.

Example
In the example shown below, a real user variable (32 bits) is being used to receive data from an external device. This
data corresponds to the heading angle of the aircraft (which goes from 0 to 359 degrees). The device is sending this
information in a 16-bit data frame and the angle value times 100 (hence why the Decode parameter goes from 0 to
35900). This needs to be saved in 1x PDI Builder in the user variable in the range 0 to 359 (Encode).

Fig. 109: Variable configuration example

2.4.3.2 Checksum (CRC)

Sometimes, control codes are needed for preventing random errors in transmission, where a bits frame is operated
and the result is sent to the receiver to check it. To do so the CheckSum option is used.

2.4. Input/Output 105

1x PDI Builder, Release 6.12.62

Fig. 110: Checksum configuration - CAN Custom Message

• Type: User can choose the type of CRC that will be applied.

– Polynomial: Polynomial algorithm for CRC. Select from a list of predefined Embention CRC (CRC-Preset
option). This is the most used type.

– sum8: The CRC-8 algorithm (sum8) calculates an 8-bit checksum, which is used for error detection
purposes.

Basically, it processes the sum of all bytes from a sequency, and then performs a bitwise division by 255 to
retrieve the CRC result code.

– sumMod: The CRC module (sumMod) is a process to calculate a checksum, which is used for error
detection purposes.

It processes the sum of all bytes from a sequency, and uses a euclidian division by the module parameter
to obtain the CRC result code.

– Mavlink: Embention has implemented the Mavlink checksum, used only for Mavlink protocol
communications.

– 8-bit sagetech checksum: It is an owned checksum algorithm from Sagetech, that is used by Sagetech devices
for error detection purposes. It is based on Fletcher checksum.

The following parameters must be set independently of the type of checksum selected:

• Endianness: The endianness of the message must be configured, which indicates how the bytes that it contains
are sent/read:

– Big endian: Set the value from left to right.

– Little endian: Set the value from right to left.

– Mixed endian: Some devices use this format. If users need to configure it, please contact the support
team (create a ticket in the customer’s Joint Collaboration Framework; for more information, see Tickets
section of the JCF manual).

• Back From: Indicates that the CRC will be computed from the indicated byte (inclusive).

• Back To: Indicates that the CRC will be computed to the indicated byte (exclusive).

Explanation
– Byte 0 it is referred to the first byte of the Checksum block.

106 Chapter 2. Configuration

https://manuals.embention.com/joint-collaboration-framework/en/0.1/tickets/index.html

1x PDI Builder, Release 6.12.62

– The range of calculation of the CRC is defined by the ‘Back to’ and ‘Back from’ parameters. They define,
respectively, a number of bytes as an offset from the position of the CRC.

Fig. 111: Back to/Back from explanation

• Drop-down menu: User can choose the mode in which the CRC will be output:

– Binary mode
– ASCII as hexadeciaml values
– ASCII as decimal values

The specific parameters for each checksum type, will be described below:

2.4.3.2.1 Polynomial type

Fig. 112: Checksum configuration - Polynomial example

In addition to the ‘general’ parameters described above, one further parameter must be configured for this type of CRC:

• CRC - Preset: List of predefined Embention CRC, where fields nº Bits, Polynomial, Start Value, Final XOR,
Reflect In and Out are defined.

The last option is Custom, where all the above mentioned fields can be defined by the user. Check Polynomial
CRC online for more information.

– Bits: This defines the width of the result CRC value (nº bits).

– Polynomial: Used generator polynomial value.

– Start Value: The value used to initialize the CRC value / register.

– Final XOR: The Final XOR value is xored to the final CRC value before being returned. This is done after
the ‘Result Output’ step. Obviously a Final XOR value of 0 has no impact.

2.4. Input/Output 107

http://www.sunshine2k.de/coding/javascript/crc/crc_js.html

1x PDI Builder, Release 6.12.62

– Reflected Input: If this is enabled, each input byte is reflected before being used in the calculation.
Reflected means that the bits of the input byte are used in reverse order. So this also means that bit 0 is
treated as the most significant bit and bit 7 as least significant.

– Reflected Output: If this is enabled, the final CRC value is reflected before being returned. The reflection
is done over the whole CRC value, so e.g. a CRC-32 value is reflected over all 32 bits.

2.4.3.2.2 sum8 type

Fig. 113: Checksum configuration - sum8 example

In addition to the ‘general’ parameters described above, 3 further parameters must be configured for this type of CRC:

• Bits: This defines the width of the result CRC value (nº bits).

• CRC Extra: Extra CRC added at the end of the message, it will be required by the communication protocol
used.

• Reflected Output: If this is enabled, the final CRC value is reflected before being returned. The reflection is
done over the whole CRC value, so e.g. a CRC-32 value is reflected over all 32 bits.

2.4.3.2.3 sumMod type

Fig. 114: Checksum configuration - sumMod example

In addition to the ‘general’ parameters described above, 3 further parameters must be configured for this type of CRC:

• Bits: This defines the width of the result CRC value (nº bits).

• Module: This value is the dividend of the operation carried out.

• Direct:
– If enabled, sumMod retrieves the result code directly from the remainder of the division.

The mathical operation done is: 𝐶𝑅𝐶 %𝑚𝑜𝑑𝑢𝑙𝑒.

– If disabled, sumMod keeps the subtraction of the remainder of the division.

The mathical operation done is: 𝑚𝑜𝑑𝑢𝑙𝑒− (𝐶𝑅𝐶 %𝑚𝑜𝑑𝑢𝑙𝑒).

108 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

2.4.3.2.4 Mavlink type

Fig. 115: Checksum configuration - Mavlink example

In addition to the ‘general’ parameters described above, 2 further parameters must be configured for this type of CRC:

• CRC Extra: Extra CRC added at the end of the message, it will be required by the Mavlink protocol.

• Reflected Input: If this is enabled, each input byte is reflected before being used in the calculation. Reflected
means that the bits of the input byte are used in reverse order. So this also means that bit 0 is treated as the most
significant bit and bit 7 as least significant.

2.4.3.2.5 8-bit sagetech checksum

Fig. 116: Checksum configuration - 8-bit sagetech checksum example

In addition to the ‘general’ parameters described above, 2 further parameters must be configured for this type of CRC:

• Bits: This defines the width of the result CRC value (nº bits).

• CRC Extra: Extra CRC added at the end of the message, it will be required by the communication protocol
used.

2.4. Input/Output 109

1x PDI Builder, Release 6.12.62

2.4.3.3 Matcher

This option is used to send a constant value through the bus in TX or wait for a particular value in RX.

Fig. 117: Matcher configuration - CAN Custom Message

• Value: Sent/received value for the nº of bits defined below.

• Bits: Number of bits in which the matcher is performed.

• Mask: It is automatically set when the nº of bits is assigned.

For example, a matcher of 8 bits with a value of 9 will be reading/sending: 00001001.

2.4.3.4 Skip

This option is used to discard a certain number of bits from the message (the maximum number of bits that can be
skipped with a single “Skip” are 32).

This tool can be used when there are variables incoming that are from no interest for the user, not loading unnecessary
information into the system.

Fig. 118: Skip configuration - CAN Custom Message

110 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

2.4.3.5 Parse ASCII

Parsing ASCII is used when the ASCII protocol is required.

Fig. 119: Parse ASCII configuration - CAN Custom Message

ASCII protocol is used for transforming a character array into decimal values. For such task, the user needs to
define the following parameters:

• Variable:

– If used as TX, this variable is where the ASCII will be saved (“uncompress”).

– If used as RX, this is the read variable to be transformed into ASCII (“compress”).

• Char in inter part: The number of characters in the integer part.

• Char in decimal part: The number of characters in the decimal part.

• Division char: This is the division character (’.’, ‘,’, etc.)

2.4.3.6 Position

Position is used to input/output a data set with a particular format. When created, the user can only choose variables
from Features variables list.

2.4. Input/Output 111

1x PDI Builder, Release 6.12.62

Fig. 120: Position variables

The window display below is the configurable menu. The information stored is the WGS84 coordinates in the following
order: Latitude, Longitude and Height. All of them are stored with double precision.

Fig. 121: Position configuration - CAN Custom Message

• Feature: User can select from Features variables.

• Units: Units available are Radians, Degrees, Gradians and Custom.

• Factor: As radians are the unit that 1x PDI Builder works with, if another unit is selected, the conversion factor
between this unit and radians is automatically calculated.

112 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

2.4.4 Digital Input

Digital inputs can be used to measure pulse count, pulse widths and PPM signals from a RC radio. Each source shall
be connected to the desired consumer to allow measurements.

Fig. 122: Digital Input panel

In addition, in this menu the user can also find the same ‘columns’ (Producer, Consumer and Bit) as in the I/O Setup
panel. In addition, the process for configuring producers and consumers is also the same as described in the I/O Setup
- Input/Output section.

The process to configure a device can be done as follows:

1. Select and configure a Producer. There are 6 possible producers: CAP 0 - 5.

Press on the configuration button (icon) and a new pop-up window will show.

2.4. Input/Output 113

1x PDI Builder, Release 6.12.62

Fig. 123: Digital Input panel - Producer

The pop-up window contains the following configurable elements:

• Enable: By ticking this checkbox, the corresponding producer is enabled.

• CAP pin entry: Selects which pin this CAP is associated and, therefore, to which device is connected. It
is possible to select these pins. Pins available are GPIO 0 to 15, and EQEP A, B, S and I.

Note: When using the harness provided by Embention the transmitter Digital Input is connected to the pin
55 (EQEP_A) with pin 59 as Ground.

114 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 124: Digital Input panel - CAP

• Edge detection: How the pulses are read and transformed into a digital signal (how they are processed).

By clicking on the drop-down menu, the following options can be selected:

Fig. 125: Digital Input panel - Edge detection option

– First rising edge: With this option, when the rise of the pulse is detected, the data will start to be
stored. Recommended when consumer is PPM or Pulse.

– First falling edge: With this option, when the fall of the pulse is detected, the data will start to be
stored.

Note: By clicking on the arrows, it can also be configured as desired. For example, if the user has selected the ‘First
rising edge’ option, but clicking on the arrows gets the arrow scheme of the ‘First falling edge’ option, the name of the
edge detection will not be ‘First rising edge’, but will become ‘First falling edge’.

2.4. Input/Output 115

1x PDI Builder, Release 6.12.62

Fig. 126: Digital Input panel - Edge detection arrows

2. Click on the Bind button to select the type of Consumer, it is possible to choose among a PPM 0-3 (Stick PPM),
RPM 0-5 (RPM sensor) or Pulse 0-3 (Pulse).

Fig. 127: Digital Input panel - Consumer

• PPM 0-3 selected: PPM is configured in the Stick panel.

• RPM 0-5 selected: ‘RPM 0-5’ variables store the information read here. For more information on the
configuration of RPM, see the RPM section.

• Pulse 0-3 selected: ‘Captured pulse 0-3’ variables store the information read here. It is possible to

configure it clicking on the configuration button (icon):

116 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 128: Digital Input panel - Pulse

In the pop-up window, users will find the following options for configuration:

– Mode:

∗ Positive pulse duration: The period of the pulse is obtained. It takes the time in ‘High’ state.

∗ Negative pulse duration: The period of the pulse is obtained. It takes the time in ‘Low’ state.

Fig. 129: Positive/Negative pulse duration

∗ Positive duty cycle: The duty cycle. It takes the time in ‘High’ state.

∗ Negative duty cycle: The duty cycle. It takes the time in ‘Low’ state.

2.4. Input/Output 117

1x PDI Builder, Release 6.12.62

Fig. 130: Positive/Negative duty cycle

– Time out: This defines the time to consider that no signal is received.

– Function: Here the user can customize a function to handle the values. Normally, a function is set
with the points [0,0] and [1,1], so no transformation is applied, input = output. However, the user can
configure it as desired.

Example
Let’s imagine that First rising edge has been selected as the edge detection option in Producer and the pulse that 1x
has to read is a square signal with a period of 2 seconds and a duty cycle of 25% (see image below).

Fig. 131: Signal generated

On the other hand, if Positive pulse duration is selected as Consumer and it is configured as in the previous image
(Digital Input - Pulse), the value obtained in the variable Captured pulse (Captured pulse 1 in the following example)
will be 0.50s, this is because it is the period of the “Positive pulse” of that pulse.

However, if Positive duty cycle is selected as Consumer, the value obtained in the variable Captured pulse (Captured
pulse 2 in the following example) will be 0.25, this is because it is the positive duty cycle of that pulse.

118 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 132: Digital Input example

2.4.5 Serial

In this panel, users must configure the parameters of the different serial ports, Veronte LOS, RS485 and RS232, in their
corresponding tab.

However, as the parameters to be configured are shared across all serial ports, they are explained here:

Fig. 133: Serial menu - Veronte LOS panel

• Baudrate: This specifies how fast data is sent over a serial line.

Warning: Veronte Autopilot 1x has a buffer limit of 16 bytes, which is read every 1 ms. Therefore, if the
message is larger than 16 bytes, the maximum viable baudrate will be 160,000 bps.

2.4. Input/Output 119

1x PDI Builder, Release 6.12.62

If the configured baudrate is higher than 160,000 bps and the message is larger than 16 bytes, then Autopilot
1x will lose data. Nonetheless, if the message is smaller or equal to 16 bytes, then the baudrate will not have
this limitation.

• Length: This defines the number of data bits in each character: 4 to 8 bits.

• Stop: Number of stop bits sent at the end of every character: 1, 1.5, 2.

• Parity: Is a method of detecting errors in transmission. When parity is used with a serial port, an extra data bit
is sent with each data character, arranged so that the number of 1 bits in each character, including the parity bit.
Disabled, odd or even.

Note: All these settings are already specified for a given device, therefore, Autopilot 1x should match with them in
order to be able to communicate.

2.4.5.1 Veronte LOS

In this panel, the serial port that communicates from the microcontroller to the internal radio is configured.

Warning: If the user changes the baudrate on the internal radio, it is also required to change it here and vice versa.

2.4.5.2 RS485/RS232

Two serial interfaces are available with Autopilot 1x, 1 port RS-232 and 1 port RS-485, however more can be added
by using a CEX or MEX. Each one of the serial interfaces is associated with a set of pins.

Compatibility table:

Port name RS-232 RS-485
RS-422 RS-485

Transfer type Full duplex Full duplex Half Full duplex
Maximum distance 15 meters at 9600 bps 1200 meters at 9600 bps
Topology Point to point Point to point Multi point
Max number of devices 1 1-10 in receive mode 32

2.5 Control

In this menu all the parameters related to the control of the platform can be found. There are 3 panels, each one showing
a different menu of configuration.

120 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

2.5.1 Phases

In this panel, the flight phases that will control the aircraft at different stages of the operation are created (defined not
configured).

Fig. 134: Phases panel

To create a new phase click on Add phase, the user can then select a phase already created or create a new one.

2.5. Control 121

1x PDI Builder, Release 6.12.62

Fig. 135: Phases panel - Create phase

• To add a phase already created, select the desired phase and click Accept.
• By default, when a new phase is created, it is assigned with the consecutive ID.

However, if the user wants to create a new phase with a specific ID, the New phase ID option can be “unlocked”

by holding down until the process is fully completed (during the unlocking process this icon is
“painted”).

Once unlocked (when it appears as), the user can assign the desired ID to the new phase.

Finally, click Create and the new phase will be added to the list of phases.

122 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 136: Phases panel - New phase ID

Caution: When the user enters an ID that is already assigned to a phase, the following confirmation message
will appear:

Fig. 137: Phases panel - New phase confirmation message

Then, if the user presses ‘OK’, the existing phase will be removed and a new phase with the entered ID will
be added.

2.5. Control 123

1x PDI Builder, Release 6.12.62

In addition, by right clicking on the phase, the user can rename, copy or remove it:

Fig. 138: Phases panel - Phase options

Note: The configuration of the phases (guidance and control commands) is done in the Block Programs menu.

2.5.2 Modes

2.5.2.1 Modes

This tab allows the creation of custom flight modes. The flight modes determine who is in charge of controlling each
one of the aircraft control channels.

124 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 139: Modes tab

There are 4 different control modes and it is possible to combine them to create custom flight modes. The options
available are:

• auto: Automatic mode. The control channel is controlled totally by the autopilot.

• rc: Radio Control mode. The control is totally carried out manually. The movements on the pilot stick imply
directly movements on the servo linked to that control channel.

• arc: Arcade mode. The autopilot aids the radio controller during the flight, i.e it could be considered as a mix
between automatic and manual. The movements on the pilot stick are the input values on the control system, so
the pilot commands a desired pitch, roll, IAS, heading and so on, and is the control system who is in charge of
making the platform follow those commands.

• mix: In this mode, it is possible to select in which step of the controller will enter the pilot command.

Example
For example, the pitching of an aircraft is commonly controlled with 3 PID being: flight path angle, pitch and
pitch rate. In the arcade mode the pilot command will be a desired flight path angle that enters as input of the
whole control system, but in the Mix mode is possible to select where we want the command to enter, so the pilot
command could be pitch (entering in the second PID directly) or pitch rate (entering directly on the third PID).

The control system will take this input as a disturbance that it wants to discard because the final objective is to
match the input of the first PID (a desired flight path angle in this case), so the Mix mode can be used to make
small corrections when the aircraft is following a route for example, where we want it to move slightly towards
a certain direction by introducing a value directly on the roll PID.

To change any of this options, click on the cell the user would like to change and the next option will be set.

2.5. Control 125

1x PDI Builder, Release 6.12.62

Warning:
• The name of the mode does not have to correspond to the configuration of the mode.

For example, the user can name the mode as Auto but set the channels as rc (manual):

Fig. 140: Modes configuration

• Moreover, although the mode is set “sensefully” here, in the block configuration (Block Programs menu) the
control does not have to correspond to this.

For example, if a channel is configured as manual (rc) here but then the control is configured so that the stick
input does not control the channel, it will be auto control even though manual is specified. See the following
example, where for consistency, the blocks in the ‘True’ and ‘False’ cases should be inverted:

Fig. 141: Modes configuration in blocks

So, it is the user’s responsibility to build the configuration correctly. In case of having any questions, the
user should contact the support team (create a ticket in the customer’s Joint Collaboration Framework; for
more information, see Tickets section of the JCF manual).

126 Chapter 2. Configuration

https://manuals.embention.com/joint-collaboration-framework/en/0.1/tickets/index.html

1x PDI Builder, Release 6.12.62

2.5.2.2 4x Veronte

This tab allows the user to configure an Autopilot 1x to operate in an Autopilot 4x.

Fig. 142: 4x Veronte tab

• Arbiter address: By adding the arbiter address, Veronte Ops will recognise it as part of a 4x unit group, and it
will also be possible to do HIL simulations (with Veronte HIL Simulator) with this 4x group.

Note: If the arbiter address is set to 999, there is no arbiter.

• Period: Sending period of CAN 4x messages. For more information on the transmission of CAN 4x messages,
refer to the CAN Setup - Input/Output section of this manual.

• Enable output overwrite checkbox: Allows the output to be overwritten when checked.

By enabling it, a table can be created in which columns correspond to each Autopilot 1x and the CanID row to the ID of
the CAN message through which each Autopilot 1x communicates information with the other Autopilots 1x within the
Veronte Autopilot 4x. Each CAN Id is associated to the CAN 4x producer/consumer of the AP in which it is configured.
For more information on CAN 4x, refer to the CAN Setup - Input/Output section of this manual.

Important: This option must work in conjunction with the AP Selection block.

An example of configuration is presented below:

2.5. Control 127

1x PDI Builder, Release 6.12.62

Fig. 143: 4x Veronte panel - Example of use

So in this example, Autopilot 1x with address 4041 will share information with Autopilots 1x with addresses 4042
and 4043 via CAN messages with ID 10.

2.5.3 Arcade axis

Arcade axis panel enables the option of changing the center of the system axes. This option is used to create axis
systems referred to a certain point or direction, for example, it is useful when the pilot wants all movements to be made
with respect to them (Ground axes). In this way, if the pilot commands a right turn, the aircraft will turn to the right
relative to the pilot, rather than the right relative to the aircraft (Body axes).

128 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 144: Arcade axis panel

It is possible to add up to 5 axes systems, being able to choose between the following types:

• Body: Fix the axes in the UAV. It is standard for the pilot.

• Ground: Fix the axes in the 1x GND unit.

• Point: Fix the axes in a point that user defines.

• Heading: Fix the axes in the the heading defined.

• Desired heading: Fix the axes in the desired heading.

• Tangent direction: Fix the axes in the tangent direction of the designed path.

• Desired yaw: Fix the axes in the desired yaw.

An automation can be used to select an Arcade Axis in flight. For more information, check the Actions - Automations
section of this manual.

2.6 Automations

Automations are actions that are carried out when a combination of events happen, i.e when the events are accomplished
the action is done. An example of what an automation could be a change of phase when reaching a certain altitude and
speed, moving a servo when a button is clicked and many other possible combinations.

In this section all the possible events and action will be explained in detail, so the user can combine them to create the
automations that best suit their needs.

2.6. Automations 129

1x PDI Builder, Release 6.12.62

The following figure shows the layout of the automations menu, with a column for the events and another for the actions
linked to these events.

Fig. 145: Automations menu

All the automations that have been created (red) are a combination of events (blue) and actions (green). All actions
will be performed on event or an event combination triggering.

There are some parameters that can be configured in the events and actions menu and which are applicable
independently of the type of event/action configured.

130 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 146: Automations menu - Parameters

• Compliance time: It is a value related to the automations. It indicates how much time the event has to be
accomplished in order to trigger the action.

• Delay: It is the time between the triggering of the event and the beginning of the action.

• Periodical: If enabled, it allows to configure actions to take place periodically during the time that the events
are active.

– Period: Manually enter the desired periodicity for this action.

– Type: The action can be configured to take place each certain:

∗ Distance: When using distance, the option Vector allows to measure that distance along a direction
specified by that vector.

Fig. 147: Periodical distance configuration

∗ Time

2.6. Automations 131

1x PDI Builder, Release 6.12.62

Fig. 148: Periodical time configuration

– Mode: The two Modes available for both time and distance are fixed delay and fixed period. In order to
explain the difference between them, the following figure is presented as an aid to the user.

Fig. 149: Periodical modes

Let’s consider that the system evaluates the automations each second (black line), and the automation that
contains the periodical option is configured to be executed every 1.5 seconds (red line). In that case, the
first action will be triggered at the second 1.5 but will be evaluated at second 2. The second time that
the action is evaluated will depend on the mode, if it is selected:

∗ Fixed delay, the evaluation of the action will be done 1.5 seconds after it was evaluated the first time,
so that will be at second 3.5.

∗ Fixed period, the action will be evaluated 1.5 seconds after the first triggering (not evaluation) so
that would be at the second 3.

In the real praxis, the evaluation time for the automation is much lower than 1 second so the difference
between the modes is much smaller.

2.6.1 New automation

Warning: It is important to know that there is a limit of 500 events, 120 actions and 100 automations.

To create a new automation press New Automation and a new window will be displayed. First, users must add an
event by selecting a previous one (if it exists) or creating new one.

132 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 150: Automations menu - New event

• To add an event already created, select the desired event and click Accept.
• By default, when a new automation is created, it is assigned with the consecutive ID.

However, if the user wants to create a new automation with a specific ID, the New automation ID option can be

“unlocked” by holding down until the process is fully completed (during the unlocking process this icon

is “painted”).

Once unlocked (when it appears as), the user can assign the desired ID to the new automation.

Finally, click Create and the new automation will be added to the list of automations.

2.6. Automations 133

1x PDI Builder, Release 6.12.62

Fig. 151: Automations menu - New automation ID

Caution: When the user enters an ID that is already assigned to an automation, the following confirmation message
will appear:

Fig. 152: Automations menu - New automation confirmation message

Then, if the user presses ‘OK’, the existing automation will be removed and a new automation with the entered ID
will be added.

134 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

To add an action to the automation, press the icon and a new window will appear. Here, users can choose to either
select a previous action (if it exists) or Create a new one.

Fig. 153: Automations menu - New action

• To add an action already created, select the desired event and click Accept.
• By default, when a new action is created, it is assigned with the consecutive ID.

However, if the user wants to create a new action with a specific ID, the New action ID option can be “unlocked”

by holding down until the process is fully completed (during the unlocking process this icon is
“painted”).

Once unlocked (when it appears as), the user can assign the desired ID to the new action.

Finally, click Create and the new action will be added.

2.6. Automations 135

1x PDI Builder, Release 6.12.62

Fig. 154: Automations menu - New action ID

Caution: When the user enters an ID that is already assigned to an action, the following confirmation message
will appear:

Fig. 155: Automations menu - New action confirmation message

Then, if the user presses ‘OK’, the existing action will be removed and a new action with the entered ID will be
added.

136 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

When an automation is created, the following options are available:

Fig. 156: Automations menu - Automation options

1. The user can rename the automation with the name of their choice.

2. Use existing button : Select an action or event from the available in the system. When modifying an action
or event it will be modified in all automations where it is in use.

3. Clone button : Clone an existing action or event creating a new one with same parameters configured on
the start point.

By right clicking on an automation it is possible to remove it, clone it or change it of group. When a group is created,
the rest of automations that the user wants to add to the group can be done by drag and drop.

2.6. Automations 137

1x PDI Builder, Release 6.12.62

Fig. 157: Automations menu - Automations groups

Warning: When creating a clone of one automation, changes made in the event panel will be applied to the other
one and vice versa, while the actions can be different in each automation.

2.6.2 Other options

In the figure below, the user can see 2 additional options:

138 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 158: Automations menu - Other options

1. By clicking here, a phase transitions table will appear:

Fig. 159: Automations menu - Phase transitions table

In this table, the transitions between each phase can be visualized.

In addition, by clicking on a cell, users can see which automation (and the events) makes the transition between
the two phases possible.

2.6. Automations 139

1x PDI Builder, Release 6.12.62

Fig. 160: Automations menu - Automation example of phase transitions table

2. Delete unused events and actions: This option deletes those created events or actions that are not in use in any
automation.

2.6.2.1 Events

An event is a condition, or set of circumstances, that must occur to trigger determined actions. All the events can be
combined to create a custom event, using the boolean operations provided by the software (AND, OR, NOT).

140 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 161: Events options

The following table depicts the meaning of each one of the boolean operators.

Logics Description
AND All events grouped on an AND should be accomplished simultaneously in order to activate the

automation.
OR One of the events in the group should be accomplished for activating the automation.
NOT The event will be active meanwhile the event or event group is not accomplished.

When there is only one event, clicking on the boolean command will create another event linked to the other one
according to that operation. By right clicking on an event and selecting Wrap in allows the creation of an operation as
if it was inside brackets, i.e it will be evaluated first. Let’s consider the following event group as an example.

Fig. 162: Events wrapped

2.6. Automations 141

1x PDI Builder, Release 6.12.62

The first operation that is evaluated is the NOT, then the OR between Event2 and the result of the NOT, and finally the
AND between Event1 and the result of the OR.

When creating a new event it is possible to choose from one of the previously created on the system or to create a
new one.

Fig. 163: New event

• To add an event already created, select the desired event and click Accept.
• By default, when a new event is created, it is assigned with the consecutive ID.

However, if the user wants to create a new event with a specific ID, the New event ID option can be “unlocked”

by holding down until the process is fully completed (during the unlocking process this icon is
“painted”).

Once unlocked (when it appears as), the user can assign the desired ID to the new event.

Finally, click Create and the new event will be added.

142 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 164: Automations menu - New event ID

Caution: When the user enters an ID that is already assigned to an event, the following confirmation message will
appear:

Fig. 165: Automations menu - New event confirmation message

Then, if the user presses ‘OK’, the existing event will be removed and a new event with the entered ID will be added.

2.6. Automations 143

1x PDI Builder, Release 6.12.62

The user can also rename the event with the name of his choice.

Fig. 166: New event - name

The different types of events that can be created are presented below.

2.6.2.1.1 Alarm

This kind of automation allows the user to add any bit of the system as an alarm. Depending on the mode in which it
is configured, it will be activated in one way or another.

144 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 167: Alarm event

The two possible modes are the following:

• Fail one: it is triggered when one of the bits is set to false.

• All ok: it is triggered when all bits are set to true.

A common alarm event is the Position not fixed in fail one mode, which is triggered when there is not GPS signal in
the autopilot.

2.6. Automations 145

1x PDI Builder, Release 6.12.62

2.6.2.1.2 Area

The event is triggered when the aircraft is inside or outside an area defined in the mission. For more information on
mission creation, take a look at the Veronte Ops manual.

Fig. 168: Area event

• Type: Inside or Outside.

• Object of interest: The user has to select which object is the one that should fulfill the event.

• Selected areas: To select an area, first define the desired areas (prims, cylinders or spheres) in the Operation
elements panel of the UI menu.

When the event has been labeled (“Event area” in this case) and saved, it is possible to link it to an area drawn on the
map with the Operation panel (see more about this at the Veronte Ops manual) .

146 Chapter 2. Configuration

https://manuals.embention.com/veronte-ops/en/6.12/index.html
https://manuals.embention.com/veronte-ops/en/6.12/index.html

1x PDI Builder, Release 6.12.62

2.6.2.1.3 Button

This option creates a button in Veronte Ops software that will trigger the action when it is clicked.

Fig. 169: Button event

The following options are available:

• Icon: The user can select the most appropriate icon for the event from a list of icons provided by the software.

• Time Control: This functionality estabilshes the time the button must be pressed to trigger an action.

Note: The time must be specified in seconds.

• Confirmation: A pop-up window asking for confirmation will be displayed after pushing the button, so it is a
safety measure.

• Range variable and range colors options are used to make the button change its color according to the value of a
variable. To do that, select a variable and then indicate as many points as desired, each one with its corresponding
value and color.

Warning: For the buttons to be colored, it is necessary that the chosen variables have been added to the
mandatory telemetry, adding it to the complementary telemetry is not sufficient.

2.6. Automations 147

1x PDI Builder, Release 6.12.62

Note:
• If a button event triggers an action that consists of a change to a determined phase, the button will be displayed

in the Veronte Panel of Veronte Ops with the name of that phase on it.

– To create the button for changing to a determinated phase, it is only needed to link the button event to the
corresponding ‘Phase’ action.

• If the button event is linked to a different action (servo movement, variable, etc.), it can be displayed both in the
Veronte Panel and as a independent Action button input.

2.6.2.1.4 Mode

The event is triggered when the aircraft is in one of the modes selected.

Fig. 170: Mode event

These modes have been created previously. See section Modes, for more information about creating modes.

The compliance time option could be interesting in this type of event.

148 Chapter 2. Configuration

https://manuals.embention.com/veronte-ops/en/6.12/panels/workspace/main/index.html#veronte-panel
https://manuals.embention.com/veronte-ops/en/6.12/panels/workspace/inputs/index.html#action-button

1x PDI Builder, Release 6.12.62

2.6.2.1.5 Phase

The event is triggered when the aircraft is in the phases selected by clicking on , being in any of them will trigger
the action.

Fig. 171: Phase event

These phases have been created previously. See section Phases, for more information about creating phases.

2.6.2.1.6 Route

This event is related with the patches and marks defined by the user in the Operation elements panel of the UI menu
and to those created in the mission (in Veronte Ops, see more about the creation of marks and patches in the Veronte
Ops manual).

2.6. Automations 149

https://manuals.embention.com/veronte-ops/en/6.12/index.html
https://manuals.embention.com/veronte-ops/en/6.12/index.html

1x PDI Builder, Release 6.12.62

Fig. 172: Route event

The following options are available:

• Activation: The user can choose between two modes in this event.

– Fly to waypoint: Triggers the action when the platform is flying towards that waypoint (patch).

– Mark achieved: Triggers the action when the vehicle has reached the selected mark.

• Selected marks/points: To select a mark/waypoint (patch), first define it in the Operation elements panel of the
UI menu.

• Icon and color: It is possible to change the appearance of the waypoint, selecting an icon from the icon list and
a color, so the user can identify easily the waypoint linked to that automation.

2.6.2.1.7 Timer

This event will check the status of the timer selected in the menu. That timer should have been previously configured
on the action side of another automation (action type Periodical).

150 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 173: Timer event

In the Timer parameter, users must select the number that identifies the timer (previously created with the periodical
action) that is evaluated in this event.

For example, if it is desired to take a photo 10 seconds after the takeoff, two automations are required:

1. The first automation should have the event of Phase Take Off, with the correspondent Periodical action that
will start a timer that lasts 10 seconds.

2. The second one should have a Timer event with the timer previously created and then an action to take a photo
when the timer event is triggered.

2.6. Automations 151

1x PDI Builder, Release 6.12.62

2.6.2.1.8 Variable

This event is triggered when a variable selected is between a range established.

Fig. 174: Variable event

• Variable: The user can select the variable to be evaluated.

• Max/Min: Maximum and minimum values of the threshold are established here. Custom threshold can be
established by clicking on the icon.

• Invert range: This option will change the interval (the blue area will be gray, and the gray one will be blue).

As an example consider the event of the figure. With that parameters, the event is triggered when the IAS is between
5 and 20 meters per second. If the invert range option is unchecked, the event will be triggered when the IAS is lower
that 5 m/s or greater than 20 m/s.

152 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

2.6.2.2 Actions

An action is a specific task, operation, or set of activities that will be performed when the event (or group of events)
has been accomplished. The actions box contains all the created actions.

The user can also rename the action with the name of their choice.

Fig. 175: Actions menu

When creating a new action it is possible to choose from one of the previously created on the system or to create a
new one.

2.6. Automations 153

1x PDI Builder, Release 6.12.62

Fig. 176: New action

• To add an action already created, select the desired event and click Accept.
• By default, when a new action is created, it is assigned with the consecutive ID.

However, if the user wants to create a new action with a specific ID, the New action ID option can be “unlocked”

by holding down until the process is fully completed (during the unlocking process this icon is
“painted”).

Once unlocked (when it appears as), the user can assign the desired ID to the new action.

Finally, click Create and the new action will be added.

154 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 177: Automations menu - New action ID

Caution: When the user enters an ID that is already assigned to an action, the following confirmation message
will appear:

Fig. 178: Automations menu - New action confirmation message

Then, if the user presses ‘OK’, the existing action will be removed and a new action with the entered ID will be
added.

2.6. Automations 155

1x PDI Builder, Release 6.12.62

The different types of actions that can be created are presented below.

2.6.2.2.1 Atmosphere calibration

This action allows the atmosphere calibration in the same way as shown in the Operational panel of Veronte Ops (for
more information about atmosphere calibration, see Veronte Ops manual).

Fig. 179: Atmosphere calibration action

The following options can be configured:

• Altitude: Actual MSL altitude. The user must choose between entering this value manually or selecting a system
variable.

• User current pressure: By enabling it, the static pressure will be read from the static pressure sensor during the
specified time (Time to acquire mean).

• Static pressure: If the above option is not enabled, the actual static pressure should be specified manually.

• Temperature (OAT): Outside air temperature.

156 Chapter 2. Configuration

https://manuals.embention.com/veronte-ops/en/6.12/index.html

1x PDI Builder, Release 6.12.62

2.6.2.2.2 Change active sensor

This option allows changing the current selected and default sensors used as IMU (accelerometer and gyroscope) and
dynamic pressure.

Fig. 180: Change active sensor action

• Sensor type: Select the type of sensor to be changed with this action: Accelerometer, Dynamic pressure or
Gyroscope.

Depending on the Sensor type selected, the following parameters change:

• For Accelerometer and Gyroscope:

– Def. Sensor: A default sensor must be chosen. If all selected sensors fail, the measurement value will be
that of the default sensor.

– : By clicking here, users can add the selected sensors of their choice.

2.6. Automations 157

1x PDI Builder, Release 6.12.62

Fig. 181: Change active sensor action - Select sensor

Note: The behavior of the default and selected sensors is the same as described in the Sensors section of this
manual.

• For sensor type Dynamic Pressure:

– Selected: Users must choose the dynamic pressure sensor to switch to.

2.6.2.2.3 Command block

This action allows the user to configure a gimbal or to trim a radio controller.

Note: This action is disabled by default when Autopilot 1x is started. To activate it, the user have to create a gimbal
block or an arctrim block (see more information about it in the Block Programs section of this manual).

158 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 182: Command block action

Gimbal
When this action is triggered, the gimbal control is enabled. There are several control modes that are explained below.

2.6. Automations 159

1x PDI Builder, Release 6.12.62

Fig. 183: Command block action - Gimbal

• Commandable Id: Id of the commandable Gimbal block (users can look up this Id in the block to be commanded,
in the Gimbal - Devices blocks of the Block Programs menu).

• NED: Control using NED axis, defining the initial position through azimuth and elevation.

• Vector: This control uses aircraft body axis. The initial position is defined through roll and tilt.

• Vector NED: In this case the axis should have been defined in the Arcade axis panel of the Control menu.

• Location: The gimbal will point towards the projection on the ground at the specified point.

• Command mode: Gimbal control is done externally, e.g. via VCP commands.

ArcTrim
This action trims the radio controller, i.e sets as zero the current sticks positions.

160 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 184: Command block action - ArcTrim

• Commandable Id: Id of the commandable ArcTrim block (users can look up this Id in the block to be
commanded, in Arc Trim - Servos blocks of the Block Programs menu).

• Update the arcade trim values: If this option si enabled, the stick is trimmed but not saved in the configuration.
This means that if Autopilot 1x is restarted the trimming is lost.

• Save the arcade trim values calculated: Trim values are stored for future flights.

2.6.2.2.4 Custom CAN TX

When this action is triggered, a previously configured CAN message is sent through the CAN bus. The message has to
be configured in Custom message panel of the Input/Output menu.

Warning: As this automation is used to send a single message on demand, in its configuration in Custom
Messages, the user has to set its period to -1. This way, this message will only be sent when this action is
triggered.

2.6. Automations 161

1x PDI Builder, Release 6.12.62

Fig. 185: Custom CAN TX action

The two parameters to configure in this action are:

• Producer: The user has to specify where the custom message is located: CAN custom message 0, 1 or 2.

• Custom Message: The number of the custom message that will be sent.

2.6.2.2.5 Custom Serial TX

When this action is triggered, a previously configured serial message is sent through the serial port (RS232 or RS485).
The message has to be configured in Serial custom messages panel of the Input/Output menu.

Warning: As this automation is used to send a single message on demand, in its configuration in Custom
Messages, the user has to set its period to -1. This way, this message will only be sent when this action is
triggered.

162 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 186: Custom Serial TX action

The two parameters to configure in this action are

• Producer: The user has to specify where the custom message is located: RS custom message 0, 1 or 2.

• Custom Message: The number of the custom message that will be sent.

2.6.2.2.6 DEM calibration

This option allows the calibration of the digital elevation model by setting the actual AGL value in the same way
as shown in the Operational panel of Veronte Ops (for more information about DEM calibration click Veronte Ops
manual).

2.6. Automations 163

https://manuals.embention.com/veronte-ops/en/6.12/index.html

1x PDI Builder, Release 6.12.62

Fig. 187: DEM calibration action

2.6.2.2.7 Enable/Disable Wind Estimation

This action allows the user to enable or disable the wind estimation.

164 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 188: Enable/Disable Wind Estimation action

The following parameters can be configured:

• Enable Wind Estimation: Enabled/Disabled.

• Init: By enabling it, an initial wind vector can be set to a faster convergence of the estimation.

– North, East, Down: Inital wind vector.

2.6.2.2.8 FTS-Activation

This action activate the flight termination system (FTS) bit.

2.6. Automations 165

1x PDI Builder, Release 6.12.62

Fig. 189: FTS-Activation action

In an Autopilot 4x, when two or more autopilots activate their FTS the arbiter can activate a safe system such as a
parachute.

2.6.2.2.9 Feature

When this action is triggered, a position is stored in the desired variable. This position can be absolute or relative (in
the figure below the current position of the aircraft would be saved):

166 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 190: Feature action

The following options should be configured:

• Value: Specified the position to be stored, this position can be absolute or relative.

– Absolute: The coordinates can be set in UTM, MGRS, Decimal Degrees or Degress º ” ‘. They are
indicated through the latitude, longitude and altitude (being possible to define this last one with respect
to the ellipsoid, WGS84, to the sea level, MSL or to the ground, AGL).

– Relative: In this case, the position of the point is relative to another point. That point could be any platform
fitted with an Autopilot 1x.

• Save value in: The position has to be saved in an ‘Inflight Reference Point’.

• Type: There are 2 types of features:

– Fixed: Once the point has been generated it remains fixed.

– No change: If the point has been created relative, it remains relative all the time.

Note: This option only appears when the position has been previously defined as Relative.

This action is very useful for storing the take-off point for later landing at the same place.

2.6. Automations 167

1x PDI Builder, Release 6.12.62

2.6.2.2.10 Format SD

Warning: This action will have irreversible effects on your Autopilot 1x. Formatting the SD card will delete
important and mandatory files for the correct functioning of Autopilot 1x.

In order to recover a formatted, please contact the support team (create a ticket in the customer’s Joint
Collaboration Framework; for more information, see Tickets section of the JCF manual).

This action will format the SD card, deleting the configuration and flight logs from it.

Fig. 191: Format SD action

168 Chapter 2. Configuration

https://manuals.embention.com/joint-collaboration-framework/en/0.1/tickets/index.html

1x PDI Builder, Release 6.12.62

2.6.2.2.11 Go to

This action is used to make the aircraft go to a patch created by the user with the mission toolbar of Veronte Ops. For
more information about the mission toolbar, take a look at the Veronte Ops manual.

Fig. 192: Go to action

In this action two parameters can be configured:

• Select Point: To select point (patch), first define it in the Operation elements panel of the UI menu.

• Icon and color: It is possible to change the appearance of the point, selecting an icon from the icon list and a
color, so the user can identify easily the point linked to that automation.

Once the action is triggered, the vehicle will go to that patch. If the patch is on a route, the vehicle will follow the
selected patch and then it will continue the route going to its adjacent.

2.6. Automations 169

https://manuals.embention.com/veronte-ops/en/6.12/panels/mission/index.html

1x PDI Builder, Release 6.12.62

2.6.2.2.12 Mode

The flight mode is changed to the one specified in this option.

Fig. 193: Mode action

These modes have been created previously. See Modes - Control section, for more information about creating modes.

2.6.2.2.13 Navigation

This action is used to change the navigation mode used by the aircraft.

By default, the UAV uses an Internal sensor fusion algorithm, but for example, if the GPS fails, the Autopilot 1x
switches to inertial navigation. Since in this type of navigation, the estimation of position and velocity diverges over
time, if that happens, it is advisable to switch to another type of navigation (External).

Note: This behavior is not specific to Veronte Autopilot 1x, it is common to all inertial navigations.

The navigation without GPS will make the aircraft fly stable but it will not be possible to command a path to follow
during that time, so this action can be used as a safety mode to avoid a malfunction of the system when the GPS signal
is lost.

170 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 194: Navigation action

The options available are:

• Internal: Uses internal data for navigation. Data (position, attitude, etc.) is processed into 1x unit from sensor
measures.

• External VCP: Uses external data for navigation. Data (position, attitude, etc.) is provided by Veronte
Communication Protocol (VCP).

• External Var: Uses external data for navigation.

– It takes directly the attitude, velocity and acceleration data of the following real variables from the
memory:

∗ ID 259: External yaw

∗ ID 260: External pitch

∗ ID 261: External roll

∗ ID 262: External roll rate

∗ ID 263: External pitch rate

∗ ID 264: External yaw rate

∗ ID 265: External veloctiy north

∗ ID 266: External velocity east

∗ ID 267: External velocity down

2.6. Automations 171

1x PDI Builder, Release 6.12.62

∗ ID 268: External acceleration x body axis

∗ ID 269: External acceleration y body axis

∗ ID 270: External acceleration z body axis

∗ ID 271: External GPS Time of Week

– Position data is read from the Moving Feature 00.

• Vectornav VN-300: Uses external data for navigation. Data (position, attitude, etc.) is provided by Vectornav
VN-300. For more information, see the Vectornav VN-300 - Integration examples section of this manual.

2.6.2.2.14 Obstacle avoidance

This action enables avoidance of any obstacle previously created in Veronte Ops (for more information, see Veronte
Ops manual).

Fig. 195: Obstacle avoidance action

2 types of obstacles can be enabled:

• Designated on map: By activating this option Veronte Autopilot 1x attempts to avoid all obstacles on the map
which may include prisms, cylinders, etc., as well as aircraft received by ADS-B.

• Detection sensor: Obstacles previously defined in Veronte Ops.

172 Chapter 2. Configuration

https://manuals.embention.com/veronte-ops/en/6.12/index.html
https://manuals.embention.com/veronte-ops/en/6.12/index.html

1x PDI Builder, Release 6.12.62

2.6.2.2.15 Output

This action is used to set an output value in a GPIO pin. The output pin must have been configured as a GPIO output
(visit GPIO - Connections section of this manual).

Fig. 196: Output action

The user can select, in the drop-down menu, between a GPIO output or a virtual output. The virtual option works like
a normal GPIO output, but physically this output is not in the autopilot. It is used, for example, with a CEX.

There are four possible output signals:

• Off : Provides continuous 0V output.

• On: Provides continuous 3.3V output.

• Pulse: Provides 3.3V for the specified time and after that 0V.

• Pulse off : Provides 0V for the specified time and after that 3.3V.

2.6. Automations 173

1x PDI Builder, Release 6.12.62

2.6.2.2.16 Periodical

This action is used to set a timer during a flight operation.

Fig. 197: Periodical action

The following parameters are configured:

• Timer: This parameter is an identifier for the timer, so it can be used in an event for another automation.

• Run: Sets the timer status:

– Run: The timer will start.

– Stop: The timer will be stopped. Another automation should be created to run it again.

• Reset: When this action is active, the timer is reset to zero before starting to measure.

– Stop + Reset: The timer will be stopped and set back to zero.

• Type: These available options have been previously explained in Automations.

• Mode: The difference between fixed delay and fixed period has been previously explained in Automations.

For a better understanding of this action, a set of examples are detailed below with possible combinations of the different
options.

• Run + Distance/Time + Continuous: When the action is triggered, the timer will be started and will measure
distance/time from that instant until the moment when the autopilot is turned off (or until another automation
acts on the same timer).

174 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

• Run + Distance/Time + Fixed Delay/Period: Once the action has been triggered, the timer will start to measure
a distance/time. Each time the value indicated in Period is reached, the event linked to this timer (in another
automation) will be triggered.

For example, if the user wants to take a photo each 25 meters, in a first automation, the timer should have Distance
in the Type option and 25 meters in Period, then in the second automation, an event of type Timer is created (and
linked with the timer before created), so each time the timer reaches 25 meters the event will be triggered and
the action will be carried out.

• Distance + Vector: The distance is measured in the direction indicated by the vector.

2.6.2.2.17 Phase

The flight phase is changed to the one selected in this action.

Fig. 198: Phase action

These phases have been created previously. See Phases - Control section, for more information about creating phases.

2.6. Automations 175

1x PDI Builder, Release 6.12.62

2.6.2.2.18 Ports

This action allows the user to switch between 4 pre-set configurations defined in the Ports panel of the Communications
menu.

Fig. 199: Ports action

2.6.2.2.19 Run block program

When this action is triggered, the block program specified in the “Execute” label is executed.

176 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 200: Run block program action

This action can run those programs that have the lightning icon in grey color as those programs with the lightning icon
in black color run continously. For more information about programs, see section Block Programs.

2.6. Automations 177

1x PDI Builder, Release 6.12.62

Fig. 201: Grey lightning icon

2.6.2.2.20 Safety Bits

This action selects a predefined safety bits list.

178 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 202: Safety Bits action

This list must be previously configured. For more information about this, see Safety bits - Safety section of this manual.

2.6.2.2.21 Select Arcade axis

The axes system of the aircraft is changed to one that has been previously created in the Arcade Axis panel of the
Control menu.

2.6. Automations 179

1x PDI Builder, Release 6.12.62

Fig. 203: Select Arcade axis action

2.6.2.2.22 Stick priority

The user can switch between the two priority tables of the Stick block (for more information about the stick block, see
Block Programs section of this manual). By default priority table 0 is selected when Autopilot 1x starts.

180 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 204: Stick priority action

2.6.2.2.23 Terrain obstacle

This action is used to cause the aircraft to climb when it is reaching the ground (normally an altitude of zero metres),
acting in the same way as an obstacle, with a vertical repulsion.

Caution:
• This only prevents “vertical” collisions.

• This option cannot be activated all the time because it will not allow the aircraft to land.

2.6. Automations 181

1x PDI Builder, Release 6.12.62

Fig. 205: Terrain obstacle action

• Enable/Disable: When this option is enabled, the ground + an offset (Distance) is considered an obstacle, in the
same way as those that can be defined from Veronte Ops. For more information on obstacles, please refer to the
Set Obstacle (Sphere item) - Mission section of the Veronte Ops user manual.

• Distance: Establishes the distance between the ground and the edge of the imaginary obstacle. The repulsion
generated will be inversely proportional to the distance of the uav to this edge, being maximum when the uav is
directly over the edge.

Important: The distance at which the repulsion starts will be inversely proportional to the acceleration set in the
“Obstacles/Geofencing” configuration tab of the Envelope block.

2.6.2.2.24 Track

This action is used to configure a hover/loiter route (depending if it is a multicopter or an airplane) for the platform.
Besides, there exists an option to follow a moving object.

There are 3 different options for the Track action, selecting Disabled no action will have effect on the guidance. The
others are explained below.

Position
The aircraft will loiter/hover in a selected point.

182 Chapter 2. Configuration

https://manuals.embention.com/veronte-ops/en/6.12/panels/mission/operation/index.html#sphere-sphere

1x PDI Builder, Release 6.12.62

Fig. 206: Track action - Position

The following options are available:

• Location:

– Selecting Current will make the platform to hover over the position that the vehicle has when this action
is triggered, or loiter around that point in a circular route.

– The box Longitude, Latitude allows the user to select the point where the hover/loiter will be performed.

• Loiter: It is also possible to select the direction of the loiter (Auto, Clockwise and Anticlockwise).

• When Hover is selected the option Direct can be enabled.

– If direct is enabled, the autopilot will calculate the control actions to reach the desired point based on the
position error with that point.

– If direct is disabled, the autopilot will trace a path to the desired point and calculate the necessary control
actions for this ‘new route’.

• Distance:

– Distance + Loiter: In this case, distance indicate the radius of the loiter circular route.

– Distance + Hover: This option allows the user to define an acceptance radius around the position of the
hover center. If the UAV position is inside this circle, then Autopilot 1x considers it is hovering correctly
and will keep the position. If the center of the hover changes its position and the UAV position is out of the
hovering area, 1x will fly to the hovering center, and once it is inside the circle, the hover will start.

2.6. Automations 183

1x PDI Builder, Release 6.12.62

Follow Leader
The platform will follow a moving object.

Fig. 207: Track action - Follow Leader

In this action the following parameters can be configured:

• Leader: Here is selected the object to follow, e.g. Moving Object.

• Distance to leader: Distance to leader over trajectory.

• Distance between points: Leader route is generated by points separated by the distance specified here.

• Offset: User can establish offset parameters related to trajectory in Body or NED coordinates.

Note: To configure correctly this automation, the user has to follow the next steps:

• Configure Telemetry in Air and Ground units.

• Configure the automation as desired.

184 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

2.6.2.2.25 User Log

An entry, previously configured in the User Log panel of the Telemetry menu, is added to the on-board log.

Fig. 208: User Log action

2.6.2.2.26 Variable

This action allows the user to select variables or enter values and store them in user variables.

2.6. Automations 185

1x PDI Builder, Release 6.12.62

Fig. 209: Variable action

2.6.2.2.27 Yaw

When this action is triggered, the current yaw will be set to the one configured here.

186 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 210: Yaw action

This action is useful when flying without a magnetometer, as the user can establish the current yaw value when it is
known.

2.7 Communications

2.7.1 Ports

Ports configuration allows the user to configure which communication ports (Commgr Ports in I/O Setup) will be used
for communication. When using the Route feature, Autopilot 1x can be configured to route VCP messages for an
external Veronte device with a known address (ID) through a given port.

2.7. Communications 187

1x PDI Builder, Release 6.12.62

Fig. 211: Ports panel

Each of the different ports can be configured as either of the following options:

• Forward: Any messages generated by this unit (i.e. Telemetry or response messages to certain commands) will
be sent through these ports.

• Route: Any messages received at any Commgr Port with the defined address will be re-sent through the defined
port. It is possible to route several addresses through the same port, but is not possible to route the same address
through several ports. Only the first configured port will be used. Routing also applies to messages generated by
the unit for the defined address.

Note: The same port cannot be used as Forward and Route at the same time.

It is possible to define up to 4 routing setups, which can be switched unsing the Ports action of the Automations menu.
Routing 0 will always be selected by default when booting Autopilot 1x.

Application example
A practical example of the use of this menu are 1x ground unit configurations. These configurations should have
configured a Routing of Address 2 (Veronte applications, in this case Veronte Ops) through the Commgr port to
which the USB consumer is connected (to allow connection to the PC). In this example, Port 0 producer is the one
connected to USB consumer.

188 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 212: Ports panel - I/O Setup configuration

This way, any messages that are received through a Commgr Port (i.e. through Veronte LOS) with address 2, will
be re-routed through Port 0 (USB) and received by Veronte Ops software, including any messages generated by 1x
ground unit itself.

Warning: An incorrect Port configuration can disable USB communication. If this happens, 1x will not be
able to be detected through Veronte Link software. If this is the case, please visit Forcing maintenance mode -
Troubleshooting section of the 1x Hardware Manual.

2.7.2 4G

Checking the Enable box will enable the use of 4G communication through the Veronte LTE Consumer/Producer in
the I/O Setup.

Warning: Be careful when configuring 4G communication on the Veronte Autopilot 1x as the configurations for
Autopilots 1x with hardware version 4.8 and for Autopilots 1x hardware version 4.5 are not compatible.

ESIM
The embedded ESIM in Autopilot 1x allows the user to send and receive telemetry using a commercial data provider.

The connection between the air unit and the ground station is established through the Veronte Cloud server. To connect
with Veronte Cloud the following parameters have to be set:

• Host: rt.utm.systems

2.7. Communications 189

https://manuals.embention.com/1x/en/4.8/troubleshooting/index.html#forcing-maintenance-mode
https://manuals.embention.com/1x/en/4.8/troubleshooting/index.html#forcing-maintenance-mode

1x PDI Builder, Release 6.12.62

• Port: 3114

Host and Port can be changed if the used server differs from Veronte Cloud, but the communication protocol does not
change.

Fig. 213: 4G panel - ESIM

Note: In order to use the embedded SIM card, the contract with the data supplier needs to be done through Embention.
Please contact sales@embention.com for more information on availability, coverage, suppliers and prices in your
country.

SIM
If needed it is also possible to install a custom SIM card on Autopilot 1x. PIN number and APN (Access Point Name)
of the SIM card provider must be defined before enabling the 4G communication

190 Chapter 2. Configuration

mailto:sales@embention.com

1x PDI Builder, Release 6.12.62

Fig. 214: 4G panel - SIM

Warning:
• Introducing the wrong PIN number may block the SIM card.

• The installation of the SIM card must be done by Embention during the production of the unit. Please make
sure to indicate the interest on using a Custom SIM card when ordering new 1x units.

2.7.3 Comstats

The Comstats feature allows Autopilot 1x to make an estimation of the overall quality of the communication channel.

1x will send periodically (If enabled) a message with its current communication statistics (packets sent and received
per second). Then, any other 1x unit can receive this information and compare against its own statistics to estimate the
average amount of packets lost in the communication.

The results of this estimation can be monitored in variables RX Packet Error Rate (ID 2000) and TX Packet Error
Rate (ID 2001). These variables can be used to enable, for example, failsafe actions in case of degradation or loss of
communications.

2.7. Communications 191

1x PDI Builder, Release 6.12.62

Fig. 215: Comstats panel

It is possible to configure the source or destination of the statistics, as well as the frequency at which the Comstats
message is sent:

• RX Auto: Enabling this option will use the first remote AP found. If this option is disabled, the user must enter
manually the address of the unit used for Comstats calculation. For more information on the available addresses,
see List of Addresses section of the 1x Software Manual.

• TX: When enabled, the unit will periodically send its Comstats message (set the period). Enter the address to
which the message should be sent. For more information on the available addresses, see List of Addresses section
of the 1x Software Manual.

Note: Enabling TX will enable Autopilot 1x to send its Comstats message, but in order to compute Packet Error rate
it’s necessary to receive the TX message from a different unit.

Warning: Packet error rate is a good indicator of the status of the communication, but it is not representative
of the radiolink status. For monitoring the status of the radiolink RSSI Variables (820-822) shall be used instead.
Depending on the configuration it is posible to have bad Error rates with good RSSI (overloaded radiolink) or
good Error rates with bad RSSI (degraded communication with low load on radiolink). For the best results, it is
recommended to use a combination of both statistics for failsafe automations.

192 Chapter 2. Configuration

https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#list-of-addresses
https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#list-of-addresses

1x PDI Builder, Release 6.12.62

2.7.4 Iridium

Checking the Enable box will enable the use of Iridium communication through the Iridium Consumer/Producer in
the I/O Setup.

Warning: Before using the module, the user will have to register both of them (sender/receiver) in the RockBlock
website. For further information about the registration process, visit the RockBlock Management System.

Fig. 216: Iridium panel

In this menu the following parameters have to be set:

• Synchronization time: This is the transmission period, i.e., the time between 2 consecutive messages. This is a
parameter that the user should configure taking into consideration its mission.

• Destination address: SN (Serial Number) of the destination Iridium module.

Note: To configure the syncronization time, it would be advisable to think about how the user want to use the Iridium
communication. The user will pay for credits, and each credit means one message. Each individual message has to be
paid, so the syncronization time can be configured in order not to run out of credits.

2.7. Communications 193

https://docs.rockblock.rock7.com/docs/rockblock-management-system

1x PDI Builder, Release 6.12.62

2.8 Stick

In this section, the stick configuration on 1x PDI Builder is explained.

This menu allows the user to set up to four transmitters and one virtual stick. The autopilot’s capabilities allows it
to receive information from four different transmitters at the same time plus transforming some values into a virtual
stick.

The content presented in the next menus covers:

• Setting of the transmitter’s parameters.

• Definition of exponential response-curves for the desired channels.

• Trimming of the channels’ neutral position.

• Setting of the data receiving port on the autopilot.

• Definition of a virtual stick.

2.8.1 Transmitter (0-3)

The wired connected transmitters are configured through the following panels.

2.8.1.1 PPM

This panel provides the options to configure a Pulse Position Modulation (PPM) radio controller to control the platform
fitted with the autopilot.

Fig. 217: PPM panel

194 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

• Brand, Model and Channels: 1x PDI Builder has been configured to provide the user with the expected
parameters to configure different transmitters models.

Brand Models Channels
Futaba 8J/10J/12K/14SG 8 (for 8J and 10J)

12 (for 12K and 14SG)
T18SZ 8

Jeti DC 16/DC 24 16
FrSky Taranis X9D 8

Horus X12S 8
TBS Crossfire 8
Embention Stick Expander 16
Custom - -

– Custom: If the user’s transmitter is not among those mentioned above, choose this option and replace the
parameter values with the appropriate ones.

• Pulse polarity: Indicates the pulse polarity:

– Positive: Default signal is low and goes up to high.

– Negative: Default signal is high and goes down to low.

• Sync time: Minimum time on the PPM output till the next frame. It tells the receiver to reset its channel counter.

• Minimum/Maximum pulse: Pulse length, it depends on the system and it is a constant value (usually 0.2-0.5
ms).

• Position
– Minimum/Maximum accepted: Pulse length accepted for each channel. Standard for R/C servos uses a

pulse of 1 ms for the maximum position at one end, 1.5 ms for the midpoint and 2 ms for the maximum
position at the opposite end.

– Minimum/Maximum encoded: If there is noise and the signal is varying around the minimum/maximum
values accepted, Autopilot 1x will encode those values to the ones set here. For instance, a pulse length
between 0.8-0.9 ms will be considered as one of 0.9 ms.

– Channels: Sets the number of channels accepted. Besides, it is possible to Disable/Enable/Filter each
channel individually.

• Non linear low pass filter
– Minimum/Maximum delta: Default parameters are recommended.

– Minimum/Maximum delta alpha: Default parameters are recommended.

The figure below shows the PPM signal that arrives to Veronte Autopilot 1x:

2.8. Stick 195

1x PDI Builder, Release 6.12.62

Fig. 218: PPM signal

2.8.1.2 Exponential

The second panel allows the user to define an exponential stick response for every channel.

The allowed inputs range from 0 to 1 and there is a graph showing the generated response curve, as can be seen in the
figure below.

Fig. 219: Exponential panel

196 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

The X axis of the graph corresponds to the stick input and the Y axis is the result of applying the exponential function
to that stick input.

2.8.1.3 Trim

By enabling the Avanced option, the user can set the expected trim values manually. The user should have a deep
knowledge on its transmitter if this option is selected.

Finally, on the right hand side, the Reset button puts every parameter back to 0.

Fig. 220: Trim panel

2.8. Stick 197

1x PDI Builder, Release 6.12.62

2.8.1.4 Output

In this panel the user sets the receiving port and process the incoming commands. Once the stick has been configured,
the commands that arrive at the ground autopilot have to be sent to the air unit.

Fig. 221: Output panel

In this menu, the following parameters can be configured:

• Enable.

• Initial Channel at destination: The user indicates to which channel of the air autopilot will be sent the first
channel received in the ground unit. The channels arrive at the platform in order and without spaces between
them.

For example, if at the GND channels 6,7,8,9 and 10 are enabled, the AIR will receive channels 1,2,3,4 and 5.
Therefore channel 6 of the stick will be channel 1 in the AIR configuration.

• Port: If more than one transmitter is configured, each transmitter must be configured on a different port. This
has to match the port set on the air unit.

• Remote: It has to be enabled if the user wants to allow the delivery of the commands to the platform.

– UAV: The address of the UAV that receive the commands has to be indicated. The following options are
the most common:

∗ App 2: Veronte applications address.

∗ Broadcast: The commands are sent to all units on the network. This option is recommended.

∗ 1x v4.X XXXX: The address of a specific air unit.

For more information on the available addresses, see List of Addresses section of the 1x Software Manual.

198 Chapter 2. Configuration

https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#list-of-addresses

1x PDI Builder, Release 6.12.62

– Min period: As the period is the inverse of the frequency, this is the maximum frequency. Therefore, to
give the pilot more control, this is the frequency that is set when the stick is commanding. A Min period
of 0.02s is recommended.

– Max period: As the period is the inverse of the frequency, this is the minimum frequency. Thus, to free
up bandwidth, this is the frequency that is set when the stick is idle. A Max period of 0.2s is recommended.

– Delta: This parameter determines whether the frequency is set to the minimum or maximum period set
above.

If Autopilot 1x detects a change above the delta value, the frequency goes to the maximum frequency
(minimum period). While if the changes are less than this value, it switches to the minimum frequency
(maximum period). 10 Hz are recommended.

Note: An example of the Stick integration can be found in the Integration examples section of this manual.

2.8.2 Virtual Stick

This menu enables the processing of variables as stick control inputs, allowing reading stick signals distinct from PPM
or USB.

Fig. 222: Virtual Stick - Input Variable panel

In this panel the user can configure:

• Enable Virtual Stick
• Input variable: Place here the variables containing the stick information. A maximum of 16 variables can be

added as Input variables.

2.8. Stick 199

1x PDI Builder, Release 6.12.62

Important: This menu assigns the introduced variables to the stick communication channels in the entered
order, i.e.:

First variable added→ Channel 0
Second variable added→ Channel 1
Third variable added→ Channel 2

• Update period: Configure the period required. A period of 0.02 s is recommended.

• Stick ok bit: Select the bit which indicates if the virtual stick configuration is properly set.

The panels Trim, Exponential and Output are the same as the Transmitter ones, so refer to the Transmitter section
for more information.

Note: An example of the Virtual stick integration can be found in the Integration examples section of this manual.

2.9 Block Programs

Block programs are the core of Autopilot 1x. In this menu, all flight control algorithms can be found, divided in
different independent programs with different functions. All programs are executed at GNC (Guidance-Navigation-
Control) time.

A Program is a custom algorithm executed by Autopilot 1x. While their main purpose is the control of the aircraft,
Programs can be used to develop a wide variety of applications, from simple math operations to complex estimation
filters.

Block programs provide the user with a block programming interface that 1x will then execute at core frequency.
The fact that it is designed in this way gives it a high versatility, unlimited freedom and mimo control capabilities. This
high versatility is thanks to this block programming interface, as they are easily manageable and highly customisable
blocks, so that each customer can perfectly define their control algorithms regardless of the vehicle and the target they
have.

200 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 223: Block Programs menu

1. State: There are two types of programs, those with a black lightning symbol and those with a grey lightning
symbol.

The black ones are programs that are executed periodically, at core frequency. While those with grey lightning
are only “active” when they are executed using an automation (Run Block Program, see Actions - Automations
section of this manual).

2. Step: This number determines the order of execution of the programs.

3. Blocks: This indicates the number of blocks in each program.

4. Size (words): This is the memory taken up by each program.

5. Name: Program name, it is set by the user.

6. Memory in use: It is the operation performed to calculate memory in use.

7. Launch Editor: Click here to start configuring a program. A new window will appear:

2.9. Block Programs 201

1x PDI Builder, Release 6.12.62

Fig. 224: Block Programs tabs

• Scheduler: In this tab users can configure the frequency (in Hz) at which each program is executed.

By default the GNC frequency is defined for all programs, however, the user can modify it by pressing the
‘+’ and ‘-’ buttons next to the frequency.

202 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 225: Block Programs menu - Scheduler

If the user reduces the frequency of a program, it is possible to move it so that the the programs run in
different slots:

2.9. Block Programs 203

1x PDI Builder, Release 6.12.62

Fig. 226: Block Programs menu - Scheduler slots

Important: If the program is not executed periodically (grey lightning symbol), it will not appear in the
Scheduler tab.

• Library: Here the user can create custom blocks. This tab is explained in more detail in Library blocks
section.

• Programs: All Block Programs are created and configured in this tab:

204 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 227: Block Programs menu - Programs options

A. Move to error : When there are errors or warnings, the number of errors/warnings is displayed
here and by clicking on them, 1x PDI Builder takes the user to the program with that error.

Fig. 228: Block Programs menu - Move to error

B. Change name : Rename a selected program.

2.9. Block Programs 205

1x PDI Builder, Release 6.12.62

C. Move up/down : Use them to determine the order of execution of a selected program.
Programs are executed from top to bottom.

D. Copy program : Copy a selected program.

E. Remove program : Remove a selected program.

F. Add program : Add a new empty block program.

G. State and name of program. Clicking on icon will toggle the execution mode.

H. Memory in use: Estimation of the remaining memory available. If no more memory is available, no
new blocks will be allowed to be created. The allocated memory for each block depends on the block
type.

Attention:
– User must be aware that each block has its own size, so the larger the size of a block, the

more space it will take up.

– Thus, the more programs are created, the more space is occupied.

– In addition, there is information stored as metadata about the organization and position of
each block in the diagram that also represents part of this space.

Tip: To optimize memory, it is better to use more but smaller blocks than one large block.

I. Add block: By clicking here, a new column panel will appear where users can choose the block they
want to add.

206 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 229: Block Programs menu - Add block panel

J. Hierarchy: By clicking here, a new column menu will appear where users can see “information” about
the existing blocks on the selected program.

2.9. Block Programs 207

1x PDI Builder, Release 6.12.62

Fig. 230: Block Programs menu - Hierarchy panel

a. Expand All: By clicking on it, all menus that are collapsed will be expanded, e.g. in programs
that have Switch blocks.

208 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 231: Expand All

b. Collapse All: By clicking on it, all menus that are expanded will be collapsed, e.g. in programs
that have Switch blocks.

Fig. 232: Collapse All

c. Show blocks with errors:

2.9. Block Programs 209

1x PDI Builder, Release 6.12.62

Fig. 233: Show blocks with errors

d. Show blocks that read from variables:

Fig. 234: Show blocks that read from variables

e. Show blocks that write in variables:

Fig. 235: Show blocks that write in variables

210 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

f. Show blocks that can be commanded:

Fig. 236: Show blocks that can be commanded

Blocks
• To add a block:

1. Click on ‘Add Block’.

2. Search and select a block. When a block is selected, its description is displayed.

3. Click and drag it to import into the program.

• By right clicking on a block, the user can:

– Edit: This options opens its configuration menu. It is also possible to open the configuration by double
clicking on the block.

– Remove block: Remove the selected block.

– Copy: Copy the selected block.

– Paste: Paste the block that has been copied.

– Change constant value/variable/variables: User can change the constant value entered/the selected
variable/s, e.g. to be read or written.

Note: Only available for Data Source/Sink blocks.

• To re-locate blocks, just click and drag them.

2.9. Block Programs 211

1x PDI Builder, Release 6.12.62

Fig. 237: Block Programs menu - Adding blocks

Block inputs and outputs use a color code in order to indicate variable types:

• : 32-bit Real variables.

• : BIT Boolean variables.

• : 64-bit Feature variables.

• : 16-bit Integer variables.

• : Position measurement data.

• : Guidance data.

• : Sensor data for EKF.

Note: Connectors can also be Arrays of variables.

212 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

An input and an output can be linked directly with the mouse and unlinked by right clicking on the input/output:

Fig. 238: Linking blocks

Note:
• An input and output with different variable types cannot be linked without a Type Cast block. For more

information on this block, see Type Casting blocks section of this manual.

Fig. 239: Type Casting block

2.9. Block Programs 213

1x PDI Builder, Release 6.12.62

• All inputs of each block must be connected, otherwise 1x PDI Builder will report an error. Outputs do not
need to be linked.

Fig. 240: Errors in blocks

• An exeception of the previous rule are translucid inputs , which are optional. These inputs will have a default
value if not linked.

The different types of blocks available in Block programs are:

• Control: Control-related blocks (PID Static, Tsched PID, ECU control etc.).

• Data Source/Sink: Input/Output blocks. Programs can have access to any variable available within Autopilot 1x
system. Results can then be stored in User Variables for display, use as a different program input, feedback, etc.

• Devices: These blocks allow to configure devices connected to the autopilot.
• Execution Flow: Programming-like blocks for operation flow control. These blocks allow to alter parts of a

program depending on a condition (If-Else, Integer Case, Phase Case, etc.).

• Guidance: In these blocks the guidance of the flight phases is configured.

• Library: Blocks created manually combining already defined blocks. They are created in the ‘Library’ tab
which can be accessed on the left hand side of this menu.

• Logic: Logical gates to operate with boolean variables (AND, NOT and OR).

• Math: Mathematical blocks, which include a variety of mathematical operators: basic (sum, multiply, square
root, etc.), trigonometric (sine, cosine, tangent, etc.), vectors (norm, dot product, rotations, etc.).

• Mode/AP Selection: Blocks that allow to interact with flight modes and redundancy (Autopilot 4x).

214 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

• Navigation: These blocks allow the autopilot navigation to be configured.

• Positions: Blocks for operating with position-type variables (create position, read position, relative position,
etc.).

• Sensors: In these blocks, some of the sensors are configured.

• Servos: Blocks related to servos configuration.

• Signals: Blocks for signal processing (IIR filter, rate limiter, etc.).

• Type Casting: Blocks for variable conversion (Real to BIT, Integer to real, etc.).

2.9.1 Control blocks

Control blocks are those related to the creation of control loops.

2.9.1.1 PID

PID Static block allows the user to build a PID (Proportional, Integral and Derivative) controller with fixed gains.

Fig. 241: PID block

As can be seen in the figure above, PID Static block has 2 buttons that enable or disable the block to be commanded
from the 1x PDI Tuning software.

2.9. Block Programs 215

https://manuals.embention.com/1x-pdi-tuning/en/6.12.60/index.html

1x PDI Builder, Release 6.12.62

Fig. 242: PID block - Command buttons

The first button is for activating ‘Command PID’ and the second one is for the ‘Autotune’ command. For more
information on these commands, please refer to the Tuning section of the 1x PDI Tuning user manual.

Each command button has a different ID that allows the user to identify it during the command.

Note: To avoid disabling a block by mistake, the following warning message appears when disabling it:

Fig. 243: Warning message when disabling the command

• The PID mathematical implementation in Veronte Autopilot 1x is the following:

𝐶 = 𝐾𝑝 +
1

𝑇𝑖
· 𝐼𝐹 (𝑧) +

𝑇𝑑

𝜏 + 𝐷𝐹 (𝑧)

Where:

𝐷𝐹 (𝑧) = 𝑇𝑠 ·
𝑧

𝑧 − 1
; 𝐼𝐹 (𝑧) =

𝑇𝑠

2
· 𝑧 + 1

𝑧 − 1
; 𝐿𝑃𝐹 (𝑠) =

1

𝜏𝑠 + 1

• Inputs

yc: Target value, desired set-point of the controlled variable.

y: Closed loop, value of the controlled variable.

(Optional) dy: Derivative of the controlled variable (computed numerically from ‘y’ if not connected).

216 Chapter 2. Configuration

https://manuals.embention.com/1x-pdi-tuning/en/6.12.60/operation/tuning/index.html

1x PDI Builder, Release 6.12.62

(Optional) usat: Previously applied control action after saturation (used for anti-windup and respect). If not
connected a value of zero is assumed.

(Optional) ff : Feed-forward control, this value is added to the ‘u’ output before applying the output limits. If
not connected a value of zero is assumed.

(Optional) respect: When TRUE the output ‘u’ is equal to the input ‘usat’ and the integral component is
estimated with the information in ‘y’ and ‘yc’. When FALSE the PID works as usual. If not connected a value
of FALSE is assumed.

(Optional) enable integral: When TRUE the the PID works as usual. When FALSE the integral is
exponentially discharged. If not connected a value of TRUE is assumed.

• Outputs

u: Control output after applying PID limits.

p: Proportional part of the output before the PID limits are applied.

i: Integral part of the output before the PID limits are applied.

d: Derivative part of the output before the PID limits are applied.

• Configuration menu:

Double click on the block to open its configuration menu.

2.9. Block Programs 217

1x PDI Builder, Release 6.12.62

Fig. 244: PID block configuration

1. yc: Input variable.

2. y: Feedback variable.

3. Invert: Apply a -1 gain .

4. Wrap: Perform a [-pi, pi] wrap.

5. Parallel/Standard: In parallel mode, PID gains are independent. In standard mode, I & D gains are scaled
by P gain.

6. KP: Proportional gain.

7. 1/TI: Integral gain.

8. Imax: Maximum value for integral term. Value must be possitive and the limit applied is symmetrical
([-Imax, Imax]).

9. tau: Time constant for the derivative term first order LPF.

10. TD: Derivative gain.

218 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

11. TA: Anti-windup gain. Recommended value around x10 KI. Unloads integral term if output is saturated.

12. Uf : Output offset. Feedforward value is also applied at this point.

13. Min/Max: Output limits. Users can manually enter a value or select a variable.

14. u: PID output.

15. On focus respect: If respect is enabled, when the PID is first executed, an initial I value will be applied so
that ‘u’ = ‘usat’ for the first iteration.

16. Proportional/Derivative Beta: yc scaling for proportional and derivative terms. Unless necessary, value
should always be 1.

17. Integral disable: Disables integral term if (yc - y) > Error limit.

Tip: Remember to always use ‘wrap’ for direction controllers, such as ‘Heading’ or ‘Yaw’ PIDs. This will
allow the UAV to always turn in the right direction.

2.9.1.2 T-Sched PID

TSched PDI block is a PID (Proportional, Integral and Derivative) controller with table scheduled parameters. It
allows to scale most PID parameters using an external variable, usually the speed (Ground speed or IAS).

Fig. 245: TSched PID block

It works in a very similar way to the PID Static block, except that in that block the gains are fixed and in the TSched
block they are adjusted for different values of the input variable.

For this reason, the inputs and outputs are the same, but in this block an additional input is added:

• Input

var: Scaling variable for gain scheduling used to interpolate in the table to obtain the PID parameters.

• Configuration menu
Double click on the block to open its configuration menu.

2.9. Block Programs 219

1x PDI Builder, Release 6.12.62

Fig. 246: TSched PID block configuration

In this block, the PID gains for the different values of the input variable must be entered in the table above instead

of in the diagram. To add more values, simply click on and to remove them, click on .

If the variable is outside the limits, the values of the closest point will be applied. Values between points are
linearly interpolated.

In addition, clicking on “Table Generator” will bring up another configuration menu:

220 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 247: TSched PID block configuration - Table Generator

This is another option to enter the PID gains for different values of the input variable, instead of manually entering
all the gains, the Table Generator will generate them according to the parameters to be configured:

– Type: Depending on the type of function selected, the gains are calculated differently.

∗ Inverse: It will calculate the different gains with an inverse function.

∗ Proportional: It will calculate the different gains with a proportional function.

∗ Quadratic: It will calculate the different gains with a quadratic function.

Type Result (𝐾𝑝)
Inverse 𝐾𝑝𝑖

𝑉
𝑉𝑖

Proportional 𝐾𝑝𝑖

𝑉𝑖

𝑉

Quadratic 𝐾𝑝𝑖

𝑉 2
𝑖

𝑉 2

∗ Reference cow: Users must select the reference values from which the other values will be calculated.

∗ Range: The minimum and maximum values of the input variable between which the gains have to be
calculated have to be defined.

Then just click on “Apply” and the maximum number of points that the table allows will be generated.

Example

2.9. Block Programs 221

1x PDI Builder, Release 6.12.62

Fig. 248: Example of Table Generator

2.9.1.3 ECU Control

The ECU Control block allows to control the winding speed of the microjets and to ensure safe motor operation based
on PID control and shaft speed for the microjets.

222 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 249: ECU Control block

• The ECU Control mathematical algorithm is based on a PID scheduler, this PID control has been used because
the dynamics of the motor changes with RPM so it is very different at low and high speed. For more information
on PID Scheduler control, see T-Sched PID section of this manual.

– First, the PLA magnitude is converted in commanded speed based in a look-up table. This information
must be provided by engine producer.

– To protect from a common problem of engines the commanded speed is limited. For this, first, the maximum
speed is limited to the configurable parameter 𝑁𝑚𝑎𝑥 to ensure mechanical integrity.

Then, engine acceleration is limited to protect from compressor surge, so the maximum speed rate is limited
to a configurable parameter in block, �̇�𝑚𝑎𝑥.

Finally, engine deceleration is limited to protect from blow out, so the minimum speed rate is limited to a
configurable parameter in block, �̇�𝑚𝑖𝑛.

– If EGT is less than the maximum value (configurable), the error magnitude in speed is minimized with
a PID scheduler: 𝑒 = 𝑦 − 𝑦𝑐 = 𝑁 −𝑁(𝑃𝐿𝐴).

And the control output of this block is the FPV commanded to engine.

– If EGT measurement is higher than maximum temperature (configurable 𝐸𝐺𝑇𝑚𝑎𝑥), a protection
protocol is initiated and the fuel injected is zero.

2.9. Block Programs 223

1x PDI Builder, Release 6.12.62

Fig. 250: ECU Control aglorithm

• Inputs

n_msd: Measured Speed from sensor.

egt_msd: Exit Gas Temperature from sensor.

pla: Power Level Angle demanded from pilot (value from sensor).

fpv_resp: Fuel Pump Voltage to do respect.

mode: Mode of execution:

0⇒ Off: all variables set to zero.

1⇒ Checking: starter engine is commanded to max to check if engine is okay.

2⇒ Starting: pilot has total control with PLA once engine is runnning.

V: Voltage to Engine.

• Outputs

fpv: Fuel Pump Voltage to supply.

tmp_prot: Boolean to active temperature protection.

P: Proportional part of controller.

I: Integral part of controller.

D: Derivative part of controller.

main_v: Voltage to main valve.

ign_v: Voltage to Igniter valve.

igniter: Voltage to igniter.

starter: Voltage to starter engine.

224 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

• Configuration menu:

Fig. 251: ECU Control block configuration

– All parameters to be configured in the left column of the panel configuration constitute the engine
characterization and must be filled in with the user’s engine specifications.

– PID configuration: Users must configured the PID scheduler here. For more information on its
configuration, check T-Sched PID section of this manual.

– PLA / RPM: Users can enter the percentage of throtlle with respect to RPMs.

– MSL / 𝑢𝑓 : Because atmospheric pressure decreases with altitude (MSL), a feed forward (𝑢𝑓) is configured
as a function of altitude in order to improve control at high MSL.

2.9. Block Programs 225

1x PDI Builder, Release 6.12.62

2.9.1.4 Fuzzy Logic Controller

The Fuzzy Logic Controller (FLC) block implements the Fuzzy Logic algorithm allowing users to perform robust
control of any system.

Fig. 252: Fuzzy Logic Controller block

A FLC has to be embedded in a closed-loop control system.

Plant output is designed by 𝑢(𝑡), its inputs are denoted by 𝑦(𝑡), and reference input to the FLC is denoted by 𝑦𝑐(𝑡). So,
FLC will have 𝑦(𝑡) and 𝑦𝑐(𝑡) as controlled and commanded inputs, respectively, and 𝑢(𝑡) as control output.

• The FLC mathematical implementation in Veronte Autopilot 1x is the following:

– The controller try to minimise the value of error, denoted by:

𝑒𝑘 = 𝑦𝑘 − 𝑦𝑐𝑘

– And it gets the value of change in error (derived from the error) 𝑐𝑒(𝑡) to do the fuzzy set:

𝑐𝑒𝑘 = 𝑒𝑘 − 𝑒𝑘−1

– Once is defined error and change in error, its values have to be pass to fuzzy values scaling it with its gains
𝑘𝑒 and 𝑘𝑐𝑒 :

𝑒𝑛𝑘 = 𝑘𝑒 · 𝑒𝑘
𝑐𝑒𝑛𝑘 = 𝑘𝑐𝑒 · 𝑐𝑒𝑘

– When these values are updated, the Membership Functions have to be defined as desired. Although their
shapes could be any function (trapezoidal waveform, Gaussian waveform, etc.), they are usually triangular
waveform.

Fig. 253: Example of membership functions of error and change in error

226 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

– The exact values of the 2 last equations are used to get the weights [𝜇+
𝑒 , 𝜇

0
𝑒, 𝜇

−
𝑒] and [𝜇+

𝑐𝑒, 𝜇
0
𝑐𝑒, 𝜇

−
𝑐𝑒] . These

values are obtained from error and change in error membership functions.

– Then, those outputs must be arrange into a table, called the lookup table.

Fig. 254: Example of Fuzzy Logic look up table

– On the other hand, it is necessary to apply the fuzzy logic by this table, so it is checked the sign of 𝑒𝑛𝑘 and
𝑐𝑒𝑛𝑘 , and the result is the membership function of the output to apply ∆𝑢.

Fig. 255: Example of membership function of output

– Once the six values of weights [𝜇+
𝑒 , 𝜇

0
𝑒, 𝜇

−
𝑒] and [𝜇+

𝑐𝑒, 𝜇
0
𝑐𝑒, 𝜇

−
𝑐𝑒] are obtained, they must be combined in the

nine possible combinations, selecting the minimum between both and getting its respective value of ∆𝑢 in
the output membership function.

– The final value of output is obtained with the Center of Gravity method:

∆𝑢 =

∑︀9
𝑖=1 ∆𝑢𝑖 · 𝜇𝑖∑︀9

𝑖=1 𝜇𝑖

– Finally, the real output value must be integrated in time and converted from fuzzy variables to real variables
with its gain value 𝑘𝑢 :

𝑢𝑘 = 𝑢𝑘−1 + 𝑘𝑢 ·∆𝑢 ·∆𝑡

• Inputs

yc: Desired set-point of the controlled variable.

2.9. Block Programs 227

1x PDI Builder, Release 6.12.62

y: Value of the controlled variable.

u_resp: Value of the output to do respect.

g: Vector of controller gains.

• Output

u: Control output after controller.

• Configuration menu:

Fig. 256: Fuzzy Logic Controller block configuration

These figures represent, respectively from left to right, the error membership function, the change in error
membership function and the output membership function that have been explained above.

The user can configure these functions as desired by adding or deleting points.

Note: The default configuration is already designed for control.

228 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

2.9.1.5 Driver Control Filter

First, it is presented how the Adaptive-Predictive control algorithm has been implemented in blocks.

The part of the algorithm that tries to estimate the system transfer function (System Identification), the part that acts as
a filter for the system output (Driver Control Filter) and the control part (Predictive control) are separated.

Therefore, Driver Control Filter block works together with the System Identification and the Predictive Control blocks
for the Adaptative-Predictive control algorithm.

An example of use is shown below:

Fig. 257: Adaptive-Predictive control blocks example

This example corresponds to the integration of a simulation. Therefore, an IIR Filter block and a Signal generator
block have been added to simulate a real physical system, i.e. these blocks would not be needed in a real scenario:

• IIR Filter simulates how the output responds to the input.

• Signal generator simply simulates a desired input function.

Driver Control Filter block gives a vector with variables set points (SP) using a second order filter.

Fig. 258: Driver Control Filter block

It acts as a 2-order filter with optimal coefficients for the Adaptive-Predictive control algorithm. These coefficients are
calculated from the configurable parameters of the block.

• Inputs

yc: Desired system output (Set Point).

2.9. Block Programs 229

1x PDI Builder, Release 6.12.62

y: Measured system output.

• Output

Yr: Projected desired trajectory vector.

• Configuration menu:

Fig. 259: Driver Control Filter block configuration

The following parameters must be set:

– Prediction interval (𝜆): Number of future instants (Prediction Horizon), how many samples are taken from
the vector.

– Shape: Depending on whether it is enabled or disabled, the paramters to be entered are different. Users
can enable or disable it depending on the data available to them:

∗ 𝜁: Damping ratio.

∗ 𝑤𝑜: Natural frequency.

∗ Mp: Maximum overshoot.

∗ Ts: Settling time (2% criteria).

Note: The relationships between the different parameters are:

𝑀𝑝 = exp

(︃
−𝜁 · 100 · 𝜋√︀

1− 𝜁2

)︃

𝑇𝑠 =
4

𝜁 · 𝑤0

230 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

2.9.1.6 System Identification

System Identification block gives the coefficients of the transfer function at Z-domain,

𝑇 (𝑧) =
𝐵(𝑧)

𝐴(𝑧)

• Where, 𝐴 and 𝐵 are polynomials in 𝑧.

Fig. 260: System Identification block

This blocks works together with the Driver Control Filter and the Predictive Control blocks for the Adaptative-
Predictive control algorithm, as explained above.

• Inputs

y: System output. This is the measurement.

u: System input. This is the control action.

• Outputs

NUM: System coefficients numerator.

DEN: System coefficients denominator.

• Configuration menu:

2.9. Block Programs 231

1x PDI Builder, Release 6.12.62

Fig. 261: System Identification block configuration

• Forgetting factor (𝜆): Determines how many inputs and outputs are taken into account for the estimation.

Recommended values between 0.98 and 0.995.

• 𝛿0: Initial value of covariance matrix.

• Noise (𝛾): From this noise threshold, the RLS (Recursive Line Square) is not calculated.

• Input/Ouput delay: Given the input/output size, a delay is applied to the sample vector size.

2.9.1.7 Predictive Control Block

Predictive Block Controller gives the optimal control output given a dynamic model as a result of the system
identification block.

Fig. 262: Predictive Control block

232 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

This blocks works together with the Driver Control Filter and the System Identification blocks for the Adaptative-
Predictive control algorithm, as explained above.

• Inputs

yc: Desired system output (SP) or trajectory.

NUM: Numerator coefficients of system model plant.

DEN: Denominator coeffcients of system model plant.

yprev: Previous system output.

uprev: Previous system input.

• Output

u: Control output.

• Configuration menu:

Fig. 263: Predictive Control block configuration

The following parameters must be set:

– Prediction interval (𝜆): Number of future instants (Prediction Horizon), how many samples are taken from
the vector.

– Optimal: Depending on whether it is activated or deactivated, the following parameters are auto-calculated
or not.

2.9. Block Programs 233

1x PDI Builder, Release 6.12.62

∗ f : If this factor is greater than 1, the past measurements have greater weight.

∗ r0 : If this factor is grater than 1, there is a more aggresive follow-up of the reference, on the contrary
it is smoother.

– Output Limits: Maximum and minimum limits for the controller output (for the control signal 𝑢).

2.9.1.8 Quaternion Control

Quaternion Control block for fixed multirotor aircraft.

Fig. 264: Quaternion Control block

• The Quaternion Control mathematical implementation in Veronte Autopilot 1x is the following:

– The quaternion control algorithm calculates the desired direction and magnitude of the thrust vector of a
multicopter in order to achieve the desired NED velocities, these generate a three-component acceleration
vector in NED coordinates, which is compared with the actual direction of the thrust vector to obtain a
quaternion representing the rotation from the actual to the desired thrust.

The error is applied to a control law determined by a time constant that provides the body angle rates to
achieve the desired acceleration.

– In addition, the algorithm is divided in two quaternion calculations depending on the yaw being controlled
or not:

∗ Reduced: Only the crucial angles of the thrust desired vector are considered. The yaw is not controlled
directly.

∗ Full: Both the pointing direction of the vector and the yaw is controlled.

• Inputs

(Optional) attmode: Flag for velocity (hover) or angle (hold) control. If true only the angles will be
controlled, if false or not connected the velocity of the aircraft will be controlled.

(Optional) vnc: Desired north velocity (only used if velocity mode is active). Assumed zero if not connected.

(Optional) vec: Desired east velocity (only used if velocity mode is active). Assumed zero if not connected.

vdc: Desired down velocity.

234 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

yawc: Desired yaw.

(Optional) pitchc: Desired pitch (only used if angle mode is active). Assumed zero if not connected.

(Optional) rollc: Desired roll (only used if angle mode is active). Assumed zero if not connected.

(Optional) thr_sat: Saturated thrust from previous step. Used for respect and antiwindup.

• Outputs

rrc: Desired p (Angular Velocity - X Body Axis).

prc: Desired q (Angular Velocity - Y Body Axis).

yrc: Desired r (Angular Velocity - Z Body Axis).

thr: Desired thrust.

• Configuration menu:

Fig. 265: Quaternion Control block configuration

2.9. Block Programs 235

1x PDI Builder, Release 6.12.62

As this block is mainly constituted by 3 PID controllers (fore more infromation, see PID block), only some
relevant parameters are detailed below:

1. PID to transform desired velocities into desired accelerations in NED.

2. PID to transform the vertical velocity into desired acceleration.

3. MAX INCLINATION: Maximum inclination allowed to the aircraft.

4. TAU: Time constant of the system. It is also the gain used for the feedback controller.

Recommended values between 0.1 and 0.25 seconds.
5. P: Reduction factor indicating how the yaw is to be controlled compared to pitch and roll.

The idea is that the “yaw control power” is lower in a multicopter as it is controlled by angular momentum
difference between motors while pitch and roll is controlled by thrust difference.

By default, it is configured to 30%.

6. Respect: If enabled, when the block is executed for the firs time, an initial I value will be applied so that
‘thr’ = ‘thr_sat’ for the first iteration.

Furthermore, the thrust is assumed to be between 0 and 1. In case the user has other values for the thrust, it is
recommended to use an Interpole block at the input and output to adjust the range between 0 and 1.

2.9.1.9 Total Energy Control

Total Energy Control block has been designed for the decoupling of the control of the speed and FPA in fixed-wing
aircrafts. This block uses the internal navigation estimation.

It will provide two errors that must be minimized in order to obtain the desired speed and flight path:

• Energy Distribution Error: Distribution of sistem energy between kinetical and geopotential energy. This error
shall be used to control the aircraft’s pitch or FPA.

• Energy Rate Error: Rate of change of the Total System Energy. This error accounts for the necessary increase
or decrease in thrust.

The outputs Desired energy rate and Desired distribution energy rate are useful as feed forward in control.

Fig. 266: Energy Control block

• Inputs

FPAc: Desired FPA (Flight Path Angle) set-point.

Vc: Desired velocity set-point. Depending on the block configuration the velocity can be IAS or Ground
Speed.

236 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

• Outputs

EdistEr: Energy distribution error for pitch control.

ErateEr: Energy rate error for thrust control.

DesEr: Desired energy rate.

DesDisEr: Desired distribution energy rate.

• Configuration menu:

Some parameters of the Energy algorithm can be modified by double clicking on the block:

Fig. 267: Energy Control block configuration

1. Proportional gain for acceleration: This is an indication of how aggresive the algorithm is when trying
to gain speed. The higher the value, the faster the algorithm will try to ‘dive’ in order to gain speed.

A typical recommended value is around 0.1-0.3. Higher values are only recommended for fast
maneuvering platforms.

2. V_STALL: Stall velocity parameter can be enabled or disabled. Users can manually enter this value or
select a variable.

2.9. Block Programs 237

1x PDI Builder, Release 6.12.62

3. Desired speed: The user must choose between IAS and GS (Ground Speed) for reference. The use of GS
is not recommended unless Airspeed measurement is not available.

4. K_STALL: Stall correction coefficient. If 1, energy control is balanced for altitude and speed. If 0 only
speed control is taken into account.

5. IAS/V_STALL: Speed/Stall ratio. Ratio between current speed and minimum speed.

6. Stall correction interpolation function: Defines how the relationship between the stall correction
coefficient and the Speed/Stall ratio works. The default configuration (as shown in the figure above)
is recommended.

Note: The Stall correction coefficient is a Safety tool that can be used to sacrifice altitude control in order to
improve speed control when speed gets close to the stall velocity (V_STALL) defined above.

2.9.2 Data Source/Sink blocks

• Source blocks allow to import into the program any variable available in the system. Additionally the Const
Real/Vector allows to create a constant variable or vector.

• Sink blocks allow overwriting the following system variables:
– User Variables

– Desired variables (variables whose name starts with ‘Desired’)

238 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 268: Source/Sink blocks

Warning:
• Desired variables are naturally written by Guidances algorithms. If an active Guidance is writting a certain

Desired variable, writting it with a Sink block should be avoided.

• Using Sink blocks to overwrite System Variables usually results in the change not taking effect, but in some
cases could end up causing Autopilot 1x to malfunction.

• Avoid using Sink blocks to write any variable that does not belong to one of the groups listed above.

2.9. Block Programs 239

1x PDI Builder, Release 6.12.62

2.9.3 Devices blocks

Devices connected to Autopilot 1x and a clock can be configured with these blocks.

2.9.3.1 Clock

Clock block computes the time elapsed since the last reset or since the last step execution (depending on the block
configuration).

Fig. 269: Clock block

• Input

(Optional) Reset: The clock is reset when the input value is TRUE. Assumes FALSE if unconnected.

• Output

Time: Computed time in seconds.

• Configuration menu:

Fig. 270: Clock block configuration

– Reset when on focus: If enabled, the clock will be reset the first time it is executed.

– Compute Time Since: The available options are:

∗ Last reset: The block acts as a ‘normal clock’, counting the time since it was started/restarted.

∗ Last step: Time elapsed since the program, in which the block is added, was executed.

2.9.3.2 Gimbal

Gimbal block is a gimbal device controller that uses current navigation estimation.

It allows users to configure a Gimbal Camera by defining the movements the system has (from predefined combinations
of Pan, Tilt and Roll), its logic and a distance vector.

240 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 271: Gimbal block

• Inputs

(Optional) fixed: Mode of operation:

- If TRUE the gimbal is in absolute orientation mode and uses the inputs ‘Az’, ‘El’ and ‘Ro’.

- If FALSE the gimbal is in arcade mode and uses the inputs ‘Azr’, ‘Elr’ and ‘Ror’.

- If not connected assumes FALSE.

(Optional) Az: Desired azimuth. This input is only used when ‘fixed’ input is TRUE. Assumes zero if not
connected.

(Optional) El: Desired elevation. This input is only used when ‘fixed’ input is TRUE. Assumes zero if not
connected.

(Optional) Ro: Desired roll. This input is only used when ‘fixed’ input is TRUE. Assumes zero if not
connected.

(Optional) Azr: Desired azimuth rate. This input is only used when ‘fixed’ input is FALSE. Assumes zero
if not connected.

(Optional) Elr: Desired elevation rate. This input is only used when ‘fixed’ input is FALSE. Assumes zero
if not connected.

(Optional) Ror: Desired roll rate. This input is only used when ‘fixed’ input is FALSE. Assumes zero if
not connected.

• Outputs

in_cmd: Has a value of TRUE when the gimbal block is being externally commanded, FALSE otherwise.

j0: Gimbal joint 0 angle in radians. This is the desired Pan angle.

j1: Gimbal joint 1 angle in radians. This is the desired Tilt angle.

j2: Gimbal joint 2 angle in radians. This is the desired Roll angle.

pos: Position in the surface of the Earth where the gimbal is pointing to.

2.9. Block Programs 241

1x PDI Builder, Release 6.12.62

• Configuration menu:

Fig. 272: Gimbal block configuration

The following parameters must be configure:

– Type: Defines the angles that the Veronte Autopilot 1x will control from the payload system from a
combination of Pan (Z-axis, same as Yaw), Tilt (Y-axis, same as Pitch) and Roll.

The three options available are:

∗ Pan & Tilt
∗ Pan, Roll & Tilt
∗ Roll & Tilt

– Logic: Defines the kind of payload system configured:

∗ Conventional gimbal: This option writes over the variables Joint 1-3 of Gimbal 1-3 which are used
later to configure camera control and stabilization from Autopilot 1x.

∗ Self-stabilized gimbal: The payload system only needs movement inputs and the variables
mentioned will have no output.

– Base to gimbal X/Y/Z: Defines the vector linking Veronte Autopilot 1x controlling the payload system and
the payload system itself, on Veronte body axes.

– Edit Rotation Matrix: Matrix to rotate the system to match the aircraft coordinate system.

242 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 273: Gimbal block configuration - Rotation Matrix

– Center Limit Yaw [0, 2pi]/Pitch/Roll: Center of the range of movement.

– Delta Limit Yaw [0, pi]/Pitch/Roll: That is how much the gimbal can move in positive and negative from
the center defined above.

Note: This part of limit is because there are some gimbals that cannot make a full turn on some axis.

– Roll/Pitch rate Gain: Gains to compensate for roll rate or pitch rate inputs.
An example of use is given below:

Fig. 274: Gimbal block - Example of use

2.9. Block Programs 243

1x PDI Builder, Release 6.12.62

Fig. 275: Gimbal block - Configuration example

2.9.3.3 Stick

Stick block is a stick reader, with it the user can configure the stick parameters for manual and arcade modes.

Fig. 276: Stick block

Warning: This block is mandatory for the use of the transmitter. For more information on the stick configuration,
see the Stick - Integration examples section of this manual.

• Outputs

Raw data: Raw stick channels.

Y data: Stick channels after transformation (matrix and offset).

Status: TRUE if the stick is read without timeouts, FALSE otherwise.

244 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

RXrate: Stick update frequency rate (Hz).

Configuration menu:

• Sources: In this tab the user can set multiple transmitter inputs with the respective priority, from top to bottom.

Fig. 277: Stick block configuration - Sources

– Priority table: By default, one priority table is set. The user can configure a second one.

∗ Priority: Use arrows to determine the priority of the selected source. Priority is set from top to
bottom.

∗ Add: An already defined source can be added to the priority table.

– Edit sources: New sources can be defined in this menu.

2.9. Block Programs 245

1x PDI Builder, Release 6.12.62

Fig. 278: Edit sources menu

∗ Source: It is the order in which sources are created in this menu. This does not set the priority.

∗ Address: This defines the source from which the stick information is taken from. The following
options are the most common:

· App 2: Means that the information is coming from the stick widget of Veronte Ops.
· Local: Represents the actual selected autopilot (i.e. the transmitter is connected to it).

· Any: The information comes from all linked autopilots.

· 1x v4.X XXXX: Means the information is coming from a particular autopilot, which needs to
be visible in Veronte Link.

For more information on the available addresses, see List of Addresses section of the 1x Software
Manual.

∗ Port: From each source it is posible to have more than one stick information, e.g. two transmitters can
be connected to the same autopilot. The port is an identifier to distinguish them.

∗ Time Out: This defines the time to consider the source inactive. Therefore the incoming stick
information will be always the one from the source with higher priority and active. Once it is considered
inactive the following active source will send its stick information. The lower this value, the more
frequent the stick will be lost. We recommend a value of 0.4 s.

• Data: In this tab the user can configure 𝑀𝑖𝑥𝑀𝑎𝑡𝑟𝑖𝑥,𝑅𝑎𝑤 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 and 𝑂𝑓𝑓𝑠𝑒𝑡.

The movement that the pilot makes on the stick produces variations on a vector called (𝑅𝑎𝑤 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) of
length 𝑛, where 𝑛 goes from 1 to the total number of employed transmitter channels. The values reached by the
components of (𝑅𝑎𝑤 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) are limited between 0 and 1. These stick movements need to be processed to
produce the input signals that will go into the control algorithm, in the case of arcade mode; or directly into the
servos for manual mode.

The process begins by mapping each one of the sticks inputs to PWM signals into a vector called 𝑂𝑢𝑡𝑝𝑢𝑡 of
length 𝑚, where 𝑚 goes from 1 to the total number of actuators.

The full definition of 𝑂𝑢𝑡𝑝𝑢𝑡 is 𝑂𝑢𝑡𝑝𝑢𝑡 = (𝑀𝑖𝑥𝑀𝑎𝑡𝑟𝑖𝑥) · (𝑅𝑎𝑤 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) + 𝑂𝑓𝑓𝑠𝑒𝑡, where:

246 Chapter 2. Configuration

https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#list-of-addresses

1x PDI Builder, Release 6.12.62

– (𝑀𝑖𝑥𝑀𝑎𝑡𝑟𝑖𝑥) is a matrix that transforms raw stick inputs (𝑅𝑎𝑤 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) to PWM signals 𝑂𝑢𝑡𝑝𝑢𝑡.

– 𝑂𝑓𝑓𝑠𝑒𝑡 is an offset vector, which corrects the 𝑂𝑢𝑡𝑝𝑢𝑡 vector.

Fig. 279: Stick block configuration - Data

2.9.4 Execution Flow blocks

Execution Flow blocks allow to switch sections of a program during its execution among a set of pre-configured
options.

2.9. Block Programs 247

1x PDI Builder, Release 6.12.62

Fig. 280: Execution flow blocks

Execution flow blocks are divided into 2 different types of blocks: On focus block and Switch blocks.

2.9.4.1 On focus block

The On Focus block outputs a boolean value, which is only True the first time the block is executed.

Fig. 281: On focus block

• If used inside a Switch Block, the value will be True each time the case is selected.

• On Focus can be used to trigger actions or initialize variables whenever a case is switched.

The following example would initialize User Variable 01 to 7 whenever Landing phase is selected:

Fig. 282: On focus block example

248 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

2.9.4.2 Switch blocks

• If-Else Switch block: Choose between two cases based on the state of a boolean variable.

Fig. 283: If/Else switch block

It is possible to swap the blocks of each case (False/True) by simply right-clicking inside an if/else switch block
and selecting ‘Invert’.

Fig. 284: Invert created blocks

• Integer Switch block: Choose a case based on the value of an integer variable.

Fig. 285: Integer switch block

Right click on the Integer switch block to access the configuration options:

– Add Case: Create a new empty case.

– Copy Case: Create a copy of the current case.

– Delete Case: Delete the current case.

– Add Entry: Add a new entry to the current case. An entry is a condition under which the case will be
selected. The same entry can on only be in one case at a time. Adding an entry that already exists will
move said entry to the current case.

– Delete Entry: Remove an entry from the current case.

– Set as Default case: The Default case will be executed whenever the switch condition does not match any
of the existing entries.

2.9. Block Programs 249

1x PDI Builder, Release 6.12.62

• Phase Switch block: Same as Integer Switch, but using Flight Phases as the switch condition.

Fig. 286: Phase switch block

Warning: Phase Switch and Integer Switch Blocks will report a ‘PDI ERROR’ if they don’t have at least 1
case with entries.

Use of switch blocks
• Add blocks inside: Drag and drop the desired block inside the Switch block:

Fig. 287: Create a block inside a switch block

• Input/Output: Right click inside a Switch block and select add Input/Output. To remove them, right click
and select Remove Input/Output:

250 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 288: Add/Remove an input/output of a switch block

Note: The size of a switch block depends on the blocks it contains. A switch block will always have the size of the
biggest of its existing cases.

2.9.5 Guidance blocks

When defining a guidance system, we refer to a set of commands sent to the platform controller in order to make it
carry out a certain task. This task could be follow a line, climb, land, hold one of its states at a certain value and so on.

In 1x PDI Builder, it is possible to combine a series of guidances to create custom flight phases that will make the
aircraft perform in a given way.

Each Guidance block contains a set of parameters to be configured. All of them are presented as follows.

Name Description
Climb Makes the aircraft climb from the start of the phase to another altitude.
Cruise Makes the aircraft follow a determined route created by the user.
Landing Creates the route that the airplane will follow to land.
Rendezvous Used to create a meeting point where the Air unit will approach a second unit

(either Air or Ground) within a determined offset.
Taxi Creates a linear path along the runway that is followed by the aircraft.
VTOL Vertical take-off and landing.
Yaw current/heading/north Indicates the behavior of the platform in the yaw axis.

2.9. Block Programs 251

1x PDI Builder, Release 6.12.62

2.9.5.1 Guidance blocks common configuration

All the guidance blocks presented below, have the same inputs and outputs, and some common configuration
parameters.

Fig. 289: Common guidance blocks

• Inputs

(Optional) fv: First component of desired ‘hover here’ arcade velocity in the horizontal plane. The actual
direction of this speed depends on the selected arcade axis.

(Optional) lv: Second component of desired ‘hover here’ arcade velocity in the horizontal plane. The actual
direction of this speed depends on the selected arcade axis.

(Optional) dv: Down (vertical) ‘hover here’ desired arcade velocity.

(Optional) spd: Arcade cruise speed increment.

(Optional) hvar: Scale variable for the T-Sched PID of the horizontal guidance.

(Optional) vvar: Scale variable for the T-Sched PID of the vertical guidance.

• Output

Pin 0: Guidance data for the Guidance Computation block.

Warning: To produce a guidance computation, these blocks must be connected to the Guidace Computation
block via this output.

• Configuration menu:

252 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 290: Common guidance blocks configuration

All the parameters that define the guidance are detailed:

1. Patch: This option allows the user to select the first path to be flown by the aircraft. The user should first
enable this option and then select the desired path to bo the first-of-the-route.

2. Set height mode: Height mode indicates how the aircraft will perform the defined path. There are three
possible height modes:

– 2D mode: If this mode it is selected, the platform will follow the predifined route without taking into
account the altitude of the waypoints, it will keep the altitude that it has at the moment it enters in the
guidance.

– 2.5D mode: The vehicle will follow a 3D trajectory that connects both waypoints. However, it will
give priority to horizontal guidance. Autopilot 1x will try to adjust its position and altitude to
the path (both horizontally and vertically), but if for any reason it cannot reach the altitude of the final
waypoint, it will considered that it has been reached if its position matches the position of the waypoint.

– 3D mode: The vehicle will follow a 3D trajectory that connects both waypoints. In this case,
horizontal and vertical guidance have the same priority level. This means that Autopilot 1x will not
consider that a waypoint has been reached until its position and altitude match the waypoint’s ones.

2.9. Block Programs 253

1x PDI Builder, Release 6.12.62

As this type of guidance may result in a vertical flight, it is reserved for multicopters or hybrid
platforms.

3. Arcade position/speed transition: In Arcade mode the trajectory generated (position) is not followed and
instead the aircraft moves according to the commanded speed.

The Horizontal and Vertical speed parameters serve as the upper thresholds for when the aircraft
guidance should be based on position, even in Arcade mode. This parameters are mainly useful for
platforms like multicopters.

4. Set speed: This option sets the speed that the vehicle will have during the manoeuvre.

– Cruise: Lets the user set the velocity modulus of the guidance. This velocity can be slightly modified
by the autopilot control algorithms.

– Waypoint: If enable, it indicates the speed at which the platform will reach the waypoints of the path,
i.e. it will travel along the path with the speed indicated in the option Cruise and then it will decelerate
or accelerate to the speed indicated here.

– Type: Defined speed. Can be IAS (Indicated Airspeed) or Ground speed. Normally, IAS is used for
airplanes and Ground speed for multicopters.

– Deceleration: This can only be configured when Waypoint option is enabled. Maximum allowed
acceleration/deceleration to meet the desired velocity.

5. Guidance control: These PIDs are defined to guarantee stability of guidance loop, they are used to calculate
the Desired Speed Vector based on the current position error.

Then, the resulting vector, along with the Guidance parameters, will be used to generate the Desired
variables (ID 100 - 258 Rvars) that can be used as inputs for the control loops.

For both Horizontal and Vertical guidance, the user can choose the type of control between PID or T-
Sched PID.

Besides, by clicking on the icon of both guidance, a pop-up window will appear where the control
parameters should be entered, for more information on the latter check Control blocks.

In the horizontal-position PID (see image below), North-East current position of the aircraft is compared
to the desired position. The output of the PID controller is going to be a ground speed in the North-East
plane, which translates into a desired lateral and front ground speeds in body axes. The same logic applies
for the vertical-position PID.

254 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 291: Horizontal Position PID

However, the algorithm is more complex than this simple PID.

For tuning, it is usual to use only proportional term in the PID:

– A high proportional will converge faster to the desired position but with overshoot.
– A lower proportional will make the arrival to the desired position slower but it is a smooth

convergence.

Next figures shows this behavior with 𝐾𝑝 = 0.2 and 𝐾𝑝 = 0.02.

2.9. Block Programs 255

1x PDI Builder, Release 6.12.62

256 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 292: PID Proportional gains

Guidance-generated Variables
The guidances contained within Veronte Autopilot 1x generate a series of variables that are later used in the control
loops as the input of the PIDs. Generally, variables named as Desired are used in this Guidance.

The list of variables is the following:

• Desired position.

• Track position.

• Track state (current patch, last patch).

• Desired latitude, desired longitude, desired WGS84, desired MSL, desired AGL.

• Desired velocity.

• Desired front groundspeed, desired lateral groundspeed, desired velocity down.

• Desired tangential acceleration.

• Desired IAS.

• Guidance north error.

• Guidance east error.

• Guidance down error.

2.9. Block Programs 257

1x PDI Builder, Release 6.12.62

• Desired body velocities.

• Desired velocities north, east, down.

• Desired heading, FPA and bank.

• Route-guidance distance - tangential component.

• Route-guidance distance - horizontal component.

• Route-guidance distance - perpendicular component.

2.9.5.2 Climb

Climb guidance is used to make the aircraft climb from the start of the phase to another altitude. Commonly, this
guidance is used after the take-off to fly from the ground to cruise altitude through a loiter point, but it can be employed
for other purposes.

Climbing guidance generates a three-dimensional trajectory.

Fig. 293: Climb block

Warning: In order to produce a guidance computation this block has to be connected to the Guidace Computation
block.

• Configuration menu:

The climbing path is automatically generated and is not directly shown to the user until the aircraft enters this
phase. This is due to the algorithm recalculating the path each time to take into account the aircraft’s actual flight
conditions and the user’s indicated parameters

258 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 294: Climb block configuration

Below, the parameters shown above are going to be described. Later, a brief description of the algorithm and its
behavior in different possible situations will be presented:

1. Patch: This is detailed in the common guidance block parameters, described at the beginning of this section
in Guidance blocks common configuration.

2. Set height mode: This is detailed in the common guidance block parameters, described at the beginning
of this section in Guidance blocks common configuration.

2.9. Block Programs 259

1x PDI Builder, Release 6.12.62

3. Arcade position/speed transition: This is detailed in the common guidance block parameters, described
at the beginning of this section in Guidance blocks common configuration.

4. Set speed: This is detailed in the common guidance block parameters, described at the beginning of this
section in Guidance blocks common configuration.

5. Guidance control: This is detailed in the common guidance block parameters, described at the beginning
of this section in Guidance blocks common configuration.

6. Runway and Loiter position: Here the user can define the loiter and runway positions and direction.
However, the default option is to define them in the Runway option of Veronte Ops (for more information,
see Veronte Ops manual).

If the Advanced option is chosen, then the user can define these parameters. By clicking on or
different options will be displayed:

Fig. 295: Runway and Loiter Position Options

– Loiter point: Defines the loiter point. The two available options are:

∗ icon selected: By default, this point is the runway’s loiter. But the user can select in the drop-
down list any other previously defined point. This includes waypoints defined in the Mission (in
Veronte Ops), among many others.

∗ icon selected: Alternately, the user can manually define the Loiter point. Then it can be
configured in two ways:

· Relative: In this case, the position of the point is relative to another point. That point could be
any platform fitted with an Autopilot 1x.

· Absolute: The coordinates can be set in UTM, MGRS, Decimal Degrees or Degress º ” ‘. They
are indicated through the latitude, longitude and altitude (being possible to define this last one
with respect to the ellipsoid, WGS84, to the sea level, MSL or to the ground, AGL).

260 Chapter 2. Configuration

https://manuals.embention.com/veronte-ops/en/6.12/index.html

1x PDI Builder, Release 6.12.62

– Direction: Defines the runway direction. Again, there are two available options:

∗ icon selected: By default, it is the same as the selected runway. It can be also chosen from a
list of options including runway direction, tailwind direction, etc.

∗ icon selected: Alternately, it can also be defined as an angle with respect to the magnetic
north.

– Loiter pos is center: If this box is enabled, the defined loiter point will be the center of the loiter
circular trajectory. In case of not, the circular loiter trajectory will pass through that point.

Fig. 296: Climb route top and front views with parameter identification

7. Route: Here is where the user can set some of the the climbing path parameters (those highlighted in red
on the above diagram).

2.9. Block Programs 261

1x PDI Builder, Release 6.12.62

First, the user-defined parameters are described and then, some considerations on the behavior of the climb
algorithm are explained:

– Taxi extension: This parameter does not apply to this algorithm.

– Horizontal extension (dxy): Absolute ground distance of the first path, 𝐿4 . From the start of the
climb to the start of the turn that faces the loiter path.

This distance will remain fix always and it will also fix 𝐿4 path’s final point height, 𝐻4 . More
information below.

– Radius Head Turn (R3): Radius of the turn to head the platform towards the loiter.

– Radius loiter (R1): Radius of the ascending helix path to reach the loiter height.

– Flight Path Angle: The 𝐹𝑃𝐴 (𝛾4) is the angle at which the aircraft will climb. Before the algorithm
execution, all Flight Path Angles, 𝛾𝑖 , are equal: 𝐹𝑃𝐴 = 𝛾4 = 𝛾2,3 = 𝛾1 . The algorithm can modify
𝛾2,3 and 𝛾1 . In that case, the Flight Path Angle option will serve as the upper threshold.

Note: The rest of the parameters shown in the figure above are calculated automatically by the algorithm

(𝐿1, 𝐿2, 𝐿3, 𝐻1, 𝐻2, 𝐻3, 𝛾1, 𝛾2,3).

Each of these parameters can be entered manually or linked to an Operation Guidance defined by the user

clicking on or .

Climbing guidance parameters behavior
The climbing track is not fix, the algorithm recalculates the paths each time to take into account the aircraft position
and the user’s parameters. The trajectory usually has 4 paths, excluding the final loiter path:

• General trajectory description:

– 𝐿4 is the first path. The user can set the horizontal length, 𝑑𝑥𝑦 , the direction (in Runway direction) and the
path’s final point height, 𝐻4 with the defined Flight Path Angle. This is very relevant, as seen later. The
path length can not be zero.

𝛾4 = 𝐹𝑃𝐴

𝐻4 = 𝑑𝑥𝑦 · tan(𝛾4)

– 𝐿3 : Circular turn to head the platform towards the loiter. The user can set the radius, 𝑅3 . It is possible to

set this path to zero clicking on . The FPA, 𝛾2,3 , can be modified by the algorithm.

– 𝐿2 : Straight path that reaches the climbing loiter point. This path is completely automatic generated. Its
FPA, 𝛾2,3 , can be modified by the algorithm.

– 𝐿1 : Ascending helix path to reach the loiter height. The user can set the radius, 𝑅1 .

• Loiter height effect: Loiter height’s, 𝐻𝑐 , modifies the algorithm general behavior. Depending on whether 𝐻𝑐

is bigger or smaller than 𝐻2 or smaller than 𝐻4 the algorithm will modify some parameters, in particular the
flight path angles:

1. 𝐻2 < 𝐻𝑐 : This is the general case, in this situation no corrections will be applied as shown below and
𝛾2,3 = 𝛾1 = 𝐹𝑃𝐴.

262 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 297: Climbing heights when 𝐻2 < 𝐻𝑐

2. 𝐻4 < 𝐻𝑐 < 𝐻2 : In this case, the algorithm will compute a new 𝛾2,3 to avoid surpassing the loiter’s height
and 𝛾1 will be zero.

Fig. 298: Climbing heights when 𝐻4 < 𝐻𝑐 < 𝐻2

3. 𝐻𝑐 < 𝐻4 : In this case, the algorithm will force 𝐻𝑐 = 𝐻4 . So 𝐻4 will be the new loiter height keeping
𝛾4 = 𝐹𝑃𝐴 and the other flight paths angles equal to zero, 𝛾2,3 = 𝛾1 = 0.

2.9. Block Programs 263

1x PDI Builder, Release 6.12.62

Fig. 299: Climbing heights when 𝐻𝑐 < 𝐻4

2.9.5.3 Cruise

This phase is used to make the aircraft follow a position-based route created by the user in Veronte Ops (for more
information, see Veronte Ops manual). This is the principal use of this guidance algorithm, but it can also be used to
make the aircraft go to a certain location (e.g, a waypoint) without indicating the complete route, thus being a guidance
used to command a movement by position.

Cruise guidance generates a three-dimensional trajectory.

Fig. 300: Cruise block

264 Chapter 2. Configuration

https://manuals.embention.com/veronte-ops/en/6.12/index.html

1x PDI Builder, Release 6.12.62

Warning: In order to produce a guidance computation this block has to be connected to the Guidace Computation
block.

• Configuration menu:

Fig. 301: Cruise block configuration

All the parameters that define the cruise guidance are detailed.

1. Patch: This is detailed in the common guidance block parameters, described at the beginning of this section
in Guidance blocks common configuration.

2. Set height mode: This is detailed in the common guidance block parameters, described at the beginning
of this section in Guidance blocks common configuration.

3. Arcade position/speed transition: This is detailed in the common guidance block parameters, described
at the beginning of this section in Guidance blocks common configuration.

4. Set speed: This is detailed in the common guidance block parameters, described at the beginning of this
section in Guidance blocks common configuration.

5. Guidance control: This is detailed in the common guidance block parameters, described at the beginning
of this section in Guidance blocks common configuration.

2.9. Block Programs 265

1x PDI Builder, Release 6.12.62

2.9.5.4 Envelope

Envelope block is used to configure the flight envelope of the aircraft. Here the limits that will not be exceeded during
the operation are set.

These limits are respected by the guidance and depend on how the control is implemented.

Warning: Although the acceleration has been limited here, if the control is configured so that the pilot in manual
mode can control the pitch angle, this acceleration limit will have no effect.

Fig. 302: Envelope block

Warning: In order to produce a guidance computation this block has to be connected to the Guidace Computation
block.

• Output

Pin 0: Flight envelope configuration.

Important: If users wish to have more than one envelope in their configuration, they must configure as many envelope
blocks as they wish and make the connection to the Guidance Computation block through a block of type Swicth.

To do this, the desired conditions must be set for the Autopilot 1x to make the switch in the Switch block.

An example of how to implement more than one envelope is shown below:

Fig. 303: Example of more than one Envelope block

• Configuration menu: The configuration of this block is divided into 3 different tabs:

Envelope

266 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 304: Envelope block configuration - Envelope

1. VTOL: If this option is enabled, when the vehicle reaches the last waypoint of its route (and it is an open
path), a hover is done instead of a loiter point.

2. Airspeed Limits: Limits for the indicated airspeed (IAS). Values indicated here have effect over the
“Cruise” guidance, but is overrided if there is a Hold command on the IAS, so the user must be careful
with the velocity commands.

3. Ground Speed Limits: Minimum and maximum ground speed of the platform. In case of strong wind,
these parameters set the minimum GS that the aircraft can reach, for lower values than this one the thrust
will be automatically increased to gain speed and avoid a point where the platform is stopped in the air.

4. Vertical Speed Limits: Similar to the previous limit. It sets the minimum and maximun value for the
vertical speed of the platform.

5. Flight Path Limits: Maximum and minimum values for the flight path angle (angle of climb or descent).

Note:
– Users can manually enter values or select variables instead.

– These limits will modify how guidances command your vehicle to move, but will not apply when the aircraft
is not being controlled by a guidance (i.e manual/assisted flight).

– These values should not represent the maximum limits that the platform can withstand, but the maximum
values that should be present during a normal operation.

2.9. Block Programs 267

1x PDI Builder, Release 6.12.62

Acceleration limit
In this second tab there are more options to fix the limits (positive and negative direction) of acceleration and
jerk in SI units.

Acceleration limits are applied in any phase with position guidance. They modify the desired velocity. The
algorithm compares the current desired velocity with thatstored in previous step. There are six values to define.

Fig. 305: Envelope block configuration - Acceleration limit (Spherical frame)

The configurable options in this menu are:

1. Enable/Disable the acceleration limit.

2. Type: User can choose between Cartesian Body and Spherical.
Cartesian Body is normally used for multicopters or aircraft that allow 3-dimensional movement, while
the Spherical type is used for conventional aircraft.

3. Enable/Disable angular rates: The user also can selected directly angular rates option which allows him
set limits in Y body rate and Z body rates.

4. Axes:

268 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

– In Cartesian Body the axes refer to the body frame (X Body Axis, Y Body Axis, Z Body Axis).

– In Spherical type, the algorithm internally applies limits in module, inclination and azimuth to
maintain the limits set by the user in body frame (body frame limits will be turn into spherical limits).

5. Positive direction: The limit for acceleration. If desired velocity has the same sign as in the previous step,
and it is lower (in absolute value) this limit is applied.

For example, if a multicopter is flying in negative X direction, and it has to increase desired velocity in
same direction this limit will be applied.

6. Negative direction: The limit for deceleration. In the case positive direction limit is not used.

The second derivative of velocity (Jerk) imposes another limit in acceleration. It modifies the behavior of the
vehicle.

Depending on values, it’s possible to get more smoothness during guidance. Algorithm ensures that when desired
velocity is reached the acceleration value is near 0. As acceleration limits, user can set 6 values (3 for positive
direction limit and 3 for negative direction limit).

Fig. 306: Envelope block configuration - Acceleration limit (Cartesian frame)

The effects of these limitations are explained below.

2.9. Block Programs 269

1x PDI Builder, Release 6.12.62

First, the acceleration limits are disabled. The stick that controls Thrust is moved and desired velocity change
according to this stick command. In Desired velocity chart we can see this effect and in bottom acceleration chart
is shown how acceleration is not limited (hight values reached).

Fig. 307: Only velocity limit (Thrust)

Now, a limit in acceleration bottom axis is set to 0.1. Now the desired speed grows with a lower slope due to the
imposed limitation. Also in the acceleration bottom chart we can see how the value oscillates within the imposed
limit.

270 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 308: Acceleration limit (Thrust)

To compare acceleration and jerk, roll axis is chosen. In the first gif below only the first limit is applied.

Fig. 309: Acceleration limit (Cartesian frame)

2.9. Block Programs 271

1x PDI Builder, Release 6.12.62

When the jerk limit is also enabled we can see how acceleration (in Y Body axis) does not show peaks, and
changes in desired velocity are smoother.

Fig. 310: Acceleration limit (Cartesian frame)

Obstacles/Geofencing
Users should configure this last tab when using the geofencing functionality of Veronte Autopilot 1x.

The maximum deceleration desired when approaching the obstacle can be entered manually or by selecting a
variable.

272 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 311: Envelope block configuration - Obstacles/Geofencing

2.9.5.5 Guidance Computation

Guidance Computation block takes the configuration and arcade data from a given type of guidance and computes the
guidance parameters. It is always necessary to add it with these Guidance blocks: Climb, Cruise, Landing, Rendezvous,
Taxi and VTOL.

In additon, an Envelope block must also be connected to this block to compute the flight envelope of the aircraft in the
guidance.

Fig. 312: Guidance Computation block

• Inputs

Config: Guidance configuration.

Envelope: Flight envelope.

2.9. Block Programs 273

1x PDI Builder, Release 6.12.62

2.9.5.6 Landing

Landing guidance is used to generate the flying path the aircraft will follow when landing on a certain runway.

Landing guidance generates a three-dimensional trajectory.

Fig. 313: Landing block

Warning: In order to produce a guidance computation this block has to be connected to the Guidace Computation
block.

• Configuration menu:

The generated path is not directly indicated by the user as in cruise guidance (which is defined in Veronte Ops),
instead a trajectory is generated based on the parameters detalied later in this section, as in climb guidance.

Below, find all the information to be defined by the user together with the corresponding Figures showing the
location of these parameters in the menu.

274 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 314: Landing block configuration

1. Patch: This is detailed in the common guidance block parameters, described at the beginning of this section
in Guidance blocks common configuration.

2. Set height mode: This is detailed in the common guidance block parameters, described at the beginning
of this section in Guidance blocks common configuration.

3. Arcade position/speed transition: This is detailed in the common guidance block parameters, described
at the beginning of this section in Guidance blocks common configuration.

4. Set speed: This is detailed in the common guidance block parameters, described at the beginning of this
section in Guidance blocks common configuration.

5. Guidance control: This is detailed in the common guidance block parameters, described at the beginning
of this section in Guidance blocks common configuration.

6. Runway and Loiter position: Here the user can define the loiter and runway positions and direction.
However, the default option is to define them in the Runway option of Veronte Ops (for more information,
see Veronte Ops manual).

2.9. Block Programs 275

https://manuals.embention.com/veronte-ops/en/6.12/index.html

1x PDI Builder, Release 6.12.62

If the Advanced option is chosen, then the user can define three parameters. By clicking on or
different options will be displayed:

Fig. 315: Runway and Loiter Position Options

– Touch point: Defines the touch point of the runway. The user can configure it in 2 different ways:

∗ icon selected: By default, this point is the runway’s touch point. But the user can select in the
drop-down list any other previously defined point. This includes waypoints defined in the Mission
(in Veronte Ops), among many others.

∗ icon selected: Alternately, the user can manually define this point. Then it can be configured
in two ways:

· Relative: In this case, the position of the point is relative to another point. That point could be
any platform fitted with an Autopilot 1x.

· Absolute: The coordinates can be set in UTM, MGRS, Decimal Degrees or Degress º ” ‘. They
are indicated through the latitude, longitude and altitude (being possible to define this last one
with respect to the ellipsoid, WGS84, to the sea level, MSL or to the ground, AGL).

– Loiter point: Defines the loiter point. The two available options are:

∗ icon selected: By default, this point is the runway’s loiter. But the user can select in the drop-
down list any other previously defined point. This includes waypoints defined in the Mission (in
Veronte Ops), among many others.

276 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

∗ icon selected: Alternately, the user can manually define the Loiter point. Then it can be
configured in two ways:

· Relative: In this case, the position of the point is relative to another point. That point could be
any platform fitted with an Autopilot 1x.

· Absolute: The coordinates can be set in UTM, MGRS, Decimal Degrees or Degress º ” ‘. They
are indicated through the latitude, longitude and altitude (being possible to define this last one
with respect to the ellipsoid, WGS84, to the sea level, MSL or to the ground, AGL).

– Direction: Defines the runway direction. Again, there are two available options:

∗ icon selected: By default, it is the same as the selected runway. It can be also chosen from a
list of options including runway direction, tailwind direction, etc.

∗ icon selected: Alternately, it can also be defined as an angle with respect to the magnetic
north.

– Loiter pos is center: If this box is enabled, the defined loiter point will be the center of the loiter
circular trajectory. In case of not, the circular loiter trajectory will pass through that point.

7. Trajectory distances: Here the user defines some of the trajectory distances. This distances match the
trajectory patches lengths 𝐿 or are proportional to them. See the explanation below for more information
on every patch.

– Taxi extension: Distance from touchdown to where the aircraft is brougth to a full stop.

– Horizontal extension (dxy): Distance before the head of the runway. At the end of this length,
touchdown is expected.

– Radius Head Turn (R3): Radius of the last turn in order to face the runway direction (𝐿3 ∝ 𝜋𝑅3).

– Radius loiter (R1): Radius of the descending loiter for the aircraft to reach an altitude suitable to
perform the landing manoeuvre (𝐿1 ∝ 𝜋𝑅1).

Each of these parameters can be entered manually or linked to an Operation Guidance defined by the user

clicking on or .

Note: Some patches don’t have an associated user-defined distance, and are automatically calculated by the
landing guidance algorithm, as they depend on some of the above distances and other parameters defined
below.

8. Trajectory flight path angles: Here the user defines the desired trajectory flight path angles for each of
the patches of the trajectory. See the explanation below for more information on every patch.

– Initial maximum (absolute): Desired flight path angle 𝛾0 of patch 0.

– Loiter: Desired flight path angle 𝛾1 of patch 1.

– Aim: Desired flight path angle 𝛾2,3 of patches 2 and 3.

– DXY: Desired flight path angle 𝛾4 of patch 4.

9. Trajectory velocities: Here the user defines the desired trajectory velocities for each of the patches of the
trajectory. See the explanation below for more information on every patch.

– Initial: Desired velocity 𝑣0 of patch 0.

2.9. Block Programs 277

1x PDI Builder, Release 6.12.62

– Loiter: Desired velocity 𝑣1 of patch 1.

– Aim: Desired velocity 𝑣2,3 of patches 2 and 3.

– DXY: Desired velocity 𝑣4 of patch 4.

Each of these parameters can be entered manually or linked to an Operation Guidance defined by the user

clicking on or .

The generated trajectory of the landing guidance defines the route that the aircraft follows from the point when the
phase with this guidance is entered, to the point where it touches the ground, see the Figure below. The landing route
has two parts, being decomposed into 6 patches:

• First part: Descending loiter used to descend from the cruise altitude to an altitude where the heading manoeuvre
towards the runway can be performed.

– Patch 0: This patch is generated from the point the landing phase is entered to where the loiter is located.
Variables that influence this patch are 𝛾0, 𝑣0 , altitudes 𝐻0 and 𝐻1 , and Loiter point position.

– Patch 1: The patch length (𝐿1) will depend on the amount of loops on the loiter. The latter can go from 0
to more than 1 loop, depending on the altitude necessary to descend/ascend. Variables that influence this
patch are 𝛾1, 𝑣1, altitudes 𝐻1 and 𝐻2 , and Radius loiter (R1).

The loiter exiting point altitude is computed so that patches 2 to 5 can be performed following their desired 𝑣
and 𝛾. So it exists the possibility of starting the landing manoeuvre at a lower altitude thant the exiting point of
the loiter. In that case, the loiter would be used to ascend.

If the aircraft starts the landing phase at an altitude similar to the one of the loiter (defined in point 7), then the
loiter patch is simplified into a turn (during the turn the altitude can still be adjusted) and the turn’s length will
depend on the latter.

• Second part: Final approach of the landing, which consists on turning, facing the runway and touchdown.

– Patch 2: Patches 3 and 4 need to match the distances defined above. Patch number 2 will conect the exit
of the loiter patch with the beginning of patch 3. Variables that influence this patch are 𝛾2,3, 𝑣2,3 , altitudes
𝐻2 and 𝐻3, Loiter point and Touch point positions.

– Patch 3: Turning of the aircraft to face the runway. Variables that influence this patch are 𝛾2,3, 𝑣2,3 ,
altitudes 𝐻3 and 𝐻4 and Radius Head Turn (R3).

– Patch 4: At the end of the patch the aircraft lands. Variables that influence this patch are 𝛾4, 𝑣4 , altitude
𝐻4 and Horizontal extension (dxy).

– Patch 5: Taxi extension for the aircraft to slow down.

278 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 316: Landing route top and front views with parameter identification

2.9.5.7 Rendezvous

Rendezvous guidance is used to create a meeting point where the 1x air unit will approach a second unit (either another
air or base) within a determined offset.

This guidance updates constantly the vehicle attitude in order to track, with the shortest path, the position of the second
unit (named as Base hereafter). This guidance works for both static and moving Base.

Rendezvous navigation is ready for taking Internest input to improve the precision from its guidance, being the most
suitable kind for Internest integration.

2.9. Block Programs 279

1x PDI Builder, Release 6.12.62

Fig. 317: Rendezvous block

Warning: In order to produce a guidance computation this block has to be connected to the Guidace Computation
block.

• Configuration menu:

All the parameters that define the rendezvous guidance are detailed.

280 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 318: Rendezvous block configuration

1. Patch: This is detailed in the common guidance block parameters, described at the beginning of this section
in Guidance blocks common configuration.

2. Set height mode: This is detailed in the common guidance block parameters, described at the beginning
of this section in Guidance blocks common configuration.

3. Arcade position/speed transition: This is detailed in the common guidance block parameters, described
at the beginning of this section in Guidance blocks common configuration.

4. Set speed: This is detailed in the common guidance block parameters, described at the beginning of this
section in Guidance blocks common configuration.

2.9. Block Programs 281

1x PDI Builder, Release 6.12.62

5. Guidance control: This is detailed in the common guidance block parameters, described at the beginning
of this section in Guidance blocks common configuration.

6. Relative position: For both Docking and Rendezvous the axes are set according to Autopilot 1x orientation
(for more information about 1x orientation visit Orientation - Hardware Installation section of the 1x
Hardware Manual).

– Rendezvous relative position: 3D point used to configure the meeting point for the 1x air unit.
This point will be tracked by the vehicle and, once reached, it will start travelling to Docking relative
position. For VTOL, X and Y components must be equal.

– Docking relative position: 3D point used to configure the offset for the approaching vehicle to the
Docking base. This will be the difference from GNSS position that defines the landing point.

Warning: Usually, the docking relative position is set by slightly overlapping the ‘Docking
base’ in order to ensure that the 1x air unit reaches it, as can be seen in the figure below.

7. Base yaw, pitch & roll: Defines the attitude from the Base body. These values affect the navigation by
orienting the air unit to be equal to the attitude from the Base unit. To be configured with telemetry
(example below).

8. Docking base: Defines the position of the GNSS antenna connected to the Base unit. If the guidance is
being configured for a ‘moving’ Base, a Moving Object must be assigned to it.

9. Use Internest: As Rendezvous navigation is prepared to take Internest input, here the user can enable its
use and configure a Timeout.

The following figure gives an overview of some parameters introduced (note that the negative Z-coordinate is due to
the Autopilot 1x axes convention):

Fig. 319: Rendezvous guidance parameters

282 Chapter 2. Configuration

https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#orientation

1x PDI Builder, Release 6.12.62

In order to know how to configure the Moving Object, which is assigned to Docking Base and the Base attitude, see
Data transmission between Veronte Autopilots 1x - Integration examples section of this manual.

Finally, in order to see the Moving Object position in the Veronte Ops interface, in the 1x Air unit:
1. Go to Telemetry menu→ Telemetry panel→ Data link to VApp.

2. Add Moving Object to the list of variables.

2.9.5.8 Taxi

Taxi guidance is used to create a linear path along the runway that is followed by the aircraft. This command is normally
used in the take-off phase, where the airplane is wanted to keep the direction of the runway while is accelerating until
the lift-off point.

Fig. 320: Taxi block

Warning: In order to produce a guidance computation this block has to be connected to the Guidace Computation
block.

• Configuration menu:

2.9. Block Programs 283

1x PDI Builder, Release 6.12.62

Fig. 321: Taxi block configuration

All the parameters that define the taxi guidance are detailed.

1. Patch: This is detailed in the common guidance block parameters, described at the beginning of this section
in Guidance blocks common configuration.

2. Set height mode: This is detailed in the common guidance block parameters, described at the beginning
of this section in Guidance blocks common configuration.

3. Arcade position/speed transition: This is detailed in the common guidance block parameters, described
at the beginning of this section in Guidance blocks common configuration.

4. Set speed: This is detailed in the common guidance block parameters, described at the beginning of this
section in Guidance blocks common configuration.

5. Guidance control: This is detailed in the common guidance block parameters, described at the beginning
of this section in Guidance blocks common configuration.

6. Runway: Here it is selected a runway previously configured, see the Runway option of Veronte Ops for
more information.

284 Chapter 2. Configuration

https://manuals.embention.com/veronte-ops/en/6.12/index.html

1x PDI Builder, Release 6.12.62

Besides, it is possible to use the Advanced mode and select a different end point or direction. By clicking

on or different options will be displayed:

Fig. 322: Runway parameters

– End point: Defines the end point of the runway. The two available options are:

∗ icon selected: By default, this point is the end of the runway. But the user can select in the
drop-down list any other previously defined point. This includes waypoints defined in the Mission
(in Veronte Ops), among many others.

∗ icon selected: Alternately, the user can manually define the End point. Then it can be
configured in two ways:

· Relative: In this case, the position of the point is relative to another point. That point could be
any platform fitted with an Autopilot 1x.

· Absolute: The coordinates can be set in UTM, MGRS, Decimal Degrees or Degress º ” ‘. They
are indicated through the latitude, longitude and altitude (being possible to define this last one
with respect to the ellipsoid, WGS84, to the sea level, MSL or to the ground, AGL).

– Direction: Defines the runway direction. Again, there are two available options:

∗ icon selected: By default, it is the same as the selected runway. It can be also chosen from a
list of options including runway direction, tailwind direction, etc.

∗ icon selected: Alternately, it can also be defined as an angle with respect to the magnetic
north.

2.9. Block Programs 285

1x PDI Builder, Release 6.12.62

2.9.5.9 VTOL

VTOL guidance (vertical take-off and landing) is used in multicopters for the take-off and landing operations. This
guidance consists on the creation of a vertical line that starts at the point where the platform enters in this guidance.

VTOL guidance generates a vertical straight trajectory.

Fig. 323: VTOL block

Warning: In order to produce a guidance computation this block has to be connected to the Guidace Computation
block.

• Configuration menu:

286 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 324: VTOL block configuration

All the parameters that define the VTOL guidance are detailed.

1. Patch: This is detailed in the common guidance block parameters, described at the beginning of this section
in Guidance blocks common configuration.

2. Set height mode: This is detailed in the common guidance block parameters, described at the beginning
of this section in Guidance blocks common configuration.

3. Arcade position/speed transition: This is detailed in the common guidance block parameters, described
at the beginning of this section in Guidance blocks common configuration.

4. Set speed: This is detailed in the common guidance block parameters, described at the beginning of this
section in Guidance blocks common configuration.

5. Guidance control: This is detailed in the common guidance block parameters, described at the beginning
of this section in Guidance blocks common configuration.

2.9. Block Programs 287

1x PDI Builder, Release 6.12.62

6. Type: These parameters are used to indicate how the multicopter follows the route during the take-off and
landing.

– The path Straight consists on a vertical line from the point where the vehicle enters in this phase. In
the case of a take-off, the line goes from the ground to an altitude indicated by the user.

– The second option, Hangman, the path consists on a vertical and horizontal line.

– Extend: When Up or Down are selected, the value set in Safe will be discard, and the platform will
ascend or descend, until a next change.

– Safe: This parameter defines the altitude the aircraft reach. The user can select an Operation Guidance

point from the drap-down list (icon selected) or manually enter a value (icon selected), this
latter value can be:

∗ Relative: Starting from the initial point of the route (current platform position).

∗ Absolute altitude: MSL, AGL or WGS84.

As an example, in a Take-Off operation, an altitude of -10000 meters can be indicated as the
final point of the route, so it is sure that the multicopter will keep climbing until another phase is
commended (via automation or manually).

The same procedure is done in the landing, indicating a big relative distance (for example 100
meters from the starting point), so it is sure that the vehicle reaches the ground, and an automation
is set to stop the platform when it touches the surface.

Note: When the option relative is selected, a positive value will made the aircraft descend. Therefore,
this value is Positive down.

– Touch: Additional parameter to be configured when the type Hangman is selected. It defines a point
that the aircraft has to reach. For instance, after go Up/Down the set value, the aircraft will perform
an horizontal movement according to the defined point. Finally, when the aircrafts is over the point, it
will descend until reaches that point.

Usually, this option is used to land at the same point where it took-off (Return to Take-Off point) or
when there are obstacles in the area and by performing this movement the platform can avoid them and
land safely.

There are 2 ways to configure it:

∗ icon selected: By default, this point is the touch point of the runway. But the user can select
in the drop-down list any other previously defined point. This includes waypoints defined in the
Mission (in Veronte Ops), among many others.

∗ icon selected: Alternately, the user can manually define this point. Then it can be configured
in two ways:

· Relative: In this case, the position of the point is relative to another point. That point could be
any platform fitted with an Autopilot 1x.

· Absolute: The coordinates can be set in UTM, MGRS, Decimal Degrees or Degress º ” ‘. They
are indicated through the latitude and longitude.

288 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 325: Touch options

The following image gives an overview of some parameters introduced:

Fig. 326: Parameters Overview

2.9.5.10 Yawing current

Yaw guidance is used in multicopters to indicate the behavior of the platform in the yaw axis. This option is normally
used during the cruise phase of the multicopters, because the route can be carried out with the aircraft without rotating
in the yaw axis, or rotate it to point its longitudinal axis parelel to the path.

Yawing current block produces the desired yaw by keeping the yaw reading in on focus. That is, the multicopter will
keep the yaw angle it has when entering in the phase that contains this guidance. Desired Yaw = Current Yaw.

Fig. 327: Yaw current block

2.9. Block Programs 289

1x PDI Builder, Release 6.12.62

• Input

(Optional) Commanded yaw offset with respect to reference: It is the desired yaw increment with respect
to the yaw reference set in the block.

• Configuration menu:

Fig. 328: Yaw current block configuration

– Limit enabled: When activated, the yaw rate limit will be set to a constant value indicated below.

– Limit rate value: The user can enter this value in different units. The available units are: rad/s, rad/m,
rad/h, rps, rpm, rph and °/s.

2.9.5.11 Yawing heading

Yaw guidance is used in multicopters to indicate the behavior of the platform in the yaw axis. This option is normally
used during the cruise phase of the multicopters, because the route can be carried out with the aircraft without rotating
in the yaw axis, or rotate it to point its longitudinal axis parelel to the path.

Yawing heading block produces the desired yaw as an angle offset from heading.

Heading represents the direction of the velocity vector and, when it is very small, its estimation is more complex and
the direction is constantly changing. Because of this, the approximation Yaw = Heading is introduced when the
estimated velocity is close to 0.

Fig. 329: Yaw heading block

• Input

(Optional) Commanded yaw offset with respect to reference: It is the desired yaw increment with respect
to the yaw reference set in the block.

• Configuration menu:

290 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 330: Yaw heading block configuration

– Limit enabled: When activated, the yaw rate limit will be set to a constant value indicated below.

– Limit rate value: The user can enter this value in different units. The available units are: rad/s, rad/m,
rad/h, rps, rpm, rph and °/s.

2.9.5.12 Yawing north

Yaw guidance is used in multicopters to indicate the behavior of the platform in the yaw axis. This option is normally
used during the cruise phase of the multicopters, because the route can be carried out with the aircraft without rotating
in the yaw axis, or rotate it to point its longitudinal axis parelel to the path.

Yawing north block produces the desired yaw as an angle offset from north. That is, the yaw of the multicopter will
be rotated so that its longitudinal axis always has north as a reference.

Fig. 331: Yaw north block

• Input

(Optional) Commanded yaw offset with respect to reference: It is the desired yaw increment with respect
to the yaw reference set in the block.

• Configuration menu:

Fig. 332: Yaw north block configuration

– Limit enabled: When activated, the yaw rate limit will be set to a constant value indicated below.

– Limit rate value: The user can enter this value in different units. The available units are: rad/s, rad/m,
rad/h, rps, rpm, rph and °/s.

On the other hand, there are 3 more blocks that help the navigation guidance.

2.9. Block Programs 291

1x PDI Builder, Release 6.12.62

2.9.5.13 Navigation guidance blocks

These blocks, based on the position of a target, calculate the acceleration required to reach that position.

• PNav: Proportional navigation block. The algorithm implemented in this block is based on the fact that two
vehicles are on a collision course when their direct line-of-sight does not change direction as the range closes.

So, PNav dictates that the missile velocity vector should rotate at a rate proportional to the rotation rate
of the line of sight (LOS-rate), and in the same direction.

Fig. 333: PNav algorithm: A missile (blue) intercepts a target (red) by maintaining constant bearing to it (green)

• Modified PNav: Modified proportional navigation guidance (Old Miura).

• GENEX: Generalized Vector Explicit Guidance (GENEX) block.

Fig. 334: Navigation guidance blocks

They are configured the same, but with slightly different algorithms:

• Input

Pin 0: Target position.

• Output

Pin 0: Desired acceleration in body axis.

• Configuration menu:

292 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 335: PNav block configuration

The following parameters are configurable:

– Acc limit: The user can fix a limit for the acceleration. The units available for this value are: m/s2, ft/s2,
in/s2 and g.

– n: It is a proportional parameter.

2.9.6 Library blocks

Library blocks are custom blocks. They are usually a combination of blocks that are used many times in the
configuration of block programs, so for ease of configuration, the user can group them into a single block.

There are 2 types of Library blocks: Custom and Default blocks.

Fig. 336: Library blocks menu

• Custom
These are custom blocks created by the user. They can be added by simply clicking on . An example of how
to create one of these blocks is shown below:

2.9. Block Programs 293

1x PDI Builder, Release 6.12.62

Fig. 337: Example of custom library block

Examples of such blocks are those related to the Stick, which have been named “Center Stick” and “Trim Stick”:

Fig. 338: Example of custom library block - Center Stick

294 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 339: Example of custom library block - Trim Stick

• Default
There is only one ‘Default’ library block, it is called: Sagetech ADSB. This is a block created for the
Transponder/ADS-B “Sagetech MXS”.

Fig. 340: Default library block - Sagetech ADSB block

2.9. Block Programs 295

1x PDI Builder, Release 6.12.62

Fig. 341: Default library block - Sagetech ADSB block configuration

By clicking on the icon, it will appear as ‘Custom’ block and will be available in the Library blocks, so that
users will be able to use it in their programs.

296 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 342: Default library block - Sagetech ADSB

2.9.7 Logic blocks

Logic gates for operating with boolean variables.

2.9.7.1 AND

Returns true if ALL inputs are true, else return false.

Fig. 343: AND block

• Inputs

0: Input bit.

1: Input bit.

• Output

0: Output bit.

• Configuration menu

2.9. Block Programs 297

1x PDI Builder, Release 6.12.62

Fig. 344: AND block configuration

Here the user can configure the number of inputs. The units available units for this value are: bin, octal, dec and
hex.

2.9.7.2 NOT

Logical complement (negation) computation.

Fig. 345: NOT block

• Input

0: Input bit.

• Output

0: Output negated bit.

2.9.7.3 OR

Returns true if ANY of inputs are true, else return false.

Fig. 346: OR block

• Inputs

0: Input bit.

1: Input bit.

298 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

2: Input bit.

• Output

0: Output bit.

• Configuration menu

Fig. 347: OR block configuration

Here the user can configure the number of inputs. The units available units for this value are: bin, octal, dec and
hex.

2.9.8 Math blocks

Math blocks allow to perform a wide variety of mathematical operations.

Fig. 348: Math blocks

2.9.8.1 f(x)

Math blocks with 1 input and 1 output.

All f(x) math blocks have the same input and output:

• Input

: Input value, real variable or constant.

• Output

: Output value.

2.9. Block Programs 299

1x PDI Builder, Release 6.12.62

Warning: All these blocks express the output value in radians.

Users will find the following blocks:

• -x: Change of sign.

• 1/x: Inverse of the input (1/x).

• [-0.5,0.5] Wrap: Wrapping to the range [-0.5, 0.5].

• [-pi,pi] Unwrap: Angle unwrap from [-pi, pi] limits. This block converts an angle signal in the range [-pi, pi]
to a continuous signal in the range [-inf, +inf] assuming the smallest angle change between execution steps.

• [-pi,pi] Wrap: Angle wrapping to the range [-pi, pi] radians.

• [0,1] Wrap: Wrapping to the range [0, 1].

• [0,2pi] Wrap: Angle wrapping to the range [0, 2*pi] radians.

• Arccos(x): Arccos function.

• Arcsin(x): Arcsin function.

• Arctan(x): Arctangent function.

• Ceil(x): Closest intger rounding towards plus infinity.

• Cos(x): Cosine function.

• Exp(x): Natural exponent (e number to the power of the input of the block).

• Floor(x): Closest integer rounding towards minus infinity.

• Log(x): Natural logarithm.

• Round(x): Rounding to closest integer.

• Sign(x): Sign of the input. It returns ‘1’ if the input is positive or zero and ‘-1’ if negative.

• Sin(x): Sine function.

• Sqrt(x): Square root.

• Tan(x): Tangent function.

• x^2: Square of the input.

• |x|: Absolute value.

2.9.8.2 f(x,y)

Math blocks with 2 inputs and 1 output.

All f(x,y) math blocks have the same inputs and output:

• Inputs

: Input value, real variable or constant.

: Input value, real variable or constant.

• Output

: Output value.

Users will find the following blocks:

300 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

• Atan2(y,x): Calculates one unique arc tangent value, where the signs of both arguments are used to determine
the quadrant of the result.

• Max(x,y): Returns the maximum value of the two inputs.

• Min(x,y): Returns the minimum value of the two inputs.

• Remainder(x/y): Remainder block computes the remainder of the division with the first input as numerator and
second input as denominator.

• x*y: Mulitplier block.

• x+y: Adder block.

• x-y: Subtract block computes the subtraction of the first input minuts the second input.

• x/y: Divider block computes the division with the first input as numerator and second input as denominator.

• x^y: Computes the first input raised to the power of the second input.

2.9.8.3 Polynomial

This block performs a polynomial evaluation, it returns the value of the polynomial defined by the coefficients for the
value of x.

Fig. 349: Polynomial block

• Inputs

coef : Array of polynomial coefficients. The order is in increasing order of powers, that is first element is the
independent term, second term is the proportional term, third the quadratic term, etc.

x: Value of evaluation of the polynomial.

• Output

p(x): Result of the polynomial evaluation.

2.9.8.4 Vectors

These are blocks that perform operations with vectors.

• Add: Adds two vectors together.

• Add Elements: Adds all the element of the input vector.

• azeld -> xyz: Conversion from azimuth, elevation and distance to NED (North, East, Down).

2.9. Block Programs 301

1x PDI Builder, Release 6.12.62

Fig. 350: azeld -> xyz block

– Inputs

az: Azimuth in radians.

el: Elevation in radians.

d: Distance in meters.

– Output

xyz: NED (North, East, Down) vector in meters.

• Body to NED: Rotates a vector from the Body frame of reference to North, East, Down.

Fig. 351: Body to NED block

– Input

i0: Vector in Body frame.

– Output

o0: Vector in NED frame.

• Bundle: Returns a vector whose components are the inputs of the block. In its configuration, the user can set
the number of inputs.

Fig. 352: Bundle block

• Cross product: Produces the cross product multiplication of the input vectors.

• Dot Product: Returns the dot product of the input vectors.

302 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

• Linear Transformation: Returns the input vector multiplied by the transformation matrix. In order to edit the
transformation matrix, double click on the block.

Fig. 353: Linear Transformation block

• m x v: Multiplies a 3x3 matrix by a vector of size 3.

– Inputs

m: Matrix, as an array of 9 elements, where the element 0 is 00 of the matrix, the 1 is 10 and so on.

That is, the input vector must be: [00 10 20 01 11 21 02 12 22]

Where the matrix will be:

⎛⎝00 01 02
10 11 12
20 21 22

⎞⎠
v: Column vector with 3 elements.

– Output

Pin 0: Product of the matrix and the vector, with 3 elements.

• m1 x m2: Multiplies two 3 by 3 matrices.

– Inputs

m1: First matrix, as an array of 9 elements, where the element 0 is 00 of the matrix, the 1 is 10 and so
on.

m2: Second matrix, as an array of 9 elements, where the element 0 is 00 of the matrix, the 1 is 10 and
so on.

– Output

Pin 0: Matrix product of both matrices, as an array of 9 elements, where the element 0 is 00 of the
matrix, the 1 is 10 and so on.

• m1 x m2T: Multiplies a 3x3 matrix by the transpose of another 3x3 matrix.

– Inputs

m1: First matrix, as an array of 9 elements, where the element 0 is 00 of the matrix, the 1 is 10 and so
on.

m2: Second matrix, as an array of 9 elements, where the element 0 is 00 of the matrix, the 1 is 10 and
so on.

– Output

Pin 0: Matrix product of the two inputs, as an array of 9 elements, where the element 0 is 00 of the
matrix, the 1 is 10 and so on.

2.9. Block Programs 303

1x PDI Builder, Release 6.12.62

• m1T x m2: Multiplies the transpose of a 3x3 matrix by another 3x3 matrix.

– Inputs

m1: First matrix, as an array of 9 elements, where the element 0 is 00 of the matrix, the 1 is 10 and so
on.

m2: Second matrix, as an array of 9 elements, where the element 0 is 00 of the matrix, the 1 is 10 and
so on.

– Output

Pin 0: Product of both matrices, as an array of 9 elements, where the element 0 is 00 of the matrix, the
1 is 10 and so on.

• m1T x m2T: Multiplies the transpose of two 3x3 matrices.

– Inputs

m1: First matrix, as an array of 9 elements, where the element 0 is 00 of the matrix, the 1 is 10 and so
on.

m2: Second matrix, as an array of 9 elements, where the element 0 is 00 of the matrix, the 1 is 10 and
so on.

– Output

Pin 0: Matrix product of both matrices, as an array of 9 elements, where the element 0 is 00 of the
matrix, the 1 is 10 and so on.

• Mat2quat: Transforms a 3-by-3 rotation matrix (input) into its equivalent quaternion (output).
In its configuration users can select whether to conjugate the quaternion or not.

• Max: Returns the value and position (integer output) of the highest component of the input vector.

• Min: Returns the value and position (integer output) of the lowest component of the input vector.

• Multiply Elements: Returns the product of the components of the input vector.

• NED to Body: Rotates a vector from the North, East, Down frame of reference to Body.

Fig. 354: NED to Body block

– Input

i0: Vector in Body frame.

– Output

o0: Vector in NED frame.

• Norm: Computes the norm of the input vector.

• Quat2mat: Transforms a quaternion (input) into its equivalent 3-by-3 rotation matrix (output).
In its configuration users can select whether to transpose the matrix or not.

• Scale: Multiply the input vector (vIN) by a scalar value (k).

304 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

• Split Bool: This block takes a boolean vector as input and splits it into as many outputs as the user wishes, each
one of them can be a vector or a single value from the input.

Each output produces a vector with the size (number of elements) indicated in Size from the element of the input
vector indicated in the Index parameter.

In the following example:

– The first output produces a vector of size 4 with the first four elements (from 0 to 3).

– The second output only generates a vector of size 1 with the fifth element (4).

– The third output produces a vector of size 3 with the third to fifth elements (from 2 to 4).

Fig. 355: Split Bool block example

• Split Real: This block works in the same way as Split Bool block does. Nonetheless, Split Real operates with
real instead of boolean variables.

• Substract: Subtracts from the first input vector (v1) the other input vector (v2).

• Vector rotation: Rotates a given vector of 3 elements (vector to rotate) by the provided rotation angles (
rotation angles).

• xyz -> azeld: Conversion from NED (North, East, Down) to azimuth, elevation and distance.

Fig. 356: xyz -> azeld block

– Input

xyz: NED (North, East, Down) vector in meters.

– Outputs

az: Azimuth in radians.

2.9. Block Programs 305

1x PDI Builder, Release 6.12.62

el: Elevation in radians.

d: Distance in meters.

2.9.9 Mode/AP Selection blocks

Mode/AP Selection blocks allow to interact with flight modes and redundancy (Autopilot 4x).

2.9.9.1 AP Selection

AP selection block is a Veronte Autopilot 4x consensus. This block behaves differently depending on the selected
AP:

• If this AP is the selected one then the input is copied into the output and the input is sent to the other APs
via CAN (needed to have correct CAN ports configuration).

• If this AP is not the selected one then the outputs are the received values via CAN from the selected AP.

Fig. 357: AP Selection block

• Input

Pin 0: Values computed by this AP.

• Output

Pin 0: Values computed by the selected AP.

• Configuration menu: The user must select the channel through which information is shared between the APs.

306 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 358: AP Selection block configuration

This block normally is used for the control outputs. The APs share the control outputs with each other so that they
all use the control output of the selected AP. Therefore, the input is the control output of the AP in the configuration
and the output is the control output of the selected AP. This can actually be used with any type of variable that you
want to share and use the selected AP’s variable.

This block is intended to be used as input for the inner loop PID (at control rate), so that the Integral term of the 3
Autopilots 1x of the Autopilot 4x remains the same. This way, if the selected autopilot from the 4x is switched to one
of the other 2 available autopilots, a smooth response without significant ‘jumps’ in control will still be obtained. An
example of this use is shown below:

Fig. 359: AP Selection block - Example of use

2.9. Block Programs 307

1x PDI Builder, Release 6.12.62

2.9.9.2 Arcade

Arcade Pure block switches between two input signals according to the current mode of the configured channel. Refer
to the modes configuration table to check the configuration (go to Modes panel in the Control menu).

Fig. 360: Arcade block

• Inputs

Stick: Arcade value to be applied when the configured channel is in arcade mode.

(Optional) Auto: Auto value to be applied when the configured channel is not in arcade mode.

The default value if not connected is zero.

• Outputs

Active: TRUE if the configured channel is in arcade mode, FALSE otherwise.

Value: Value to apply. In arcade mode, this value is equal to the first input (arcade value) and in any other
mode is equal to the second input (auto value).

• Configuration menu:

Fig. 361: Arcade block configuration

The following parameters must be configured:

308 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

1. Channel: Channel controlled by this block. Be careful, each channel is related to a control output
previously defined in the Modes panel of the Control menu.

2. Zero enabled: It can be enabled by the user.

– Disabled: If the stick is in position “0”, even if it is in arcade mode, the autopilot processes it as if it
were in auto mode, and consequently, the value of the output active will be false and the value of the
output value will be that of the auto input.

– Enabled: If the stick is in position “0” and in arcade mode, the autopilot still processes it as being
in arcade mode, so the output active value will be true and the output value will be that of the stick
input.

3. Gain: The output value is the result of multiply the stick input by this gain.

4. Dead band: Creates a zone where the movement of the stick is not sent to the system.

5. Stick zero: Output value when the value of the stick input is 0.

Note: The following diagram details the differences between the parameters Dead band and Stick zero:

Fig. 362: Arcade block configuration - Dead band VS Stick zero

2.9. Block Programs 309

1x PDI Builder, Release 6.12.62

6. Delete a group of phases.

7. Delete/Add a phase to a group.

8. Add configuration: Add a new group of phases affected by this block.

2.9.9.3 Arcade Bounce

Arcade Bounce block switches between two input signals according to the current mode of the configured channel
preventing bounces in transitions from arcade to auto. Refer to the mode configuration table to check the configuration
(go to Modes panel in the Control menu).

Fig. 363: Arcade Bounce block

In the pictures below there is an example controlling the yaw.

Fig. 364: Arcade Bounce block example

310 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 365: Arcade Pure VS Arcade Bounce

This example is explained below:

When the stick is in its zero position, the command sent is 0, so the status of the Active BIT is FALSE (low level), and
the desired yaw is the last yaw saved when the status was TRUE (high level).

However, the platform can still have a yaw rate (r (Angular Velocity) variable in the block example) and in an arcade
pure block it could experiment this bounce.

Therefore, with the Arcade Bounce block, when the Yaw rate (Vrate input) approaches 0 (changes its sign), this BIT
reverts to TRUE (for a moment), and even though a new yaw rate is not being commanded with the stick, the desired
yaw is being updated with the current yaw.

As it is very similar to the Arcade Pure block, the inputs and outputs are the same, except that an additional input is
added to this block:

• Input

Vrate: Controlled variable used to prevent bounces.

• Configuration menu:

2.9. Block Programs 311

1x PDI Builder, Release 6.12.62

Fig. 366: Arcade Bounce block configuration

The following parameters must be configured:

1. Channel: Channel controlled by this block. Be careful, each channel is related to a control output
previously defined in the Modes panel of the Control menu.

2. Gain: The output value is the result of multiply the stick input by this gain.

3. Dead band: Creates a zone where the movement of the stick is not sent to the system.

4. Stick zero: Output value when the value of the stick input is 0.

5. Delete a group of phases.

6. Delete/Add a phase to a group.

7. Add configuration: Add a new group of phases affected by this block.

2.9.9.4 Arcade Extend

Arcade Extend block switches between two input signals according to the current mode of the configured channel
smoothing the transition by extending the arcade mode until the input ‘Val’ goes below the configured margin.
(Similar to Arcade Bounce block). Refer to the mode configuration table to check the configuration (go to Modes panel
in the Control menu).

312 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 367: Arcade Extend block

As it is very similar to the Arcade Pure block, the inputs and outputs are the same, except that an additional input is
added to this block:

• Input

Val: Controlled variable used to extend the arcade to auto transitions.

• Configuration menu:

Fig. 368: Arcade Extend block configuration

The following parameters must be configured:

1. Channel: Channel controlled by this block. Be careful, each channel is related to a control output
previously defined in the Modes panel of the Control menu.

2. Margin: If the ‘Val input’ is higher than the margin set here, the autopilot will remain in arcade mode.

3. Gain: The output value is the result of multiply the stick input by this gain.

4. Dead band: Creates a zone where the movement of the stick is not sent to the system.

5. Stick zero: Output value when the value of the stick input is 0.

2.9. Block Programs 313

1x PDI Builder, Release 6.12.62

6. Delete a group of phases.

7. Delete/Add a phase to a group.

8. Add configuration: Add a new group of phases affected by this block.

2.9.9.5 Manual

Manual block switches between two input signals according to the current mode of the configured channel. Refer to
the mode configuration table to check the configuration (go to Modes panel in the Control menu).

Fig. 369: Manual block

• Inputs

Stick: Manual value to be applied when the configured channel is in manual mode.

(Optional) Auto: Manual value to be applied when the configured channel is not in manual mode.

The default value if not connected is zero.

• Outputs

Active: TRUE if the configured channel is in manual mode, FALSE otherwise.

Value: Value to apply, which in manual mode is equal to the first input (manual value) and in any other
mode is equal to the second input (auto value).

• Configuration menu: The user must select the channel to be controlled.

Fig. 370: Manual block configuration

2.9.9.6 Mix

Mix block adds a ‘Stick’ signal to an ‘Auto’ signal if the current mode for the configured channel is MIX, otherwise
the output is directly the ‘Auto’ signal. In other words, it allows a variable offset to be applied to the input using one of
the stick channels.

314 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 371: Mix block

• Inputs

Stick: Value to be added to ‘Auto’ when the configured channel is in MIX mode.

Auto: Auto value.

• Output

0: If the configured mode of the configured channel is MIX the output is the addition of ‘Stick’ and
‘Auto’, otherwise the output is directly ‘Auto’.

• Configuration menu:

Fig. 372: Mix block configuration

The following parameters can be configured:

– Channel: The user must select the channel to be controlled.

– Gain: This gain will multiply the ‘Stick’ input (before the addition with the ‘Auto’ input) if the current
mode is MIX.

2.9.10 Navigation blocks

2.9.10.1 EKF Adapters

These blocks allow the connection between the autopilot sensors (internal or external) and the calculation of the
navigation algorithm. That is, they “convert” the sensor data into EKF data in order to implement them in the navigation
block (Extended Kalman Filter algorithm).

For this reason, EKF Adapters blocks normally work with the Sensor blocks as inputs.

2.9. Block Programs 315

1x PDI Builder, Release 6.12.62

2.9.10.1.1 Altitude

Altitude block adapts an exteral altimeter sensor, like LIDAR, Sonar, etc., to the EKF input.

Fig. 373: Altitude block

• Inputs

Alt: Altitude measurement as a 3-dimensional real array with the following components:

- 0: Update flag

- 1: Altitude measurement

- 2: Variance

This input corresponds to the Altitude Sensor block.

(Optional) enable: Optional boolean input to enable (true) or disable (false) the input in the EKF.

Not connected means enabled.

• Output

Pin 0: EKF input data (H, R, y).

Note:
– H: Observation matrix.

– R: Measurement covariance matrix.

– y: Measurement.

• Configuration menu:

316 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 374: Altitude block configuration

The following acceletometer parameters must be configured:

– Decimation: Parameter that defines the group of measurements for which 1 value will be stored. For
example, if the decimation is 10, every 10 measurements will be counted as 1. This procedure is used to
reduce the number of samples. Recommended value 40 (in decimal units).

If users have any questions about decimation, please refer to the What does decimation mean? - FAQ section
of this manual.

– Position of altimeter (Body frame): Parameter to indicate the distance from the altimeter to the center of
gravity of the platform. This is used to take into account the weight of the altimeter in the aircraft control.

– Enable tilt limit: The altimeter is normally installed in a fixed position having a constant direction with
respect to the platform. Taking a LIDAR as an example, it is used to measure altitude so it has to point
towards the ground, in a direction parallel to the Z body axis. When the vehicle is not level on its X or Y
axis (has a pitch or roll angle different from zero), the LIDAR will not point in a direction perpendicular
to the ground, and the measurement taken will not be the real altitude of the aircraft. This option is a safe
condition to discard the measure of an altimeter when its tilt angle exceeds a certain value defined here.

– Enable tilt correction: Allows the correction of the altimeter sensor measurement, normally AGL
measurent, with internal pitch and roll measurements.

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = (𝐴𝐺𝐿 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡) · cos(𝑝𝑖𝑡𝑐ℎ) · cos(𝑟𝑜𝑙𝑙)

– Enable sensor limits: It is the range in which the sensor measurement is taken to be processed by 1x PDI
Builder. Any external value will be discarded by the system.

The following figure shows a diagram with the values of maximum and minimum sensor limits altitude, and the
maximum tilt angle.

2.9. Block Programs 317

1x PDI Builder, Release 6.12.62

Fig. 375: Altitude block - Limits

2.9.10.1.2 GNSS compass

GNSS compass block takes two relative position measurements and converts them to misalignment vectors to use in
the EKF for attitude correction.

Fig. 376: GNSS compass block

• Inputs: These inputs correspond to the GNSS Sensor block.

Drn1: Relative position measurement 0 as a 10-dimensional real array with the following components:

- 0: Update flag

- 1: Rover flag: 1 is rover, 0 is base

- 2: Time stamp

- 3: North relative distance

- 4: East relative distance

- 5: Down relative distance

318 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

- 6: Relative distance variance

- 7: X body antenna position

- 8: Y body antenna position

- 9: Z body antenna position

Drn2: Relative position measurement 1 as a 10-dimensional real array with the same components as
described above.

• Outputs

NED: Baseline vector in NED frame as a 5-dimensional real array with the following components:

- 0: Update flag (always 1)

- 1: North component

- 2: East component

- 3: Down component

- 4: Variance

Body: Baseline vector in body frame as a 5-dimensional real array with the following components:

- 0: Update flag (always 1)

- 1: X body component

- 2: Y body component

- 3: Z body component

- 4: Variance.

An example of how to implement this block is presented below:

Fig. 377: GNSS compass block example

2.9. Block Programs 319

1x PDI Builder, Release 6.12.62

2.9.10.1.3 Misalignment

Misalignment block transforms from two vectors expressed in NED and body frames to EKF misalignment data
for attitude correction.

Fig. 378: Misalignment block

• Inputs

NED: Vector measured in NED frame as a 5-dimensional real array with the following components:

- 0: Update flag (always 1)

- 1: North component

- 2: East component

- 3: Down component

- 4: Variance

Body: Vector measured in body frame as a 5-dimensional real array with the following components:

- 0: Update flag (always 1)

- 1: X body component

- 2: Y body component

- 3: Z body component

- 4: Variance.

(Optional) enable: Optional boolean input to enable (true) or disable (false) the input in the EKF.

Not connected means enabled.

• Outputs

Pin 0: EKF input data (H, R, y).

Note:
– H: Observation matrix.

– R: Measurement covariance matrix.

– y: Measurement.

ok: Measurement check bit, returns true if the measurements pass the module checks, false otherwise.

320 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

• Configuration menu:

Fig. 379: Misalignment block configuration

The following parameters are configurable:

– Norm diff. threshold: In order to use the measures that enter the block, the moduli of both measurements
must be similar according to the equation:⃒⃒⃒⃒

⃒ 𝑛𝑚𝑛− 𝑛𝑚𝑏𝑛

(𝑛𝑚𝑛 + 𝑛𝑚𝑏𝑛) · 𝑛𝑑𝑡ℎ𝑟

⃒⃒⃒⃒
⃒ < 1

Where,

∗ 𝑛𝑚𝑛: This is the norm of the first input vector.

∗ 𝑛𝑚𝑏𝑛: This is the norm of the second input vector.

∗ 𝑛𝑑𝑡ℎ𝑟: Norm diff. threshold as a percentage of one, users should look at the absolute value.

– Minimum norm: In addition, it must also be fulfilled that the moduli of the measures are greater than
the Minimum norm defined here.

– Norm filter: This parameter is to filter the measurement of
⃒⃒⃒

𝑛𝑚𝑛−𝑛𝑚𝑏𝑛
(𝑛𝑚𝑛+𝑛𝑚𝑏𝑛)·𝑛𝑑𝑡ℎ𝑟

⃒⃒⃒
to use it in the Madgwich

algorithm.

– Decimation: Parameter that defines the group of measurements for which 1 value will be stored. For
example, if the decimation is 10, every 10 measurements will be counted as 1. This procedure is used to
reduce the number of samples. Recommended value 10 (in decimal units).

If users have any questions about decimation, please refer to the What does decimation mean? - FAQ section
of this manual.

– Use 3D: If enabled, the attitude correction will be in 3D, as by default, only the attitude correction in the
horizontal plane is activated.

2.9. Block Programs 321

1x PDI Builder, Release 6.12.62

2.9.10.1.4 Position

Position block adapts absolute position data to EKF data for position update.

Fig. 380: Position block

• Inputs

Pos: Absolute position measurement. This input corresponds to the GNSS Sensor block or Relative position
sensor block.

(Optional) enable: Optional boolean input to enable (true) or disable (false) the input in the EKF.

Not connected means enabled.

• Output

Pin 0: EKF input data (H, R, y).

Note:
– H: Observation matrix.

– R: Measurement covariance matrix.

– y: Measurement.

• Configuration menu:

Fig. 381: Position block configuration

Users must configure the following parameters:

322 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

– Square error on strong acceleration for position: Under strong acceleration the variance for the position
solution is changed to the specified value.

– Acceleration: Threshold definition. When this threshold is exceeded, strong acceleration variances are
considered.

– Duration of effect (disappears linearly with time): Time needed to restore the default variances of the
GNSS solution.

– Use position measures in the attitude calculation: When enabled, the position data from the GNSS
solution is considered for the attitude estimation.

2.9.10.1.5 Static Pressure

Static Pressure block converts static pressure measurement into EKF data for altitude update.

Fig. 382: Static Pressure block

• Inputs

mea: Static pressure measurement as a 3-dimensional real array with the following components:

- 0: Update flag

- 1: Pressure

- 2: Variance

This input corresponds to the Static Pressure sensor block.

(Optional) enable: Optional boolean input to enable (true) or disable (false) the input in the EKF.

Not connected means enabled.

(Optional) gec-y: Enable ground effect measurement correction (true) or disable (false).

Not connected means disabled.

(Optional) gec-r: Enable ground effect variance increment (true) or disable (false).

Not connected means disabled.

• Outputs

Pin 0: EKF input data (H, R, y).

Note:
– H: Observation matrix.

– R: Measurement covariance matrix.

– y: Measurement.

2.9. Block Programs 323

1x PDI Builder, Release 6.12.62

hQNH: MSL right from actual QNH and pressure measurement.

hISA: MSL for ISA and pressure measurement.

• Configuration menu:

Fig. 383: Static Pressure block configuration

The following parameters must be configured:

Variance rate limit
– Max falling rate: Defines the maximum falling rate of the system.

– Max rising rate: Defines the maximum rising rate of the system.

Square error compensation: Compensation in the pressure square error applied when Veronte Autopilot 1x
is close to the ground. This is to correct the Ground Effect for landing purposes.

– Square error: This value is automatically calculated from the square error of the static pressure sensor
(see Static Pressure sensor block).

324 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

– Altitude correction threshold (Positive down): The user has to define an Altitude Difference for the
system to apply the Ground Effect. While landing, the aircraft will feel a increase in the static pressure due
to the Ground Effect, and this pressure difference (transformed into meters) is the Threshold that can be
configured here. If set to 0, whenever Ground Effect is enabled, it will make its effect.

In other words, Altitude error is the measurement from the static pressure sensor in meters minus the
estimated state of the UAV.

Explanation
The ground effect creates a high pressure below the UAV when it is close to the ground, this increase in pressure
readings produces the navigation to “go down”. Veronte Autopilote 1x can mitigate the ground effect in two
ways:

– 1: Increasing the static pressure sensor variance (R) used for the Extended Kalman filter. This means that
other height sources, for example GNSS will be used more strongly to estimate the altitude near the ground.
This is configured with the boxes “Square error” and “Altitude correction threshold (Positive down)”. If
enabled, the R used in the EKF for the static pressure sensor will be increased to be the value configured
in the box when the “altitude error” measured by the static pressure sensor is higher than the configured
threshold in the down direction. Example, if the current estimated state of the UAV is 10 meters MSL
and the measurements from the static pressure sensor tell that the UAV is at 5 meters MSL. If the “Altitude
correction threshold (Positive down)” is less than 5 then the R used for this sensor will be the one configured
in the “Square error”. Please notice that ground effect correction must only be enabled when close to the
ground so that the navigation performance is not negatively impacted when there is no ground effect.

– 2: Modifying the actual measurement of the static pressure sensor. When this function is enabled the
“altitude error” corresponding to the static pressure sensor is modified according to the Correction
compensation table presented below. The idea is that altitude errors that would make the estimation of
the height to go down are changed to reduce the altitude error. It is also important to only enable this when
close to the ground. Using the same example as before, the 5 meters down of altitude error for this sensor
would be transformed to only 4 meters for example, that way this sensor would pull down the estimated
altitude a little bit less.

Note: Please note that these two ways of compensating the ground effect can be enabled/disabled separately
and that they only have to be used when close to the ground. It is recommended to test in controlled conditions.

– Decimation: Parameter that defines the group of measurements for which 1 value will be stored. For
example, if the decimation is 10, every 10 measurements will be counted as 1. This procedure is used to
reduce the number of samples. Recommended value 10 (in decimal units).

If users have any questions about decimation, please refer to the What does decimation mean? - FAQ section
of this manual.

Correction compensation: Users can edit the correction compensation by clicking here:

2.9. Block Programs 325

1x PDI Builder, Release 6.12.62

Fig. 384: Static Pressure block configuration - Correction compensation table

The user can add or remove points from the correction compensation table. The correction will have the ‘shape’
made by these points.

The altitude error used is computed from the actual altitude error by interpolating in the table (with
extrapolation).

– X-axis: Actual altitude error

– Y-axis: Actual error used in EKF

Note: The value entered in column Y is an adjustment of how “strong” the ground effect compensation is.

The unit of measurement is meters.

2.9.10.1.6 Terrain height

Terrain height block transforms from terrain height measurement to EKF data for terrain height update.

Fig. 385: Terrain height block

• Inputs

height: Terrain altitude as a 4-dimensional real array with the following components:

- 0: Update flag (always 1)

- 1: Valid flag (inside mesh)

- 2: Terrain height

- 3: Variance

This input corresponds to the SRTM height sensor block.

(Optional) enable: Optional boolean input to enable (true) or disable (false) the input in the EKF.

Not connected means enabled.

326 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

• Output

Pin 0: EKF input data (H, R, y).

Note:
– H: Observation matrix.

– R: Measurement covariance matrix.

– y: Measurement.

• Configuration menu: The user must configure the decimation of this sensor.

Fig. 386: Terrain height block configuration

This parameter defines the group of measurements for which 1 value will be stored. For example, if the
decimation is 10, every 10 measurements will be counted as 1. This procedure is used to reduce the number of
samples. Recommended value 2 (in decimal units). If users have any questions about decimation, please refer
to the What does decimation mean? - FAQ section of this manual.

2.9.10.1.7 Velocity

Velocity block converts velocity measurement into EKF data for velocity update.

Fig. 387: Velocity block

• Inputs

Vel: Velocity measurement as a 12-dimensional real array with the following components:

- 0: Update flag

- 1: Fix flag

- 2: North velocity

- 3: East velocity

- 4: Down velocity

2.9. Block Programs 327

1x PDI Builder, Release 6.12.62

- 5: North velocity variance

- 6: East velocity variance

- 7: Down velocity variance

- 8: X body antenna position

- 9: Y body antenna position

- 10: Z body antenna position

- 11: Measurement delay

This input corresponds to the GNSS Sensor block.

(Optional) enable: Optional boolean input to enable (true) or disable (false) the input in the EKF.

Not connected means enabled.

• Output

Pin 0: EKF input data (H, R, y).

Note:
– H: Observation matrix.

– R: Measurement covariance matrix.

– y: Measurement.

• Configuration menu:

Fig. 388: Velocity block configuration

Users must configure the following parameters:

– Square error on strong acceleration for speed: Under strong acceleration the variance for the speed
solution is changed to the specified value.

– Acceleration: Threshold definition. When this threshold is exceeded, strong acceleration variances are
considered.

– Duration of effect (disappears linearly with time): Time required to restore the default variances of the
GNSS solution.

328 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

– Use speed measures in the attitude calculation: When enabled, the speed data from the GNSS solution
is considered for the attitude estimation.

2.9.10.1.8 Velocity down

Velocity down block adapts the velocity down measurement to EKF data for velocity down update.

Fig. 389: Velocity down block

• Inputs

Vdown: Velocity measurement down measurement.

(Optional) enable: Optional boolean input to enable (true) or disable (false) the input in the EKF.

Not connected means enabled.

• Output

Pin 0: EKF input data (H, R, y).

Note:
– H: Observation matrix.

– R: Measurement covariance matrix.

– y: Measurement.

• Configuration menu:

2.9. Block Programs 329

1x PDI Builder, Release 6.12.62

Fig. 390: Velocity down block configuration

The following parameters must be configure:

– Decimation: Parameter that defines the group of measurements for which 1 value will be stored. For
example, if the decimation is 10, every 10 measurements will be counted as 1. This procedure is used to
reduce the number of samples. Recommended value 10 (in decimal units).

If users have any questions about decimation, please refer to the What does decimation mean? - FAQ section
of this manual.

– Sensor variance: Sensor error variance.

– Enable tilt limit: The sensor measures the variable in a direction perpendicular to the longitudinal axis of
the platform, so when it is tilted the reading will not be reliable. This option allows the definition of a tilt
limit, so that if the limit is reached, the sensor reading will be discarded.

– Max tilt: A maximum tilt can be defined.

– Enable speed limit: This option allows a speed limit to be set, so that if the limit is reached, the sensor
reading will be discarded.

– Min speed down: Defines the minimum limit of the speed measured by the sensor.

– Max speed down: Defines the maximum limit of the speed measured by the sensor.

330 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

2.9.10.2 EKF Split

EKF Split block shows all the sensor information that is going into the EKF algorithm.

Fig. 391: EKF Split block

• Input

Pin 0: EKF input data from any EKF input adapter block (H, R, y).

• Outputs

is_new: Update flag (true when a new measurement is generated, false otherwise).

y: Measurement. (3-dimensional real array)

R: Measurement covariance matrix. (3-dimensional real array)

Hdrn: Observation matrix for the position increment states. (9-dimensional real array)

Hdvn: Observation matrix for the velocity increment states. (9-dimensional real array)

Hmis: Observation matrix for the misalignment states. (9-dimensional real array)

Hdwb: Observation matrix for the gyroscope bias increment states. (9-dimensional real array)

Hdfb: Observation matrix for the terrain altitude increment state. (9-dimensional real array)

This block is designed for any EKF adapter block, i.e. a standard block for all EKF adapter blocks, therefore some
outputs only correspond to a certain type of EKF adapter block. And, consequently, the outputs that do not
correspond to the connected block, will get 0 as value.

Attention: Be careful! Check that the blocks to which the outputs are connected match in size with the data,
i.e. if the output is a 9-dimensional real array, a split block or a multiple user real variable with size 9 must be
connected to it in order to display the data.

2.9. Block Programs 331

1x PDI Builder, Release 6.12.62

Fig. 392: EKF Split block - Example

2.9.10.3 Navigation

Navigation block updates the Veronte navigation variables (position, velocity, attitude, etc.) based on the current
selected navigation source.

For a detailed list of navigation variables of Autopilot 1x, please consult the Navigation Variables - Lists of interest
section of the 1x Software Manual.

Note: This block has by default 1 input, in its configuration the user must set the desired size of inputs.

332 Chapter 2. Configuration

https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#navigation-variables

1x PDI Builder, Release 6.12.62

Fig. 393: Navigation block

Veronte Autopilot 1x integrates a navigation system that can operate with GPS and without GPS coverage.

In the navigation with GPS, the system uses it to fly the aircraft along a route or to a given waypoint. It is possible
to control the aircraft’s position (longitude and latitude) and the altitude. This is the navigation used by default by the
system when everything is working properly.

In case the GPS signal is lost, the navigation can easily measure the attitude angles with a greater precision than using
a simple IMU. With these measures, it is possible for the system to control pitch, roll and yaw and then maintain a safe
attitude when the GPS signal is lost, avoiding any possible malfunctions. It is recommended to create an automation
to change to a phase where the attitude angles are controlled, in case of loss of GPS signal. For more information visit
Automations section of this manual.

Note: The yaw can be measured in the navigation without GPS only if the magnetometer is activated in the navigation
window.

• Input

0: EKF input data from any EKF input adapter block.

• Output

0: Index + 1 of the current input measurement used to update the EKF state. A value of zero means that no
measurements have been input to the EKF in the current step.

• Configuration menu: This menu contains the parameters used in the Kalman Filter algorithm to fuse the
information provided by the different sensors. This data is used in the navigation system to generate the
commands sent to the aircraft.

This menu contains the following entries for basic configuration:

2.9. Block Programs 333

1x PDI Builder, Release 6.12.62

Fig. 394: Navigation block configuration - Basic parameters

Warning: The values of the parameters of this menu should only be changed by advanced users. If the
user is not familiar with the Kalman Filter algorithm and Sensor Fusion, do not change the default parameters.

Although this configuration menu must be set by default or modified by advanced users, the 2 following
parameters must be configured by all users:

– Inputs size: Users must set the number of inputs.

– Navigation: The type of navigation must be selected, tha available options are:

∗ Internal: Uses internal data for navigation. Data (position, attitude, etc.) is processed into 1x unit
from sensor measures.

∗ External VCP: Uses external data for navigation. Data (position, attitude, etc.) is provided by Veronte
Communication Protocol (VCP).

∗ External Var: Uses external data for navigation.

It takes directly the attitude, velocity and acceleration data of the following real variables from the
memory:

· ID 259: External yaw

· ID 260: External pitch

334 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

· ID 261: External roll

· ID 262: External roll rate

· ID 263: External pitch rate

· ID 264: External yaw rate

· ID 265: External veloctiy north

· ID 266: External velocity east

· ID 267: External velocity down

· ID 268: External acceleration x body axis

· ID 269: External acceleration y body axis

· ID 270: External acceleration z body axis

· ID 271: External GPS Time of Week

Position data is read from the Moving Feature 00.

∗ Vectornav VN-300: Uses external data for navigation. Data (position, attitude, etc.) is provided by
Vectornav VN-300. For more information, see the Vectornav VN-300 - Integration examples section
of this manual.

Note: If further information is required, please contact the support team (create a ticket in the customer’s Joint
Collaboration Framework; for more information, see Tickets section of the JCF manual).

In addition, this menu contains the following entries for advanced configuration:

Warning: The values that appear here should only be changed by advanced users.

2.9. Block Programs 335

https://manuals.embention.com/joint-collaboration-framework/en/0.1/tickets/index.html

1x PDI Builder, Release 6.12.62

Fig. 395: Navigation block configuration - Advanced parameters

1. Wind: By clicking on the ‘Wind Estimation’ button, a configuration menu will be displayed:

Fig. 396: Wind Estimation configuration

The gliding and control performance of an unpowered air vehicle is affected by the wind velocity. In order
to maximize its gliding distance, the gliding vehicle has to fly with the velocity that minimizes the path
angle. Therefore, the wind velocity is one of the most important components of the unpowered gliding
vehicle to achieve an appropriate control and gliding performance. In general, in order to estimate the

336 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

wind velocity, a pitot tube is widely used for measuring air speed, and the ground velocity is observed
by a GPS/INS integrated navigation system. Then, the wind velocity can be obtained by calculating the
difference between the measured air speed and ground velocity.

To make a proper estimate, the system needs to collect as much wind information as possible, so missions
with a trajectory involving changes in directions will result in a better wind estimate compared to a straight
trajectory mission.

The computed result is displayed in the variables: Wind Velocity Down, Wind Velocity East, Wind
Velocity North.

2. Attitude Heading Reference System: Based on the Madgwick algorithm, an EWMA filter with initial
values Beta0 and Zeta0 which converge to Beta and Zeta in the specified steps.

– Beta & Zeta: The standard Madgwick algorithm variables.

– The Initial entries correspond to Beta0 and Zeta0, used to transition between GPS and GPS denied
navigation. They are the initial values for the Madgwick algorithm.

– Steps: Steps to converge from Beta0 and Zeta0 to Beta and Zeta.

– Advanced button:

∗ Accelerometer gain: Manage the weight of the accelerometer raw readings when the given
measurements are too dissimilar from the expected Earth’s gravitational field.

∗ Filter attitude: Smoothing factor of the EWMA filter to compute the accelerations term. Value
0 would mean infinitely filtered, and value 1 without filtering.

3. Initial rains covariance: The matrix of initial covariance, normally referred to as P.

4. Accelerometer:

– Qnfb: Noise of the accelerometer. It is used in the states of position and velocity. These values
correspond to the diagonal of the acceleration covariance matrix.

– Qdfb: Stability of the accelerometer, used for the state of the bias of the accelerometer.

5. Gyroscope:

– Qnwb: Noise of the gyroscope. It is used for the state of orientation.

– Qdwb: Stability of the gyroscope, used for the state of the bias of the gyroscope.

6. Qdem: Noise of the terrain elevation. Users can choose between Almost plain, Slightly irregular, Irregular,
Highly irregular and Vegetated.

7. Angular speed estimation filter: It is a FIR filter used to calculate the derivative of the gyroscope to get
the angular acceleration. The values to introduce correspond to the coefficients of the filter.

2.9. Block Programs 337

1x PDI Builder, Release 6.12.62

2.9.11 Positions blocks

Position blocks allow to operate with position variables.

Note: In 1x PDI Builder, position variables are also refered to as Features.

2.9.11.1 Constant Position

Constant Position block defines a position on Earth using Latitude, Longitude and WGS84 Height.

Fig. 397: Constant Position block

• Output

Pin 0: Output of the configured position.

• Configuration menu:

Fig. 398: Constant Position block configuration

The following parameters must be configured to define the desired absolute position:

– The coordinates can be set in UTM, MGRS (Military Grid Reference System), Decimal Degrees or
Degress º ‘ ”.

– They are indicated through the latitude, longitude and altitude.

– WGS84: The first time, the altitude must be defined with respect to the ellipsoid, WGS84. After this, MSL
and AGL values will be calculated automatically and the user will also be able to define the altitude with
respecto to the sea level, MSL.

338 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

2.9.11.2 Move

Move block outputs the position which is the result of moving the input position with the displacement of the input
vector.

Fig. 399: Move block

• Inputs

Pin 0: Input position.

Pin 1: Input displacement vector in NED frame. It must be a vector of 3 elements, i.e. a 3x1 vector.

• Output

Pin 0: Output position.

2.9.11.3 Relative Vector

Relative Vector block calculates the relative vector in NED frame from the two input positions.

Fig. 400: Relative Vector block

• Inputs

From: First position.

To: Second position.

• Output

Vector: Distance vector from the first position to the second position.

2.9.11.4 Read Feature

Read Feature block reads a position from a FID (feature) variable.

Fig. 401: Read Feature block

2.9. Block Programs 339

1x PDI Builder, Release 6.12.62

• Output

Pin 0: Position to read.

• Configuration menu:

Fig. 402: Read Feature block configuration

Users must select the feature variable where the position is stored.

2.9.11.5 Write Feature

Write Feature block writes a position to a FID variable.

Fig. 403: Write Feature block

• Input

Pin 0: Position to write.

• Configuration menu:

340 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 404: Write Feature block configuration

Users must select the feature variable where the position is to be stored.

2.9.12 Sensors blocks

Sensors blocks allows to configure any sensor connected externally or internally to Veronte Autopilot 1x.

As the outputs of these blocks are not ‘ready’ to be directly implemented in the navigation block (EKF algorithm),
these blocks are usually connected afterwards to EKF Adapters blocks.

2.9.12.1 Altimeter

Altimer sensor block configures the parameters of external altimeters.

Fig. 405: Altimeter block

• Input

2.9. Block Programs 341

1x PDI Builder, Release 6.12.62

Pin 0: Sensor variance.

• Output

Pin 0: Measurement as a 3-dimensional real array with the following components:

- 0: Update flag

- 1: Altitude measurement

- 2: Variance

• Configuration menu:

Fig. 406: Altimeter block configuration

The following parameters must be configured:

– Altitude measurement: A real variable must be selected from which the altitude measurement is read.
The parameters defined here shall be applied to this input variable.

Note: This is usually the measurement of a Lidar sensor.

– Maximum variance: Maximum variance applied to the measurement after measurement lost.

– Minimum variance: Minimum variance applied to the measurement after recovering from a measurement
lost.

– Variance down tau: Filter constant. Smoothing parameter for the transition from maximum to minimum
variance.

– Sensor timeout: Time before considering measurement lost.

Note: If the measurement does not change during this time, the autopilot may consider that no
measurement is entered, and therefore, the timeout is fulfilled.

The logic of this block is summarized below:

1. Get Altitude data (usually from a Lidar sensor)

2. Calculate the time difference between the current time and the previous time the altitude data was acquired:

• If this time is longer than “Sensor timeout”, set the variance to “Maximum variance”.

342 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

• If this time is not longer than “Sensor timeout”, check if the current variance is lower than the previous
variance and apply an EWMA filter with “tau”, previous variance and current variance.

Note: Note that the current variance must be lower than the previous one but never lower than the
“Minimum variance”; if it is, it will get clamped to it.

5. Feed Altitude EKF adapter block with “Altitude measurement” and “variance”.

6. Then, EKF will fuse SRTM and Altitude measurement together giving more weight to the one with lower
variance.

2.9.12.2 GNSS sensor

GNSS sensor block configures GNSS receivers, RTK and External source.

Fig. 407: GNSS sensor block

• Outputs

Pos: Absolute position measurement.

Vel: Velocity measurement as a 12-dimensional real array with the following components:

- 0: Update flag

- 1: Fix flag

- 2: North velocity

- 3: East velocity

- 4: Down velocity

- 5: North velocity variance

- 6: East velocity variance

- 7: Down velocity variance

- 8: X body antenna position

- 9: Y body antenna position

- 10: Z body antenna position

- 11: Measurement delay

Drn: Relative position measurement as a 10-dimensional real array with the following components:

- 0: Update flag

2.9. Block Programs 343

1x PDI Builder, Release 6.12.62

- 1: Rover flag (one is rover, zero is base)

- 2: Time stamp

- 3: North relative distance

- 4: East relative distance

- 5: Down relative distance

- 6: Relative distance variance

- 7: X body antenna position

- 8: Y body antenna position

- 9: Z body antenna position

• Configuration menu:

344 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 408: GNSS sensor block configuration

The parameters to be configured in the first and last row of this configuration menu are presented below:

– Select sensor: The first parameter to select is the GNSS sensor: GNSS 1, GNSS 2 or GPS External.
Depending on the sensor selected, the block will change name and configuration menu.

However, GNSS 1-2 have the same configuration menu.

2.9. Block Programs 345

1x PDI Builder, Release 6.12.62

Fig. 409: GNSS sensor blocks

– Ublox preset: By default, Custom is selected. If an option other than Custom is selected, users will only
be able to configure the ‘Sensor Variance’ tab (this tab will be described below).

346 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 410: GNSS sensor block configuration - Rover/Dynamic base/Static base

∗ Custom: This option allows the user to modify all the tabs that appear in this menu (all tabs are
described below).

∗ Rover: By choosing this option, a default ‘Rover’ configuration will be selected for this block.

This corresponds to ‘MOVING BASE → Rover’ units and ‘STATIC BASE’ AIR units of the RTK
wizard (described below).

∗ Dynamic base: By choosing this option, a default ‘Dynamic base’ configuration will be selected for
this block.

This corresponds to ‘MOVING BASE→ Base’ units of the RTK wizard (described below).

2.9. Block Programs 347

1x PDI Builder, Release 6.12.62

∗ Static base: By choosing this option, a default ‘Static base’ configuration will be selected for this
block.

This corresponds to GND units of the RTK wizard (described below).

For more information on these default configurations, click here (go to section 3.1.5).

– RTK Wizard: This interface helps the user configuring everything related to RTK or GNSS Compass. By
clicking here, the configuration menu will be displayed:

Fig. 411: GNSS sensor block configuration - RTK Wizard

In this menu, the user can find 3 different options:

∗ RTK: Stands for Real Time Kinematics (RTK) and it is a satellite navigation technique used to
enhance the precision of position data derived from satellite-based positioning systems.
To work, it requires 2 GNSS receivers placed in different autopilots.
By clicking on ‘Air’, a default ‘Custom’ configuration will be loaded in this block. Likewise, by
clicking on ‘Ground’, a default ‘Static base’ configuration will be selected.

∗ Compass: The GNSS compass provides accurate dual antenna GNSS-based heading that is not subject
to magnetic interference.

It requires 2 GNSS receivers placed on the same autopilot to work.

By clicking on ‘Air’, a default ‘Dynamic base’ configuration will be loaded if this GNSS receiver has
been selected as base. Otherwise, if this GNSS receiver has been selected as rover, a default ‘Rover’
configuration will be loaded.

∗ RTK + Compass: Hybrid combination where both tools are employed at the same time in a system
where the AIR unit must have 2 GNSS receivers and the GND must have, at least, 1 GNSS reseiver.

348 Chapter 2. Configuration

https://content.u-blox.com/sites/default/files/ZED-F9P_IntegrationManual_UBX-18010802.pdf

1x PDI Builder, Release 6.12.62

By clicking on ‘Air’, a default ‘Rover’ configuration will be loaded in this block. Likewise, by clicking
on ‘Ground’, a default ‘Static base’ configuration will be selected.

– Antenna position: It is used to set the relative distance to the center of mass from the GNSS antenna in
aircraft body axis. This parameter has to be set correctly in order to get a correct value when using GNSS
Compass.

– Delay: Delay with which the GPS information is ‘picked up’, as the GPS may have a small delay while it
reads and processes the information. In case the user has selected GNSS 1 or GNSS 2, the internal GPS
of the Veronte Autopilot 1x has a default delay of 0.5 seconds.

• GNSS 1-2 configuration menu:

– Configuration: This menu contains some of the parameters needed to configure the GNSS 1-2 receiver
located in Veronte Autopilot 1x.

2.9. Block Programs 349

1x PDI Builder, Release 6.12.62

Fig. 412: GNSS 1/2 sensor block configuration - Configuration tab

The following parameters are configurable:

∗ GNSS: Data values that can be configured.

· Meas Rate: Defines the minimum time between data acquisition.

· Precise Point Positioning (PPP): This option is a precise global positioning service. PPP is
able to provide centimetre to decimetre level positioning solutions after a few minutes with an
unobstructed view of the sky.

∗ Survey In: Determines the position of a stationary receiver by building a weighted average of all valid

350 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

3D position solutions.

This mode should be activated on a Ground unit to enable GNSS Differential mode and send
corrections to the Air unit. Two requirements must be specified to stop the procedure. Survey
in procedure shall end when both requirements are met:

· Minimum duration: Defines a minimum amount of observation time independent of the actual
number of valid fixes that were used for the position calculation.

Reasonable values range from one day for high accuracy requirements to a few minutes for
approximate position determination.

· Position accuracy limit: Defines a limit on the dispersion of positions contributing to the
calculated mean.

∗ SPI Port: Allows the user to select the different comunication protocols as input or output. One port
can handle several protocols at the same time (e.g. NMEA and UBX).

· Mask in: Defines the inputs, i.e., receives the data (usually the air unit). The available protocols
are UBLOX, NMEA, RTCM and RTCM3.

· Mask out: Defines the outputs, i.e. sends the data (usually the ground unit). The available
protocols are UBLOX, NMEA and RTCM3.

More information on protocols and configuration can be found in the U-blox documentation.

∗ SCI Port: In this case, RTK messages that are sent through the RTCM3 protocol are connected directly
through an SCI port, so they do not occupy the bandwidth of the SPI port.

Note: Only for Veronte Autopilot 1x hardware version 4.8 and higher.

– SBAS: SBAS stands for Satellite Based Augmentation System. It is a set of geostationary satellites that
are used to check the status of the signals sent by GPS Satellites and to improve tracking by correctiong for
atmospheric disturbations, orbit deviations, clock errors, etc.

In 1x PDI Builder, it is possible to select the satellites to be used for this purpose by selecting the numbers
listed in the table in the figure below or have the software choose them automatically according to the
location of the platform.

The automatic option is recommended.

2.9. Block Programs 351

https://content.u-blox.com/sites/default/files/documents/u-blox-F9-HPG-1.32_InterfaceDescription_UBX-22008968.pdf

1x PDI Builder, Release 6.12.62

Fig. 413: GNSS 1/2 sensor block configuration - SBAS tab

– Message Rate: The Message rate options are used to set the time between the messages received on
the autopilot. Each of the different messages can be configured separately: ECEF (Earth Centred Fixed
Reference Frame), LLH (Latitude, Longitude and Height), Speed, GPS Time, SV Status (status of the GPS
satellite), etc.

352 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 414: GNSS 1/2 sensor block configuration - Message Rate tab

More information on the list of RTCM 3 messages can be found here.

– Constellations: In this tab, the user can select which GNSS constellations are being used from the
supported constellations listed in the figure below:

2.9. Block Programs 353

https://www.use-snip.com/kb/knowledge-base/rtcm-3-message-list/

1x PDI Builder, Release 6.12.62

Fig. 415: GNSS 1/2 sensor block configuration - Constellations tab

∗ SBAS
∗ Galileo
∗ BeiDou
∗ QZSS
∗ GLONASS

– Jamming: This menu allows the user to configure an indicator for both broadband and continuous wave

354 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

(CW) jammers/interference. The receiver monitors the background noise and looks for significant changes.

Fig. 416: GNSS 1/2 sensor block configuration - Jamming tab

∗ Enable Threshold: Enables the interference detection. Therefore, if broadcast or CW jamming is
reported, Veronte Autipilot will disregard the GPS information, position not fixed.

∗ Broadband jamming detection threshold: If the value rises significantly above this threshold, this
indicates that a broadband jammer is present.

∗ CW jamming detection threshold: If the value rises significantly above this threshold, this indicates
that a continuous wave (CW) jammer is present.

∗ Enable Antenna Setting.

2.9. Block Programs 355

1x PDI Builder, Release 6.12.62

∗ Antenna Setting: It is also possible to specify whether the receiver expects an active or a passive
antenna; unknown option if the user does not know the behavior of the antenna.

– Advanced: The values shown here should only be modified by advanced users. For this reason, the
following message appears when entering this tab:

Fig. 417: GNSS 1/2 sensor block configuration - Warning advanced tab

356 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 418: GNSS 1/2 sensor block configuration - Advanced tab

Warning: Not recommend parameters may cause problems during the acquisition of GNSS
positioning.

∗ Minimum satellites number: Minimum number of satellites needed to have position fixed (6
recommended).

∗ Maximum satellites number: Maximum number of satellites needed to have position fixed (20
recommended).

2.9. Block Programs 357

1x PDI Builder, Release 6.12.62

∗ Minimum satellite elevation: Minimum elevation of a satellite to be considered. Value in degrees
(5.0 recommended).

∗ PDOP mask: Maximum Position Dilution of Precision to consider the solution (25.0 recommended).

∗ TDOP mask: Maximum Time Dilution of Precision to consider the solution (1000.0 recommended).

∗ P Acc mask: Maximum Position Accuracy to consider the solution (5 m recommended).

∗ T Acc mask: Maximum Time Accuracy to consider the solution (100.0 s recommended).

∗ Dynamic model
The embedded receiver supports different dynamic platform models to adjust the GNSS navigation
engine to the expected application environment. The settings improve the receiver’s interpretation
of the measurements and thus provide a more accurate position output. Setting the receiver to an
unsuitable platform model for the given application environment is likely to result in a loss of
receiver performance and position accuracy.

Platform Description
Portable Applications with low acceleration.
Stationary Stationary applications. Velocity restricted to 0 m/s. Zero dynamics assumed.
Pedestrian Applications with low acceleration and speed. Low acceleration assumed.
Automotive Used for applications with equivalent dynamics to those of a car. Low vertical

acceleration assumed.
Sea Recommended for applications at sea, with zero vertical velocity. Zero vertical

velocity assumed. Sea level assumed.
Airborne 1G Used for applications with a higher dynamic range and greater vertical

acceleration than a car.
Airborne 2G Recommended for typical airborne environments.
Airborne 4G Recommended for extremely dynamic environments.

– Sensor Variance: The variances considered in the EKF for the GNSS solution are by default the values
provided by the GNSS receiver but can be modified for more complex scenarios.

358 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 419: GNSS sensor block configuration - Sensor variance tab

∗ Horizontal Position: Variance for the North and East components of the position solution.

∗ Vertical Position: Variance for the Down component of the position solution.

∗ Horizontal Velocity: Variance for the North and East components of the velocity solution.

∗ Vertical Velocity: Variance for the Down component of the velocity solution.

∗ Relative Position: This is the variance of the relative position from one GNSS receiver to another.

• GPS External configuration menu: If the GNSS information is received via an external system, the user must

2.9. Block Programs 359

1x PDI Builder, Release 6.12.62

configure it in this menu, so that this system can be included in the navigation filters.

After correctly configuring the communication protocol in the corresponding channel (RS232, RS485, CAN,
. . .) the GPS External variables of interest must be filled in this interface:

– Configuration:

Fig. 420: GPS External sensor block configuration - Configuration tab

Caution: Check GNSS External device communication protocol before filling this menu.

The user must create a Custom Message according to the communication protocol used by the external
sensor, so that its readings are stored in system variables. Then, the user can select these variables to
configure the following parameters:

360 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

∗ Enable.

∗ Period: Defines the period of incoming information from the external system.

∗ Fix Bit: Data provided by the external device which is important to know the status of the positioning.

∗ Time of week: Variable extracted from the communication protocol defining the time of the week.

∗ GPS Week: Variable extracted from the communication protocol defining the week.

∗ Enable position:

· GPS Position: Variable defining latitude, longitude and height from GNSS. Usually Moving
Object variables are used in 1x PDI Builder.

· Horizontal Position Error: Defined by the GNSS External device provider.

· Vertical Position Error: Defined by the GNSS External device provider.

∗ Enable Velocity:

· Horizontal Velocity Error: Defined by the GNSS External device provider.

· Vertical Velocity Error: Defined by the GNSS External device provider.

· Velocity North/East/Down: Variables extracted from the communication protocol defining
GNSS velocity measured.

– Sensor Variance: This tab is configured in the same way as described above.

2.9.12.3 Magnetic Field

Magnetic Field sensor block returns the configured magnetic field in the current location.

Note: The magnetic field configuration is global, shared by all blocks of this type.

Fig. 421: Magnetic Field block

• Output

Pin 0: Magnetic field in NED frame as a 5-dimensional real array with the following components:

- 0: Update flag (always 1)

- 1: North component of magnetic field

- 2: East component of magnetic field

- 3: Down component of magnetic field

- 4: Variance (always zero)

2.9. Block Programs 361

1x PDI Builder, Release 6.12.62

2.9.12.4 Magnetometer

Magnetometer sensor block returns the magnetic field being read by the selected sensor in the body frame.

Fig. 422: Magnetometer block

• Output

Pin 0: Magnetic field in body frame as a 5-dimensional real array with the following components:

- 0: Update flag (always 1)

- 1: X body component of magnetic field

- 2: Y body component of magnetic field

- 3: Z body component of magnetic field

- 4: Variance

• Configuration menu:

Fig. 423: Magnetometer block configuration

– Magnetometer: Users must select the desired internal or external sensor magnetometer to be used.

– Variance: Means the influence of the parameter on the Navigation filters. The higher the variance, the
lower the effect. This is the only parameter configured indepently from the Magnetometer selected.

2.9.12.5 Relative position

Relative position sensor block works in conjunction with the Internest configuration panel (of the Sensors menu) to
configure the Internest system as an ultrasound sensor that calculates the position of Veronte Autopilot 1x.

362 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 424: Relative position block

• Inputs: The 3 navigation angles (yaw, pitch and roll) of the base platform can be entered.

base: Base position to which position measurements are relative. Usually a ‘Moving object’ is linked.

(Optional) yaw: Yaw of system of reference in which position measurements are received (0 if not connected).

(Optional) pitch: Pitch of system of reference in which position measurements are received (0 if not
connected).

(Optional) roll: Roll of system of reference in which position measurements are received (0 if not connected).

• Output

Pin 0: Absolute position measurement.

• Configuration menu:

Fig. 425: Relative position block configuration

– Increment of horizontal/vertical variance with distance: With this increment, the further away the
Veronte Autopilot 1x is from the base, the more variance it is given in a linear fashion.

– Horizontal/Vertical sensor variance: Square error of the internest position in xy/z planes.

Note: If the option By device is selected, these parameters are automatically set by the autopilot.

– Distance to mass center: x/y/z: Defines the distance between the Internest system and the center of mass
from the base.

2.9. Block Programs 363

1x PDI Builder, Release 6.12.62

– Invert measurements (multiply them by -1): If enabled, the measurements shall be multiplied by -1.

More information
These parameters are used in the calculation of the variance for the EKF algorithm by means of the following
equation:

𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 + (𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 · 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)

– 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 : Horizontal/Vertical sensor variance position

– 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 : Increment of hotizontal/vertical variance with distance

– 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 : Distance to the base

2.9.12.6 SRTM height

SRTM height sensor block gets the terrain altitude at the current UAV position according to the configured mesh.

Fig. 426: SRTM height block

• Output

Pin 0: Terrain altitude as a 4-dimensional real array with the following components:

- 0: Update flag (always 1)

- 1: Valid flag (inside mesh)

- 2: Terrain height

- 3: Variance

• Configuration menu:

Fig. 427: SRTM height block configuration

– Fine mesh variance: Variance of the fine mesh. This is the smallest mesh, which contains detailed
information on the altitude of the terrain.

364 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

– Coarse mesh variance: Variance of the coarse mesh. This is the medium mesh with the least detail.

Important:
– The values to be entered in the configuration of this block must be > 0.

– If the configured error values are very large, the EKF will converge more slowly to them or give more
importance to other sensors, such as Lidar, to know the height of the terrain.

– If these values are small, much more importance will be given to the terrain grid and it will converge faster.

2.9.12.7 Static Pressure

Static Pressure sensor block returns the static pressure measured by the selected sensor.

Fig. 428: Static Pressure block

• Output

Pin 0: Static pressure measurement as a 3-dimensional real array with the following components:

- 0: Update flag

- 1: Pressure

- 2: Variance

• Configuration menu:

Fig. 429: Static Pressure block configuration

– Static pressure sensor: Users must select the desired static pressure sensor to be used.

– Variance: Means the influence of the parameter on the Navigation filters. The higher the variance, the
lower the effect. This is a parameter configured independently from the Static Pressure sensor selected.

2.9. Block Programs 365

1x PDI Builder, Release 6.12.62

2.9.13 Servos blocks

2.9.13.1 Actuator

Actuator block controls the transformation of the action to the servo value.

Fig. 430: Actuator block

• Inputs

U: Control actions (U) before servo saturation.

(Optional) Smin: Vector of minimum values allowed for the servos.

(Optional) Smax: Vector of maximum values allowed for the servos.

• Outputs

servo_ok?: Output BIT vector that indicates the servos that had to be trimmed to prevent saturation.

Pulse: PWM pulse for servos.

Servo: Servo value.

Usat: Control actions (U) after servo saturation.

• Configuration menu:

366 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 431: Actuator block configuration

The servo configuration is divided into 3 different menus: Physical, Saturation and Matrices.
– Physical: This tab allows the actuators physical configuration.

Warning: The calibration of all connected actuators is performed in the 1x PDI Calibration software.

2.9. Block Programs 367

https://manuals.embention.com/1x-pdi-calibration/en/6.12.60/operation/actuators/index.html

1x PDI Builder, Release 6.12.62

Fig. 432: Actuator block configuration - Physical

1. Dimensions: Set the number of servos and control outputs.

Fig. 433: Actuator block configuration - Physical dimensions

368 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Note: Veronte Autopilot 1x allows up to 32 actuators to be configured at the same time.

2. Servos (actuators): This menu contains the servos of the platform.

Warning: The modification of this menu is not available from this block, as mentioned above,
this calibration is carried out in the 1x PDI Calibration software.

3. Control Signals: This menu contains the variables representing the control signals/outputs 𝑈
generated by the system. The mapping of the controls to servo positions is indicated within the SU
matrix, which is set in the Matrices tab.

Warning: The modification of this menu is not available from this block, as mentioned above,
this calibration is carried out in the 1x PDI Calibration software.

4. Servo parameters:
∗ Actuator Output variable: If the Actuator output variable has been renamed, it will be renamed

here as well.

∗ Startup position (S): Sets the initial values of the actuators.

∗ Increasing/Decreasing Rate Limit (S/s): Sets a rate limit for increasing/decreasing motions of
the servo.

5. Servo Position - PWM: This option is used to set the mapping of the 𝑆 servo position to the PWM
signal. In this example, 1 𝑆 position corresponds to a 100 % pulse to be sent to the corresponding
servo (Motor 1).

The mapping is expressed through the graph, where the user can enter as many points as desired.

– Saturation: In this menu, the user can configure the behavior of the platform when one or more of its
actuators is/are in saturation state.

2.9. Block Programs 369

https://manuals.embention.com/1x-pdi-calibration/en/6.12.60/operation/actuators/index.html
https://manuals.embention.com/1x-pdi-calibration/en/6.12.60/operation/actuators/index.html

1x PDI Builder, Release 6.12.62

Fig. 434: Actuator block configuration - Saturation

The three available options are:

∗ Inactive: The system does not respond to saturation.

∗ Linear: The system affects all the actuators in the same way if saturation is reached.

∗ Standard: The system affects only the selected actuators if saturation is reached at any actuator. It
can be chosen from 1 to all of them (which will be linear action).

370 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 435: Actuator block configuration - Saturation Standard

Clicking the Advanced checkbox generates a vector that includes all control outputs, allowing
proportional control over the system when saturation occurs.

This tool is configured to allow the user to have more extensive control over this feature if required.

– Matrices:
𝑆𝑈 and 𝑈𝑆 are 2 matrices (inverse of one another, respectively) which contain the relationship between
actuator outputs 𝑆 and control outputs 𝑈 , i.e. the influence of each control channel on each actuator output.
The option of having a configurable SU matrix allows Veronte Autopilots 1x to control any type of vehicle,
independently of how its control surfaces/devices are set and adjusted.

𝑈 is a vector which contains the control outputs of the platform, e.g. pitch, roll, yaw, throttle, etc. The
values of 𝑈 do not represent a physical variable. They are instead fictitious variables which are used in
the control algorithm. What is actually applied to the system are the actuators movements, i.e. the PWM
signals sent to the servos, which are mapped in the 𝑆 vector.

The relation between 𝑆 and 𝑈 is essential for the right attitude control of the platform.

2.9. Block Programs 371

1x PDI Builder, Release 6.12.62

Fig. 436: Actuator block configuration - Matrices

∗ Normally, the SU matrix is defined instead of the US matrix because it is more intuitive, the US is
calculated automatically. To define it, click Edit and the following pop-up window will open with the
matrix. Control outputs 𝑈 are placed on the columns and actutator outputs 𝑆 on the rows.

372 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 437: Actuator block configuration - SU matrix

∗ In addition, an allocation matrix is available to help the user configure these matrices for a multi-rotor.

Warning: Regarding the selection of the parameters of 𝑆𝑈 matrix, the order of magnitude of the
parameters should be respected at least for every row, i.e. every control channel, as long as there are no
coupled control channels 𝑈 .

Good practice recommendations
∗ Unitary values are recommended. Doing so, 𝑈 will be equal to 𝑆. And if 𝑆 has been defined according

to a physical value – e.g. deflected angle, then control outputs can be easier to understand.

∗ The order of magnitude and the value of the 𝑆𝑈 parameters will not influence control algorithm
calculations. But it will affect the control parameters, i.e. the control gains.

∗ It is recommended to keep the same order of magnitude for the whole matrix. That will allow an easier
set up of a scaled version of the platform. Keeping the same 𝑆𝑈 and knowing the scaling factor, then
the new control gains should be the old ones multiplied by that scaling factor. This practice can also
be useful for transition to similar platforms.

∗ The 𝑆𝑈 matrix and 𝑆 vector should be defined accordingly in order to follow the sign convention for
aerial navigation, a positive roll lowers the right wing, a positive pitch moves the nose up and a positive
yaw moves the nose the right.

An example of the use of this block is given below:

2.9. Block Programs 373

1x PDI Builder, Release 6.12.62

Fig. 438: Actuator block - Example of use

2.9.13.2 Arc Trim

Arcade stick trim block is used to set the zero-stick position for the Arcade Mode.

Fig. 439: Arc Trim block

The Stick input variable that enters the navigation algorithm is called ‘Stick input 𝑑’, which is the one obtained from
the Arc Trim block.

It is calculated as 𝐷 = 𝑈 − 𝑈0, where 𝑈0 is the arcade trim.

Fig. 440: Arc Trim block - Example of use

• Input

u: Input stick vector to trim.

• Output

374 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

du: Trimmed stick vector.

• Configuration menu:

Fig. 441: Arc Trim block configuration

The values of the trim vector 𝑈0 can be entered manually in the configuration menu (as shown in the figure
above) or by creating an automation that autocompletes these values with the stick position. For the latter case,
the configuration menu should be with all trim values to 0.

For more information on this automation, see the ArcTrim (Command block) action - Automations section of this
manual.

Warning: The Arcade mode has to be trimmed before flight. If not trimmed, the zero level will be different from
the desired one.

2.9. Block Programs 375

1x PDI Builder, Release 6.12.62

2.9.13.3 PWM

PWM block applies the input vector to the configured PWM outputs.

Fig. 442: PWM block

• Input

pulse: Input vector of pulses to apply.

• Configuration menu:

Fig. 443: PWM block configuration

– : Users must enter the PWM variables to be configured.

– : PWMs variables can be sorted as desired by simply dragging and dropping them.

– Check the variable to enable commands to this PWM.

376 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

– : Deletes the PWM.

A PWM servo configuration can be found in the PWM (Servos) - Integration examples section of this manual.

2.9.14 Signals blocks

Signal blocks include functions for processing and filter signals, control inputs and outputs, etc.

2.9.14.1 3D Table Interpolation

3D Table Interpolation block returns the value obtained interpolating the configured table with the input variables.

Fig. 444: 3D Table Interpolation block

• Inputs

Pin 0: X component, columns.

Pin 1: Y component, rows.
• Output

Pin 0: Value interpolated from table for the input X and Y components.

• Configuration menu:

2.9. Block Programs 377

1x PDI Builder, Release 6.12.62

Fig. 445: 3D Table Interpolation block configuration

– Sort: By pressing this button, rows and columns are sorted from lowest to highest.

– Add: A row/column is added

Note: If out of range, the value for the closest limit shall be taken.

2.9.14.2 Acceleration limiter

Acceleration limiter block is a signal first and second derivative limiter.

It is like the Rate limiter block but “improved”, as a less aggressive response is obtained, approaching the desired input
in a “softer” way.

Fig. 446: Acceleration limiter block

378 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

• Inputs

init: Initialization value, this is the output of the block in the first step after on_focus.

in: Input signal.

(Optional) vu_lim: First derivative limit in the up direction. The value is read as absolute value, this
means that the sign of this input is neglected.

(Optional) vd_lim: First derivative limit in the down direction. The value is read as absolute value, this
means that the sign of this input is neglected.

ac_lim: Second derivative limit. The value is read as absolute value, this means that the sign of this input
is neglected.

• Output

Pin 0: Limited signal.

2.9.14.3 Bound

Bound block limits the input signal and produces a bit to indicate if it was within the allowed range.

Fig. 447: Bound block

• Inputs

(Optional) min: Minimum value allowed for input signal. If not defined, it is assumed to be infinity.

in: Input signal.

(Optional) max: Maximum allowed value for input signal. If not defined, it is assumed to be infinity.

• Outputs

out: Limited signal.

in range: Bit that is true when the input signal is within the allowed range and false otherwise.

User can use the Bound block to monitor critical system parameters that are within operating limits, e.g. airspeed. If
not OK, in range can be used to trigger an alarm.

Fig. 448: Bound block - Example of use

2.9. Block Programs 379

1x PDI Builder, Release 6.12.62

2.9.14.4 Derivative

Derivative block is a numerical derivative of an input signal.

Note: As the result of a numerical derivative can be noisy, this block includes a simple first order filter with
configurable time constant tau to smooth the output.

Fig. 449: Derivative block

• Inputs

(Optional) Init: Optional initial value of the derivative, if not connected a value of zero is assumed.

Signal: Signal to compute the numerical derivative.

• Output

Pin 0: Derived signal.

• Configuration menu:

Fig. 450: Derivative block configuration

– Input is wrapped angle [-pi,pi]: Perform a [-pi, pi] wrap. It should be enabled when using angles.

– Apply 1st order filter to output: If enabled, a simple first order filter is applied to smooth the output. By
default it is enabled and is also recommended.

– Tau: The time constant Tau must be entered.

380 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

2.9.14.5 EWMA Tau filter

EWMA (Exponentially Weighted Moving Average) Tau filter block is a simple first order filter with configurable
time constant Tau.

This filter follows the following equation:

𝑦 = 𝛼 · 𝑢 + (1− 𝛼) · 𝑦−1

Where:

• 𝛼 = 𝑑𝑡
𝑑𝑡+𝜏

– 𝑑𝑡: GNC Timestamp

– 𝜏 : Time constant

• 𝑢: Input value to be filtered

• 𝑦−1: Initialization value at the first execution of the block (t=0)

Fig. 451: EWMA Tau filter block

• Inputs

u0: Initialization value (set in on_focus).

u: Current value to filter.

• Output

Pin 0: Filtered value.

• Configuration menu:

Fig. 452: EWMA Tau filter block configuration

– Tau: The time constant Tau must be entered.

2.9. Block Programs 381

1x PDI Builder, Release 6.12.62

2.9.14.6 FFT

Error: The FFT block is temporarily disabled in this version.

FFT (Fast Fourier Transform) block outputs the Fast Fourier Transform of the input signal.

Fig. 453: FFT block

• Input

in: Input signal.

• Outputs

Amax: 3D vector containing the magnitude of the three dominant frequencies (sorted from higher to lower
magnitude).

Fmax: 3D vector containing the frequency of the three dominant frequencies (sorted from higher to lower
magnitude).

• Configuration menu:

Fig. 454: FFT block configuration

– Stages.
– Computing time.

382 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

2.9.14.7 Hysteresis

Hysteresis block applies hysteresis to input signal to prevent changes in output signal when the input is close to zero.

Fig. 455: Hysteresis block

The behavior is as shown in the following diagram:

Fig. 456: Hysteresis diagram

• Input

Pin 0: Input signal.

• Output

Pin 0: Output signal.

• Configuration menu:

2.9. Block Programs 383

1x PDI Builder, Release 6.12.62

Fig. 457: Hysteresis block configuration

– Hysteresis: Users must enter the magnitud of the hysteresis.

2.9.14.8 IIR Filter

IIR Filter block allows the user to define an Infinite Input Response filter, it applies a Z-transform.

Fig. 458: IIR Filter block

• Input

Pin 0: Input signal.

• Output

Pin 0: Output signal.

• Configuration menu:

384 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 459: IIR Filter block configuration

– A: Filter a coefficients. The user can add as many coefficients a as desired.

– B: Filter b coefficients. The user can add as many coefficients b as desired.

– Respect to IIR: If enabled, the first time the block is executed, it takes the value of input as the initial offset.

This block can be used as a derivative if configured as shown in the following figure:

Fig. 460: IIR Filter block - Derivative example

2.9. Block Programs 385

1x PDI Builder, Release 6.12.62

2.9.14.9 Integrator

Integrator block is a numerical integrator. It calculates the numerical integral of the input signal using the trapezoidal
formula.

Fig. 461: Integrator block

• Inputs

(Optional) Reset: Optional reset, assumed false if not connected.

(Optional) Init: Optional initial value of the integral, if not connected a value of zero is assumed.

Signal: Signal to integrate.

• Output

Pin 0: Integrated signal.

2.9.14.10 Interpolation Vector

Interpolation Vector block applies the configured table interpolation over each of the components of the input vector.

Fig. 462: Interp Vec block

• Input

X: Input vector.

• Output

Y: Interpolated output vector.

• Configuration menu:

386 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 463: Interp Vec block configuration

– : Users should add as many Vector elements as there are components in the input vector.

– Points: The interpolation function of each component must be configured by the user. It is represented by
the graph below.

– Invert: If enabled, the y axis of the function will correspond to the input vector and the x axis to the
interpolated output vector.

2.9.14.11 Ramp

Ramp block will ramp up to the final value defined as input, starting from the initial value defined as input, and
respecting the parameters Ramp Delay and Ramp Time.

Fig. 464: Ramp block

• Inputs

u0: Initial value of the ramp, read only in on_focus.

2.9. Block Programs 387

1x PDI Builder, Release 6.12.62

u: Final value of the ramp, updated in each step.

• Output

Pin 0: Output ramp value.

• Configuration menu:

Fig. 465: Ramp block configuration

– Ramp Delay: Time before starting the ramp.

– Ramp Time: Time in which the variable must change from the initial value to the final value.

2.9.14.12 Rate limiter

Rate limiter block limits the rate of change of the input signal. It returns the signal input, but limiting its maximum
rate of change.

Fig. 466: Rate limiter block

If the rate of change of the input is higher than the maximum, the output will try to converge to the input, but respecting
the imposed maximum rate of change.

The first time the block is executed the output will be equal to Init.
• Inputs

Init: Initialization value, this is the output of the block in the first step after on_focus.

388 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Signal: Input signal.

(Optional) Up limit: Rate limit in the up direction. The value is read as absolute value, this means that the
sign of this input is neglected.

(Optional) Down limit: Rate limit in the down direction. The value is read as absolute value, this means
that the sign of this input is neglected.

• Output

Pin 0: Rate-limited signal.

• Configuration menu:

Fig. 467: Rate limiter block configuration

– Angle wrap: Perform a [-pi, pi] wrap. It should be enabled when using angles.

This block can be used to avoid instantaneous spikes and spikes in control signals, effectively reducing control noise
and smoothing flight:

Fig. 468: Rate limiter block - Example of use

2.9.14.13 Signal generator

Signal generator block is a wave signal generator.

Fig. 469: Signal generator block

• Output

2.9. Block Programs 389

1x PDI Builder, Release 6.12.62

Pin 0: Signal generated according to the configured type.

• Configuration menu:

Fig. 470: Signal generator block configuration

– Frequency: Frequency of the signal.

– Gain: Gain of the signal

– Signal type: Users must select the type of signal to be generated. The available options are: Sine, Square,
Triangular and Sawtooth.

Note: An example of the square signal type is shown below.

– Duty cycle: Duty cycle of the signal. Can only be modified when Square signal is selected.

An example is given below:

390 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 471: Signal generator block - Configuration example

2.9. Block Programs 391

1x PDI Builder, Release 6.12.62

Fig. 472: Signal generator block - Example of signal generated

2.9.15 Type Casting blocks

These blocks allow to change from one data type to another. There are four different blocks available:

Fig. 473: Type Casting blocks

1. Bool to Real: It transforms a boolean variable to a real variable.

2. Integer to Real: It converts an integer variable to a real variable.

3. Real to Bool: It transforms a real variable to a boolean variable.

Any number (negative numbers included), except 0, will be transformed to TRUE; 0 will be FALSE.

4. Real to Integer: It converts a real variable to an integer variable.

392 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

2.10 Devices

This menu displays the possible payloads/devices that can be configured with Veronte Autopilot 1x. Each panel will
allow the user to configure different parameters from the available variety of payloads.

Fig. 474: Devices menu

By default, only the Transponder/ADS-B device is added to this menu (as shown in the figure above). However, users
can add other devices supported by Veronte Autopilot 1x simply by clicking Add device:

2.10. Devices 393

1x PDI Builder, Release 6.12.62

Fig. 475: Devices menu - Add device

2.10.1 Transponder/ADS-B

A transponder is a device that generates or parses ADS-B messages. This menu allows the user to use/configure a
transponder through Custom Messages.
The interface includes different transponder models, depending on the one selected, some configurable parameters are
enabled or disabled.

Important: To configure the Squawk Code, enable/disable Ident Mode and select the “dynamic” ADS-B Out
mode, users must use the ADS-B widget of Veronte Ops. For more information on this, please refer to ADS-B -
Flight instruments widgets of the Veronte Ops user manual.

394 Chapter 2. Configuration

https://manuals.embention.com/veronte-ops/en/6.12/panels/workspace/flight%20instruments/index.html#ads-b
https://manuals.embention.com/veronte-ops/en/6.12/panels/workspace/flight%20instruments/index.html#ads-b

1x PDI Builder, Release 6.12.62

Fig. 476: Transponder/ADS-B panel

The parameters that appear in this menu and that must be configured by the user depending on the transponder model
are explained below:

• Model: The options available in Veronte Autopilot 1x are as follows:

– Internal Transponder

– uAvionix Ping 20s

– uAvionix Ping 1090

– Sagetech MX Series

– Sagetech XPS-TR

– Sagetech XPG-TR

– Sagetech XPS-TRB

– Daedalean

– Internal Remote ID

By clicking on the button next to the drop-down menu, an “information” dialog window about the selected
model will appear. For example:

2.10. Devices 395

1x PDI Builder, Release 6.12.62

Fig. 477: Transponder/ADS-B panel - Information dialog

• Custom message: Select the Custom message 0-2 to be used for the information exchange, as it will be
automatically filled with the information required by the transponder/ADS-B.

• Control Mode: The user must configure the transponder type:

– Standby: Silence mode.

– ADS-B In: To detect external aircraft.

– ADS-B Out: To communicate with external aircraft. There are 2 different types of information that can be
shared:

∗ Static information: This information should not change during operation (flight). Depending on the
model, it can be configured from this app (1x PDI Builder) or from the app of each transponder.

∗ Dynamic information: Information that can change during operation (flight). It is configured from
the ADS-B widget of the Veronte Ops software.

– ADS-B In/Out: To detect and communicate with external aircraft.

• Icao: Unique ICAO 24-bit address permanent for the aircraft, which becomes a part of the aircraft’s Certificate
of Registration.

• Emitter type: The user should specify the type/category of the vehicle in which the transponder is located.

• Call sign: Communication call sign assigned as unique identifier to the aircraft.

The following table summarizes the options that can be selected for each transponder model in the 1x PDI Builder
software:

396 Chapter 2. Configuration

https://manuals.embention.com/veronte-ops/en/6.12/panels/workspace/flight%20instruments/index.html#ads-b

1x PDI Builder, Release 6.12.62

Model Custom
message

Control Mode Icao Emitter
type

Call
signStandby ADS-

B In
ADS-B Out ADS-B

In/Out
Static Dynamic

(through
Veronte Ops)

Internal
Transponder

Not
available

Available Available Available Available Available Available Available Available

uAvionix
Ping s20

Available Available Not
available

Available Available Not
available

Not
available

Not
available

Not
available

uAvionix
Ping 1090

Available Available Available Available Available Available Available Available Available

Sagetech
MX Series

Available Available Available Available Available Available Not
available

Not
available

Not
available

Sagetech
XPS-TR

Available Available Not
available

Available Available Not
available

Not
available

Not
available

Not
available

Sagetech
XPG-TR

Available Available Not
available

Available Available Not
available

Not
available

Not
available

Not
available

Sagetech
XPS-TRB

Available Available Available Available Available Available Not
available

Not
available

Not
available

Daedalean Available Not
available

Not
available

Not
available

Not available Not
available

Not
available

Not
available

Not
available

Internal
Remote
ID

Not
available

Available Not
available

Available Available Not
available

Not
available

Not
available

Not
available

Caution: The control mode can be modified from the ADS-B widget of the Veronte Ops software.

2.10.2 Camera

Adding a camera will create a default Camera configuration menu.

2.10. Devices 397

https://manuals.embention.com/veronte-ops/en/6.12/panels/workspace/flight%20instruments/index.html#ads-b

1x PDI Builder, Release 6.12.62

Fig. 478: Cameras panel

1. Name: Give a name to the customized camera.

2. Search: Users can also choose a camera from the predefined list of cameras, which will automatically establish
the values of the Sensor, Resolution and Lens parameters.

3. Sensor: Defines the camera sensor width and height in mm.

4. Resolution: Defines the camera resolution width and height.

5. Lens: Defines the focal length from the camera in mm.

6. Camera cache: Defines the cache time used to play the selected camera on the gimbal widget.
• A higher cache might increase the video delay.

• A lower cache might cause video artifacts or disconnections.

Tip: 333 miliseconds should be enough for a 1080p video.

7. Cam associated with gimbal: If the camera is from a Gimbal device, it is important to configure this field and
select the Gimbal block number that is related to this camera.

8. Photogrammetry: This allows the creation of Photogrammetry actions.

The actions performed in a Photogrammetry mission can be defined here, following the same possibilities as in
Actions - Automations menu.

• Add Action: Will add a new action.

398 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Warning: A maximum of 4 Actions can be defined (Actions 0-3).

• Generate: Clicking on ‘Generate’ will create the automation ‘Photogrammetry’ with a Button as event and
with the actions defined here.

An example is given below:

Fig. 479: Cameras panel - Example

The automation created for Photogrammetry is shown below:

2.10. Devices 399

1x PDI Builder, Release 6.12.62

400 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 480: Cameras panel - Automation example

2.10.3 Board

This board menu allows the user to configure communicate via CAN, in 1x PDI Builder, with another device such
as CEX, MEX, MC01, etc., in only 1 step, so in only 1 interface window. Instead of doing it in several steps, as is
explained in CEX/MEX - Integration examples section or MC01 - Integration examples section.

Fig. 481: Board panel

• Click on the icon to add a new field. The following parameters must be defined:

– Commgr: Select the desired COM Manager port: Commgr port 0-5.

– Can Over Serie: Select the desired Serial to CAN / CAN to serial: CAN Over Serie 0-1 (that is Serial to
CAN 0-1 and CAN to serial 0-1).

2.10. Devices 401

1x PDI Builder, Release 6.12.62

– Can Input Filter: Select the desired input filter to use: Input filter 0-3.

– Can Output Filter: Select the output filter the user wishes to use: Output filter 0-3.

– Can Port: CAN A, CAN B or BOTH can be selected.

– ID Can Tx: Enter the ID of the CAN message to be sent.

– ID Can Rx: Enter the ID of the CAN message to be received.

Warning: Be careful not to select a producer/consumer that is being used for another purpose, as the
configuration defined here has “priority” and will be changed to this.

For more information on these parameters, see Input/Output section of this manual.

• Clicking the icon will remove the field and display a confirmation warning message.

• By clicking on ‘Apply changes’, all these CAN communication settings are applied to the Autopilot 1x
configuration.

Below is an example of before/after when changes are applied:

Fig. 482: Board panel - I/O Setup configuration

402 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 483: Board panel - CAN Setup configuration

Fig. 484: Board panel - Mailboxes configuration

2.11 Telemetry

In this menu there are 2 options available: Telemetry and Sniffer.

2.11. Telemetry 403

1x PDI Builder, Release 6.12.62

Fig. 485: Telemetry menu

2.11.1 Telemetry

Telemetry controls permit to configure data to be stored or transmitted on the system. There are 4 main items that can
be configured within this panel:

Type Description
Data vectors Configures the variables to send throughout the data link channel.
Onboard Log Sets the variables to be stored on system Log (on 1x SD Card).
User Log User Log for custom applications.
Fast Log Saves data at the maximum frequency available on the system. Recording time depends on

the selected variables.

Configuration display permits to enable the desired variables for each telemetry file and to set the maximum and
minimum values together with precision for each one.

404 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

2.11.1.1 Data vectors

This panel contains the variables that Veronte Autopilots 1x send to the indicated address.

By default, 1x PDI Builder generates a Data vector to send telemetry from the configured Autopilot 1x to the Address
2 (Veronte applications). The variables indicated in red in a Data vector are required for correct operation.

Fig. 486: Data vectors panel

In order to configure the variables sent, users have to:

1. Search: Search the desired variables into the Disabled panel.

2. Disabled: When the desired variables are found, add them to the Enabled panel by dragging and dropping them

into it or simply by clicking on the button.

3. Freq: Specify the sending rate. 10 Hz usually works well, this frequency depends on the bandwidth of the radio.

4. Address: Enter the corresponding address, the following options are the most common: App 2 (Veronte
applications address), Broadcast (all units on the network) and Veronte device address (to a specific unit). For
more information on the available addresses, see List of Addresses section of the 1x Software Manual.

Note: Hash parameter is not configurable, it is automatically calculated by the system based on the telemetry vector
configured by the user.

It is a hexadecimal representation of the CRC of the fieldset.

1x PDI Builder allows the creation of more Data links by simply pressing in the icon next to ‘Telemetry’.

2.11. Telemetry 405

https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#list-of-addresses

1x PDI Builder, Release 6.12.62

As an example, another possible data link could be set between the air and ground autopilots directly (without Veronte
applications) and used to send the position of the UAV to the ground autopilot for the configuration of a tracker. This
data link example is presented in the following figure.

Fig. 487: Data vectors panel - Ground/Air units communication

If we consider this configuration as that of the air unit, this Autopilot 1x will send the Latitude, Longitude and AGL
to the autopilot with address 1x v4.8 4087. The unit that receives the telemetry has to configure its sniffer (more
information about this in the following section) in order to store the data.

Warning: If the number of variables enabled for telemetry communication are higher than the maximum supported
by the system, the latest variables will not be sent, so they will display a zero value if shown in the workspace.

Note: It is possible to create more than one data link associated to the same receiver address, and they can also have
different sending rates. It could be useful in case one of the data links is almost full.

406 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

2.11.1.2 Onboard Log

The Onboard Log determines the variables that are being stored on the autopilot SD Card. In this case, there are not
sending/receiving units, so the only thing to configure here is the list of variables that will be saved on the autopilot
internal memory for a further download and processing, as well as the writing frequency.

The log starts writing once the autopilot is turned on and does not stop logging until the autopilot is turned off.

Fig. 488: Onboard Log panel

Warning: This is a circular log, which means that if the SD card memory is full, Veronte Autopilot 1x will delete
the oldest logs automatically so it can continue logging.

Autopilot 1x has 2.5 GB of memory reserved for these logs. Hence the registered time can be calculated, for
example:

• If 10 variables are stored with 4 bytes each one, then each log will occupy 40 bytes

• With a frequency of 10 Hz, the writing speed will be 400 bytes/s

• 2.5 𝐺𝐵
400 𝑏𝑦𝑡𝑒𝑠/𝑠 = 6710886 𝑠 = 1864 ℎ = 77.7 𝑑𝑎𝑦𝑠

2.11. Telemetry 407

1x PDI Builder, Release 6.12.62

2.11.1.3 User Log

The user log contains the variables that are stored according to an automation created by the user.

Considering an example, in a photogrammetry mission it is important to record the aircraft location when the photo is
taken, so a user log could be used to record a certain set of variables (position, speed, direction, . . .) each time a photo
is taken.

Fig. 489: User Log panel

In order to create a User Log action where an entry is added to the log when a certain set of events are accomplished
check the User Log action - Automations section of this manual.

408 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

2.11.1.4 Fast Log

The fast log store the specified variables at the maximum rate available on the system. This tool could be used to save
information in an operation that happens extremely fast, such as missile launching. The time that this logging process
lasts depends on the number of variables being saved.

Fig. 490: Fast Log panel

The Fast Log can be activated when the user wants, but must be done in Veronte Ops. For more information about
Fast Log, check the Veronte Ops manual.

Important: The downloading of the information of an operation depends on how it has been stored, i.e depends on
the type of log (data link, onboard, user or fast log).

• For more information related to Onboard Log, User Log and Fast log downloading, visit Veronte FDR user
manual.

• Visit Veronte Link user manual for information about Data vectors downloading.

Besides, Autopilot 1x includes some compression tools that may be useful for increasing the amount of information
transmitted in a certain bandwith or stored in a log. Each variable can be compressed separately in each log.

2.11. Telemetry 409

https://manuals.embention.com/veronte-ops/en/6.12/index.html
https://manuals.embention.com/veronte-fdr/en/6.12/index.html
https://manuals.embention.com/veronte-link/en/latest/index.html

1x PDI Builder, Release 6.12.62

Fig. 491: Compression options

There are different types of compression available:

410 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 492: Compression options panel

• Uncompressed: The variable is taken in its full length, with no value modification.

• Compress (Bits signed): Specify the number of bits to be compressed to (negative values accepted). It is
necessary that the user configures Encode/Decode options.

• Compress (Bits unsigned): Specify the number of bits to be compressed to (no negative values accepted). It
is necessary that the user configures Encode/Decode options.

• Compress (Decimals): The variable is compressed according to the number of decimals specified and the range
specified (max and min values). The resultant compression (number of bits) follows the relation (𝑚𝑎𝑥−𝑚𝑖𝑛) ·
10𝑑𝑒𝑐𝑖𝑚𝑎𝑙𝑠, which yields the encoding of the maximum value of the range (and the number of bits necessary for
that). The range needs to be specified on the Encode - Min/Max field.

• Encode/Decode: These values are used to apply a scaling factor after the transformation from binary to decimal
value, or before the transformation from decimal to binary value.

In the example shown below, the Heading variable with 3 decimals will be compressed, so instead of using 32 bits, it
will only require 19 bits.

2.11. Telemetry 411

1x PDI Builder, Release 6.12.62

Fig. 493: Compression example

2.11.2 Sniffer

This panel is used to establish telemetry communication between two Autopilots 1x or between a BCS unit and an
Autopilot 1x. The autopilot being configured will “listen” the variables indicated in the window Enabled, from another
autopilot whose address is indicated in Address. The sniffer is commonly used to make the aircraft listen the position
of the ground station and the link quality.

412 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 494: Sniffer panel

The source UAV, in this case, is the ground station (1x v4.8 4087), which communicates to the 1x air unit (address: 1x
v4.0 1408) its position and some variables related to link quality (RX and TX Packet Error Rates).

The sniffer is configured so that the air autopilot has information about the state of the communications, and it could
perform an action when the link is lost. The aerial platform also receives information about the ground station position,
so it can perform a mission in relation to that point.

The Autopilot 1x unit that sends the data has to be configured as well (1x ground unit), in the Telemetry panel. That
unit will send telemetry through a Data Link.

By clicking on the icon, the user can access the Mapping Variables configuration. Here, the variables send by
the ground unit are indicated in the columm From, and they are stored in the variables indicated in To for its later use
by the 1x air unit.

2.11. Telemetry 413

1x PDI Builder, Release 6.12.62

Fig. 495: Mapping variables option

An example of the configuration required for communication between 1x ground and air units can be found in Data
transmission between Veronte Autopilots 1x - Integration examples section of this manual.

2.12 UI

In this menu, the user can manage operation elements and system variables.

2.12.1 Operation elements

In this panel, users have to declare (rename) operation elements they wish to use in the configuration/operation. Once
declared, the value of operation elements must be set in the Operation Panel of Veronte Ops software. Finally, users
will now be able to reference them throughout the configuration, as in Automations menu.

Warning: Not setting the value of these operation elements in Veronte Ops will result in PDI errors if used
within the autopilot configuration, e.g., if the operation element is defined as a parameter of a Block Program.

414 Chapter 2. Configuration

https://manuals.embention.com/veronte-ops/en/6.12/panels/operation/index.html#operation-panel

1x PDI Builder, Release 6.12.62

Fig. 496: Operation elements panel

Operation elements are divided into 9 different types:

• Custom Points: An operation custom point is a waypoint, a position variable (x,y,z) that can be used as a
reference.

• Patches: A patch establishes a path that the UAV can fly to, they make up the route. Therefore patches include
waypoints, segments, arcs and orbits.

• Prisms: A prism is a detection area.

• Cylinders: A cylinder is a circular prism.

• Marks: A mark is a reference that is placed in a patch and when the uav reaches it, an action takes place.

• Runways: These are the runways used during the take-off and landing phases.

• Spots: A spot is a kind of runway with an initial point, direction and azimuth.

• Spheres: A sphere is a detection area.

• Operation Variables: An operation guidance point is a value of the operation, such as the cruise speed.

In addition to assigning a specific name, the user can also select the unit of this variable as well as its maximum
and minimum values (in SI units).

An example is shown below:

2.12. UI 415

1x PDI Builder, Release 6.12.62

Fig. 497: Operation elements panel - Operation Variables

2.12.2 Variables

In this panel, the user can find the name of all system variables, as well as their units and initial values. This is very
useful, for example, in the case of ‘User Variables’.

Variables are divided into 4 different tabs:

• Bits: Bits variables, 1 bit.

• Unsigned: Unsigned integer variables, 16 bits.

• Real Vars: Real Variables, 32 bits.

• Features: Features variables, 64 bits.

Note:
• There are 300 User variables available for each class (Bits, Unsigned and Real Vars).

• For a detailed list of all variables available in Veronte applications, consult the Lists of Variables section of the
1x Software Manual.

416 Chapter 2. Configuration

https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#lists-of-variables

1x PDI Builder, Release 6.12.62

Fig. 498: Variables panel

To set a custom name for one of the system variables:

1. Click on the Custom Name cell of the desired variable and introduce the new name for it.

2. When the name is introduced press Enter to store the name on the system.

3. Press Save to save all changes.

Error: In this version, there is a maximum amount of characters that the user can use to rename variables, i.e.
there is no limit per se but there is a maximum size of the configurable (xml size).

Besides changing their name, the user can also configure the measurement units of the variables, as well as the initial
value (expressed in SI units) they will have each time the system (re)starts, using the Show unit and the Init Value (SI)
cells.

By right-clicking on the Show unit cell, the user can select the desired units.

2.12. UI 417

1x PDI Builder, Release 6.12.62

Fig. 499: Variables units
418 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

The table below shows all the available units in 1x PDI Builder.

Variable Type Units
Velocity [m/s] [kt] [km/h] [mph] [ft/s] [mm/s] [ft/m]
Length [m] [km] [mi] [NM] [yd] [ft] [in] [cm] [mm]
Angle rad[−𝜋 ; 𝜋] °[-180;180] °[0;360] [° ‘ “] [rad] rad[0; 2𝜋] °
Acceleration [m/s2] [ft/s2] [in/s2] [g]
Temperature [K] [°C] [°F]
Magnetic Flux Density [T] [mG] [gauss] [nT]
Voltage [V] [mV]
Current [A] [mA]
Pressure [Pa] [kPa] [bar] [mbar] [psi] [mmHg] [at] [atm]
Time [s] [min] [h] [𝜇𝑠] [ms]
Angular Velocity [rad/s] [rad/m] [rad/h] [rps] [rpm] [rph] [°/s]
Flow Rate [m3/s] [gal/s] [gal/h] [l/s] [l/h]
Custom Type [- -]
Percentage [x1] [%]
Transfer [pkts/s]
Frequency [Hz] [mHz] [kHz]
Area [m2] [cm2] [mm2] [km2] [mile2] [ft2] [yd2]
Data [bit] [byte] [KB] [GB] [bytes/s]
Mass [kg] [g] [tonnes] [lbs] [oz]
Force [N] [kN] [lbf] [pdl]
Angular Acceleration [rpm/s] [rad/s2] [rad/m2] [rad/h2] [°/s2] [°/m2] [°/h2]
Baudrate [Bd] [kBd] [MBd]
Pressure Variance [Pa2]
Magfield Variance [T2]
Velocity Variance [(m/s)2] [(cm/s)2] [(mm/s)2]
Numeral System [bin] [octal] [dec] [hex]
Pressure Square Error Rate [Pa2/s]
Centimeters/Pixels [cm/pixel]
Jerk [m/s3]
Power [W] [kW] [Kgm/s] [erg/s] [CV]
Resistence [Ω]
Inductance [H]
Volume [m3] [dm3] [mm3] [L] [mL]
Decibel [db]
Density [kg/m3]

2.13 HIL

Professional Hardware In the Loop (HIL) Simulator package is a powerful tool for Autopilot 1x integration,
development and operator training; allowing to extensively operate the system in a safe environment, prior to conducting
real flight operations. For more information, please visit HIL Simulator user manual.

The user can link the variables on Autopilot 1x with the corresponding ones in the simulator. In this menu, simulator
variables are available on the left side (Disabled). In addition, it can be seen 2 more panels, To Simulator and To
Veronte.

2.13. HIL 419

https://manuals.embention.com/hil-simulator/en/6.12.22/index.html

1x PDI Builder, Release 6.12.62

Fig. 500: HIL menu

In order to configure the simulation variables, users have to:

1. Disabled: Select the simulator variables that have been configured in the aircraft model. Just drag and drop them
into “To Simulator” panel.

2. Here users can see all the variables selected and sent to the simulator. Select the one to be configured.

To remove a variable from the list, simply click on the icon next to it.

3. Select the actuator variable (Control Output) of Autopilot 1x that matches with the one in the simulator. A new
window will be displayed for each variable.

420 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Fig. 501: Autopilot 1x variables

4. Offset: Set an offset, if it is necessary.

5. Conversion: Set a conversion factor, if it is necessary. It multiplies the Autopilot 1x output signal and can be
used in case units on 1x and the simulator do not match. For example, in X-Plane simulator, the unit of angles is
radians.

Note: To be sure of which units the simulator has, please refer to the relevant simulator manual (X-Plane,
Microsoft Flight Simulator, etc.).

Warning: Always make sure that surfaces are moving in the right direction and with the correct deflection
angle.

6. To Veronte: The user can also select variables to be sent from the simulator to Autopilot 1x. Veronte Autopilot
can receive a maximum of 16 simulation variables.

Hint: An interesting variable could be the RPM of the motor.

2.13. HIL 421

1x PDI Builder, Release 6.12.62

2.13.1 Simulation variables

The following table shows the correspondence between the nomenclature of simulation variables in 1x PDI Builder,
X-Plane 11 and Microsoft Flight Simulator.

Note: 1x PDI Builder variables represent the indicated variables in this table, depending on which simulator is in
use.

1x PDI Builder X-Plane 11 Microsoft Flight
SimulatorVariable name Index Subindex

Throttle 1 Throttle
(commanded)

25 0 GENERAL ENG THROTTLE LEVER POSITION:1
Throttle 2 25 1 GENERAL ENG THROTTLE LEVER POSITION:2
Throttle 3 25 2 GENERAL ENG THROTTLE LEVER POSITION:3
Throttle 4 25 3 GENERAL ENG THROTTLE LEVER POSITION:4
Throttle 5 25 4 GENERAL ENG THROTTLE LEVER POSITION:5
Throttle 6 25 5 GENERAL ENG THROTTLE LEVER POSITION:6
Throttle 7 25 6 GENERAL ENG THROTTLE LEVER POSITION:7
Throttle 8 25 7 GENERAL ENG THROTTLE LEVER POSITION:8
Throttle 9 – – – GENERAL ENG THROTTLE LEVER POSITION:9
Throttle 10 – – – GENERAL ENG THROTTLE LEVER POSITION:10
Throttle 11 – – – GENERAL ENG THROTTLE LEVER POSITION:11
Throttle 12 – – – GENERAL ENG THROTTLE LEVER POSITION:12
Throttle 13 – – – GENERAL ENG THROTTLE LEVER POSITION:13
Throttle 14 – – – GENERAL ENG THROTTLE LEVER POSITION:14
Throttle 15 – – – GENERAL ENG THROTTLE LEVER POSITION:15
Throttle 16 – – – GENERAL ENG THROTTLE LEVER POSITION:16
RPM Command 1 – – – GENERAL ENG RPM:1
RPM Command 2 – – – GENERAL ENG RPM:2
RPM Command 3 – – – GENERAL ENG RPM:3
RPM Command 4 – – – GENERAL ENG RPM:4
RPM Command 5 – – – GENERAL ENG RPM:5
RPM Command 6 – – – GENERAL ENG RPM:6
RPM Command 7 – – – GENERAL ENG RPM:7
RPM Command 8 – – – GENERAL ENG RPM:8
RPM Command 9 – – – GENERAL ENG RPM:9
RPM Command 10 – – – GENERAL ENG RPM:10
RPM Command 11 – – – GENERAL ENG RPM:11
RPM Command 12 – – – GENERAL ENG RPM:12
RPM Command 13 – – – GENERAL ENG RPM:13
RPM Command 14 – – – GENERAL ENG RPM:14
RPM Command 15 – – – GENERAL ENG RPM:15
RPM Command 16 – – – GENERAL ENG RPM:16
Governor – – – ROTOR GOV SWITCH POS
JATO – – – –
Jettison – – – –
Elevator All Flight controls aileron/elevator/rudder 11 0 ELEVATOR POSITION:1
Aileron All Flight controls aileron/elevator/rudder 11 1 AILERON POSITION:1
Rudder All Flight controls aileron/elevator/rudder 11 2 RUDDER POSITION:1
AileronRight 1 Aileron deflections

1
70 1 –

Aileron Right 2 70 3 –
continues on next page

422 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Table 2 – continued from previous page
1x PDI Builder X-Plane 11 Microsoft Flight

SimulatorVariable name Index Subindex
Aileron Right 3 70 5 –
Aileron Right 4 70 7 –
Aileron Right 5 Aileron deflections

2
71 1 –

Aileron Right 6 71 3 –
Aileron Right 7 71 5 –
Aileron Right 8 71 7 –
Aileron Left 1 Aileron deflections

1
70 0 –

Aileron Left 2 70 2 –
Aileron Left 3 70 4 –
Aileron Left 4 70 6 –
Aileron Left 5 Aileron deflections

2
71 0 –

Aileron Left 6 71 2 –
Aileron Left 7 71 4 –
Aileron Left 8 71 6 –
Elevator 1 Elevator deflections 74 0 –
Elevator 2 74 1 –
Elevator 3 74 2 –
Elevator 4 74 3 –
Rudder 1 Rudder deflections 75 0 –
Rudder 2 75 1 –
Rudder 3 75 2 –
Rudder 4 75 3 –
Flap All Trim, flap, stats, & speedbrakes 13 4 FLAPS HANDLE INDEX:1
Flap Right 1 – – – –
Flap Right 2 – – – –
Flap Left 1 – – – –
Flap Left 2 – – – –
Flap Handle Trim, flap, stats, & speedbrakes 13 3 –
Landing Gear Gear & brakes 14 0 GEAR HANDLE POSITION
Landing Gear Steering 0 Landing gear

steering
134 0 –

Landing Gear Steering 1 134 1 –
Landing Gear Steering 2 134 2 –
Landing Gear Steering 3 134 3 –
Landing Gear Steering 4 134 4 –
Landing Gear Steering 5 134 5 –
Landing Gear Steering 6 134 6 –
Landing Gear Steering 7 134 7 –
Brake All Gear & brakes 14 1 –
Brake Right Gear & brakes 14 3 BRAKE RIGHT POSITION
Brake Left Gear & brakes 14 2 BRAKE LEFT POSITION
Speed Brake 1 Trim, flap, stats, & speedbrakes 13 6 SPOILERS HANDLE POSITION
Speed Brake 2 Trim, flap, stats, & speedbrakes 13 7 –
Roll Cyclic 1 Roll cyclic disc tilts 81 0 –
Roll Cyclic 2 Roll cyclic disc tilts 81 1 –
Roll Cyclic 3 – – – –
Roll Cyclic 4 – – – –
Roll Cyclic 5 – – – –
Roll Cyclic 6 – – – –
Roll Cyclic 7 – – – –

continues on next page

2.13. HIL 423

1x PDI Builder, Release 6.12.62

Table 2 – continued from previous page
1x PDI Builder X-Plane 11 Microsoft Flight

SimulatorVariable name Index Subindex
Roll Cyclic 8 – – – –
Roll Cyclic 9 – – – –
Roll Cyclic 10 – – – –
Roll Cyclic 11 – – – –
Roll Cyclic 12 – – – –
Roll Cyclic 13 – – – –
Roll Cyclic 14 – – – –
Roll Cyclic 15 – – – –
Roll Cyclic 16 – – – –
Pitch Cyclic 1 Pitch cyclic disc tilts 80 0 –
Pitch Cyclic 2 – 80 1 –
Pitch Cyclic 3 – – – –
Pitch Cyclic 4 – – – –
Pitch Cyclic 5 – – – –
Pitch Cyclic 6 – – – –
Pitch Cyclic 7 – – – –
Pitch Cyclic 8 – – – –
Pitch Cyclic 9 – – – –
Pitch Cyclic 10 – – – –
Pitch Cyclic 11 – – – –
Pitch Cyclic 12 – – – –
Pitch Cyclic 13 – – – –
Pitch Cyclic 14 – – – –
Pitch Cyclic 15 – – – –
Pitch Cyclic 16 – – – –
Pitch Cyclic 16 – – – –
Clutch 0 Clutch & artificial

stability switches
111 0 –

Clutch 1 111 1 –
Clutch 2 111 2 –
Joystick Alieron Joystick

aileron/elevator/rudder
111 0 –

Joystick Elevator 111 1 –
Joystick Rudder 111 2 –
Collective 1 Propeller pitch 39 0 –
Collective 2 39 1 –
Collective 3 39 2 –
Collective 4 39 3 –
Collective 5 39 4 –
Collective 6 39 5 –
Collective 7 39 6 –
Collective 8 39 7 –
Collective 9 – – – –
Collective 10 – – – –
Collective 11 – – – –
Collective 12 – – – –
Collective 13 – – – –
Collective 14 – – – –
Collective 15 – – – –
Collective 16 – – – –
Motors Tilt Pitch 1 Wing sweep & thrust vectoring 12 3 –

continues on next page

424 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Table 2 – continued from previous page
1x PDI Builder X-Plane 11 Microsoft Flight

SimulatorVariable name Index Subindex
Motors Tilt Pitch 2 – – – –
Motors Tilt Pitch 3 – – – –
Motors Tilt Pitch 4 – – – –
Motors Tilt Pitch 5 – – – –
Motors Tilt Pitch 6 – – – –
Motors Tilt Pitch 7 – – – –
Motors Tilt Pitch 8 – – – –
Motors Tilt Pitch 9 – – – –
Motors Tilt Pitch 10 – – – –
Motors Tilt Pitch 11 – – – –
Motors Tilt Pitch 12 – – – –
Motors Tilt Pitch 13 – – – –
Motors Tilt Pitch 14 – – – –
Motors Tilt Pitch 15 – – – –
Motors Tilt Pitch 16 – – – –
Motors Tilt Roll 1 – – – –
Motors Tilt Roll 2 – – – –
Motors Tilt Roll 3 – – – –
Motors Tilt Roll 4 – – – –
Motors Tilt Roll 5 – – – –
Motors Tilt Roll 6 – – – –
Motors Tilt Roll 7 – – – –
Motors Tilt Roll 8 – – – –
Motors Tilt Roll 9 – – – –
Motors Tilt Roll 10 – – – –
Motors Tilt Roll 11 – – – –
Motors Tilt Roll 12 – – – –
Motors Tilt Roll 13 – – – –
Motors Tilt Roll 14 – – – –
Motors Tilt Roll 15 – – – –
Motors Tilt Roll 16 – – – –
Wing Tilt 1 Wing sweep & thrust vectoring 12 5 –
Wing Tilt 2 – – – –
Wing Tilt 3 – – – –
Wing Tilt 4 – – – –
Wing Tilt 5 – – – –
Wing Tilt 6 – – – –
Wing Tilt 7 – – – –
Wing Tilt 8 – – – –
Wing Dihedral 1 Wing sweep & thrust vectoring 12 6 –
Wing Dihedral 2 – – – –
Wing Dihedral 3 – – – –
Wing Dihedral 4 – – – –
Wing Dihedral 5 – – – –
Wing Dihedral 6 – – – –
Wing Dihedral 7 – – – –
Wing Dihedral 8 – – – –
Wing Sweep 1 Wing sweep & thrust vectoring 12 4 –

continues on next page

2.13. HIL 425

1x PDI Builder, Release 6.12.62

Table 2 – continued from previous page
1x PDI Builder X-Plane 11 Microsoft Flight

SimulatorVariable name Index Subindex
Wing Sweep 2 – – – –
Wing Sweep 3 – – – –
Wing Sweep 4 – – – –
Wing Sweep 5 – – – –
Wing Sweep 6 – – – –
Wing Sweep 7 – – – –
Wing Sweep 8 – – – –
Parachute Miscellaneous switches 112 7 –
Throttle Actual 1 Throttle (actual) 26 0 –
Throttle Actual 2 26 1 –
Throttle Actual 3 26 2 –
Throttle Actual 4 26 3 –
Throttle Actual 5 26 4 –
Throttle Actual 6 26 5 –
Throttle Actual 7 26 6 –
Throttle Actual 8 26 7 –
Throttle Actual 9 – – – –
Throttle Actual 10 – – – –
Throttle Actual 11 – – – –
Throttle Actual 12 – – – –
Throttle Actual 13 – – – –
Throttle Actual 14 – – – –
Throttle Actual 15 – – – –
Throttle Actual 16 – – – –
Motor RPM 1 Engine RPM 37 0 GENERAL ENG RPM:1
Motor RPM 2 37 1 GENERAL ENG RPM:2
Motor RPM 3 37 2 GENERAL ENG RPM:3
Motor RPM 4 37 3 GENERAL ENG RPM:4
Motor RPM 5 37 4 GENERAL ENG RPM:5
Motor RPM 6 37 5 GENERAL ENG RPM:6
Motor RPM 7 37 6 GENERAL ENG RPM:7
Motor RPM 8 37 7 GENERAL ENG RPM:8
Motor RPM 9 – – – GENERAL ENG RPM:9
Motor RPM 10 – – – GENERAL ENG RPM:10
Motor RPM 11 – – – GENERAL ENG RPM:11
Motor RPM 12 – – – GENERAL ENG RPM:12
Motor RPM 13 – – – GENERAL ENG RPM:13
Motor RPM 14 – – – GENERAL ENG RPM:14
Motor RPM 15 – – – GENERAL ENG RPM:15
Motor RPM 16 – – – GENERAL ENG RPM:16
Rotor RPM 1 Propeller RPM 38 0 PROP RPM:1
Rotor RPM 2 38 1 PROP RPM:2
Rotor RPM 3 38 2 PROP RPM:3
Rotor RPM 4 38 3 PROP RPM:4
Rotor RPM 5 38 4 PROP RPM:5
Rotor RPM 6 38 5 PROP RPM:6
Rotor RPM 7 38 6 PROP RPM:7
Rotor RPM 8 38 7 PROP RPM:8
Rotor RPM 9 – – – PROP RPM:9

continues on next page

426 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Table 2 – continued from previous page
1x PDI Builder X-Plane 11 Microsoft Flight

SimulatorVariable name Index Subindex
Rotor RPM 10 – – – PROP RPM:10
Rotor RPM 11 – – – PROP RPM:11
Rotor RPM 12 – – – PROP RPM:12
Rotor RPM 13 – – – PROP RPM:13
Rotor RPM 14 – – – PROP RPM:14
Rotor RPM 15 – – – PROP RPM:15
Rotor RPM 16 – – – PROP RPM:16
Power 1 Engine power 34 0 RECIP ENG BRAKE POWER:1
Power 2 34 1 RECIP ENG BRAKE POWER:2
Power 3 34 2 RECIP ENG BRAKE POWER:3
Power 4 34 3 RECIP ENG BRAKE POWER:4
Power 5 34 4 RECIP ENG BRAKE POWER:5
Power 6 34 5 RECIP ENG BRAKE POWER:6
Power 7 34 6 RECIP ENG BRAKE POWER:7
Power 8 34 7 RECIP ENG BRAKE POWER:8
Power 9 – – – RECIP ENG BRAKE POWER:9
Power 10 – – – RECIP ENG BRAKE POWER:10
Power 11 – – – RECIP ENG BRAKE POWER:11
Power 12 – – – RECIP ENG BRAKE POWER:12
Power 13 – – – RECIP ENG BRAKE POWER:13
Power 14 – – – RECIP ENG BRAKE POWER:14
Power 15 – – – RECIP ENG BRAKE POWER:15
Power 16 – – – RECIP ENG BRAKE POWER:16
EGT (Exhaust Gas Temperature) 1 Exhaust has temperature (EGT) 47 0 ENG EXHAUST GAS TEMPERATURE:1
EGT (Exhaust Gas Temperature) 2 – – – ENG EXHAUST GAS TEMPERATURE:2
EGT (Exhaust Gas Temperature) 3 – – – ENG EXHAUST GAS TEMPERATURE:3
EGT (Exhaust Gas Temperature) 4 – – – ENG EXHAUST GAS TEMPERATURE:4
EGT (Exhaust Gas Temperature) 5 – – – ENG EXHAUST GAS TEMPERATURE:5
EGT (Exhaust Gas Temperature) 6 – – – ENG EXHAUST GAS TEMPERATURE:6
EGT (Exhaust Gas Temperature) 7 – – – ENG EXHAUST GAS TEMPERATURE:7
EGT (Exhaust Gas Temperature) 8 – – – ENG EXHAUST GAS TEMPERATURE:8
EGT (Exhaust Gas Temperature) 9 – – – ENG EXHAUST GAS TEMPERATURE:9
EGT (Exhaust Gas Temperature) 10 – – – ENG EXHAUST GAS TEMPERATURE:10
EGT (Exhaust Gas Temperature) 11 – – – ENG EXHAUST GAS TEMPERATURE:11
EGT (Exhaust Gas Temperature) 12 – – – ENG EXHAUST GAS TEMPERATURE:12
EGT (Exhaust Gas Temperature) 13 – – – ENG EXHAUST GAS TEMPERATURE:13
EGT (Exhaust Gas Temperature) 14 – – – ENG EXHAUST GAS TEMPERATURE:14
EGT (Exhaust Gas Temperature) 15 – – – ENG EXHAUST GAS TEMPERATURE:15
EGT (Exhaust Gas Temperature) 16 – – – ENG EXHAUST GAS TEMPERATURE:16
Oil Pressure 1 Oil pressure 49 0 ENG OIL PRESSURE:1
Oil Pressure 2 49 1 ENG OIL PRESSURE:2
Oil Pressure 3 49 1 ENG OIL PRESSURE:3
Oil Pressure 4 49 2 ENG OIL PRESSURE:4
Oil Pressure 5 49 2 ENG OIL PRESSURE:5
Oil Pressure 6 49 3 ENG OIL PRESSURE:6
Oil Pressure 7 49 3 ENG OIL PRESSURE:7
Oil Pressure 8 49 4 ENG OIL PRESSURE:8
Oil Pressure 9 – – – ENG OIL PRESSURE:9
Oil Pressure 10 – – – ENG OIL PRESSURE:10

continues on next page

2.13. HIL 427

1x PDI Builder, Release 6.12.62

Table 2 – continued from previous page
1x PDI Builder X-Plane 11 Microsoft Flight

SimulatorVariable name Index Subindex
Oil Pressure 11 – – – ENG OIL PRESSURE:11
Oil Pressure 12 – – – ENG OIL PRESSURE:12
Oil Pressure 13 – – – ENG OIL PRESSURE:13
Oil Pressure 14 – – – ENG OIL PRESSURE:14
Oil Pressure 15 – – – ENG OIL PRESSURE:15
Oil Pressure 16 – – – ENG OIL PRESSURE:16
IAT (Inlet Air Temperature) 1 – – – RECIP ENG TURBINE INLET TEMPERATURE:1
IAT (Inlet Air Temperature) 2 – – – RECIP ENG TURBINE INLET TEMPERATURE:2
IAT (Inlet Air Temperature) 3 – – – RECIP ENG TURBINE INLET TEMPERATURE:3
IAT (Inlet Air Temperature) 4 – – – RECIP ENG TURBINE INLET TEMPERATURE:4
IAT (Inlet Air Temperature) 5 – – – RECIP ENG TURBINE INLET TEMPERATURE:5
IAT (Inlet Air Temperature) 6 – – – RECIP ENG TURBINE INLET TEMPERATURE:6
IAT (Inlet Air Temperature) 7 – – – RECIP ENG TURBINE INLET TEMPERATURE:7
IAT (Inlet Air Temperature) 8 – – – RECIP ENG TURBINE INLET TEMPERATURE:8
IAT (Inlet Air Temperature) 9 – – – RECIP ENG TURBINE INLET TEMPERATURE:9
IAT (Inlet Air Temperature) 10 – – – RECIP ENG TURBINE INLET TEMPERATURE:10
IAT (Inlet Air Temperature) 11 – – – RECIP ENG TURBINE INLET TEMPERATURE:11
IAT (Inlet Air Temperature) 12 – – – RECIP ENG TURBINE INLET TEMPERATURE:12
IAT (Inlet Air Temperature) 13 – – – RECIP ENG TURBINE INLET TEMPERATURE:13
IAT (Inlet Air Temperature) 14 – – – RECIP ENG TURBINE INLET TEMPERATURE:14
IAT (Inlet Air Temperature) 15 – – – RECIP ENG TURBINE INLET TEMPERATURE:15
IAT (Inlet Air Temperature) 16 – – – RECIP ENG TURBINE INLET TEMPERATURE:16
Oil Temperature 1 Oil temperature 50 0 ENG OIL TEMPERATURE:1
Oil Temperature 2 50 1 ENG OIL TEMPERATURE:2
Oil Temperature 3 50 2 ENG OIL TEMPERATURE:3
Oil Temperature 4 50 3 ENG OIL TEMPERATURE:4
Oil Temperature 5 50 4 ENG OIL TEMPERATURE:5
Oil Temperature 6 50 5 ENG OIL TEMPERATURE:6
Oil Temperature 7 50 6 ENG OIL TEMPERATURE:7
Oil Temperature 8 50 7 ENG OIL TEMPERATURE:8
Oil Temperature 9 – – – ENG OIL TEMPERATURE:9
Oil Temperature 10 – – – ENG OIL TEMPERATURE:10
Oil Temperature 11 – – – ENG OIL TEMPERATURE:11
Oil Temperature 12 – – – ENG OIL TEMPERATURE:12
Oil Temperature 13 – – – ENG OIL TEMPERATURE:13
Oil Temperature 14 – – – ENG OIL TEMPERATURE:14
Oil Temperature 15 – – – ENG OIL TEMPERATURE:15
Oil Temperature 16 – – – ENG OIL TEMPERATURE:16
Coolant Tempreature 1 – – – –
Coolant Tempreature 2 – – – –
Coolant Tempreature 3 – – – –
Coolant Tempreature 4 – – – –
Coolant Tempreature 5 – – – –
Coolant Tempreature 6 – – – –
Coolant Tempreature 7 – – – –
Coolant Tempreature 8 – – – –
Coolant Tempreature 9 – – – –
Coolant Tempreature 10 – – – –
Coolant Tempreature 11 – – – –

continues on next page

428 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Table 2 – continued from previous page
1x PDI Builder X-Plane 11 Microsoft Flight

SimulatorVariable name Index Subindex
Coolant Tempreature 12 – – – –
Coolant Tempreature 13 – – – –
Coolant Tempreature 14 – – – –
Coolant Tempreature 15 – – – –
Coolant Tempreature 16 – – – –
Fuel mixture 1 Mixture setting 29 0 RECIP MIXTURE RATIO:1
Fuel mixture 2 – – – RECIP MIXTURE RATIO:2
Fuel mixture 3 – – – RECIP MIXTURE RATIO:3
Fuel mixture 4 – – – RECIP MIXTURE RATIO:4
Fuel mixture 5 – – – RECIP MIXTURE RATIO:5
Fuel mixture 6 – – – RECIP MIXTURE RATIO:6
Fuel mixture 7 – – – RECIP MIXTURE RATIO:7
Fuel mixture 8 – – – RECIP MIXTURE RATIO:8
Fuel mixture 9 – – – RECIP MIXTURE RATIO:9
Fuel mixture 10 – – – RECIP MIXTURE RATIO:10
Fuel mixture 11 – – – RECIP MIXTURE RATIO:11
Fuel mixture 12 – – – RECIP MIXTURE RATIO:12
Fuel mixture 13 – – – RECIP MIXTURE RATIO:13
Fuel mixture 14 – – – RECIP MIXTURE RATIO:14
Fuel mixture 15 – – – RECIP MIXTURE RATIO:15
Fuel mixture 16 – – – RECIP MIXTURE RATIO:16
Total Fuel Payload weights & center of gravity (CG) 63 2 –
Total Fuel Flow – – – –
Fuel 1 Fuel weights 62 0 FUELSYSTEM TANK WEIGHT:1
Fuel 2 62 1 FUELSYSTEM TANK WEIGHT:2
Fuel 3 62 2 FUELSYSTEM TANK WEIGHT:3
Fuel 4 62 3 FUELSYSTEM TANK WEIGHT:4
Fuel 5 62 4 FUELSYSTEM TANK WEIGHT:5
Fuel 6 62 5 FUELSYSTEM TANK WEIGHT:6
Fuel 7 62 6 FUELSYSTEM TANK WEIGHT:7
Fuel 8 62 7 FUELSYSTEM TANK WEIGHT:8
Fuel Flow 1 Fuel flow (FF) 45 0 ENG FUEL FLOW GPH:1
Fuel Flow 2 45 1 ENG FUEL FLOW GPH:2
Fuel Flow 3 45 2 ENG FUEL FLOW GPH:3
Fuel Flow 4 45 3 ENG FUEL FLOW GPH:4
Fuel Flow 5 45 4 ENG FUEL FLOW GPH:5
Fuel Flow 6 45 5 ENG FUEL FLOW GPH:6
Fuel Flow 7 45 6 ENG FUEL FLOW GPH:7
Fuel Flow 8 45 7 ENG FUEL FLOW GPH:8
visRatio Frame rate 0 3 –
grndRatio 0 5 –
flitRatio 0 6 –
presBar System pressures 7 0 BAROMETER PRESSURE
eas Speeds 3 1 AIRSPEED TRUE
tas 3 2 AIRSPEED TRUE
gs 3 3 GPS GROUND SPEED
Speed Autopilot values 118 0 GROUND VELOCITY
Heading 118 1 GPS GROUND TRUE TRACK
VVI Mach, VVI, g-load 4 2 –

continues on next page

2.13. HIL 429

1x PDI Builder, Release 6.12.62

Table 2 – continued from previous page
1x PDI Builder X-Plane 11 Microsoft Flight

SimulatorVariable name Index Subindex
distNm Location, velocity, & distance traveled 21 7 –
magComp Magnetic compass 19 0 MAGNETIC COMPASS
magvar – – – MAGVAR

– – – –
AMpress Aircraft atmosphere 6 0 AMBIENT PRESSURE
AMtemperature 6 1 AMBIENT TEMPERATURE
LEtemperature 6 2 AMBIENT TEMPERATURE
dens 6 3 AMBIENT DENSITY
A 6 4 –
Q 6 5 DYNAMIC PRESSURE
Position IAS Speeds 3 0 AIRSPEED INDICATED
Position Latitude Latitude, longitude,

& altitude
20 0 PLANE LATITUDE

Position Longitude 20 1 PLANE LONGITUDE
Position altitude Msl 20 2 PLANE ALTITUDE
Position altitude Agl 20 3 PLANE ALT ABOVE GROUND
Position altitude Ind 20 5 PRESSURE ALTITUDE
X Location, velocity,

& distance traveled
21 0 –

Y 21 1 –
Z 21 2 –
vX 21 3 VELOCITY BODY X
vY 21 4 VELOCITY BODY Y
vZ 21 5 VELOCITY BODY Z
Position gNormal Mach, VVI, g-load 4 4 ACCELERATION BODY Z
Position gAxial 4 5 ACCELERATION BODY X
Position gSide 4 6 ACCELERATION BODY Y
Orientation Pitch Pitch, roll, &

headings
17 0 PLANE PITCH DEGREES

Orientation Roll 17 1 PLANE BANK DEGREES
Orientation Heading True 17 2 PLANE HEADING DEGREES TRUE
Heading Mag 17 3 PLANE HEADING DEGREES MAGNETIC
Orientation Pitch rate Angular velocities 16 0 ROTATION VELOCITY BODY Y
Orientation Roll Rate 16 1 ROTATION VELOCITY BODY X
Orientation Yaw Rate 16 2 ROTATION VELOCITY BODY Z
Orientation alpha Angle of attack, sideslip, & paths 18 0 INCIDENCE ALPHA
Orientation beta Angle of attack, sideslip, & paths 18 1 INCIDENCE BETA
thrust1 Engine thrust 35 0 PROP THRUST:1
thrust2 35 1 PROP THRUST:2
torque1 Engine torque 36 0 ENG TORQUE:1
torque2 36 1 ENG TORQUE:2
fdirMode Autopilot, flight director, & HUD switches 108 1 –
navArm Autopilot armed

status
116 0 –

altArm 116 1 –
appArm 116 2 –
autoThrottle Autopilot values 117 0 AUTOTHROTTLE ACTIVE
modeHeading 117 1 –
modeAlt 117 2 –
cgControl Payload weights & center of gravity (CG) 63 7 –
realTime Times 1 0 –
totalTime 1 1 GENERAL ENG ELAPSED TIME:1
missnTime 1 2 –

continues on next page

430 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

Table 2 – continued from previous page
1x PDI Builder X-Plane 11 Microsoft Flight

SimulatorVariable name Index Subindex
timer 1 3 –
diAlt Autopilot values 118 3 –
useAlt – – – –
empty Payload weights &

center of gravity
(CG)

63 0 –
payload 63 1 –
fuel 63 2 –
jetti 63 3 –
current 63 4 –
maximum 63 5 –
cg 63 7 CG PERCENT
Speed North – – – VELOCITY WORLD Z
Speed East – – – VELOCITY WORLD X
Speed Down – – – VELOCITY WORLD Y

2.14 Safety

In this menu the user can create checklists for each phase, avoid changing certain parameters, settings or programs and
define safety bits lists.

2.14.1 Checklist

This feature is used to make sure that some requirements have been accomplished, for example, prior to a phase change
or to avoid a possible malfunction.

These checklists will appear in a panel called Checklist of Veronte Ops (for more information about this, visit Veronte
Ops manual).

Note: There are 3 different types of checks:

• Checks that are performed automatically by Veronte Autopilot 1x, such as “In Range check”.

• Checks that need a command to Autopilot 1x, e.g. “Calibrate Atmosphere”.

• Checks for operator information only, which are performed with type “None”.

2.14. Safety 431

https://manuals.embention.com/veronte-ops/en/6.12/index.html
https://manuals.embention.com/veronte-ops/en/6.12/index.html

1x PDI Builder, Release 6.12.62

Fig. 502: Checklist panel

In (1), the user will find all the phases configured for the operation. In each one of them, new elements for the checklist
can be added with the button Add (2). The user can modify the checklist order of the phase by selecting and dragging
elements in the list to the desired position.

The configurable parameters for each element are:

• Name: The name that will identify the element.

• Type: The element chosen from the checklist can be one of the following types:

– Calibrate Atmosphere: The user can request the calibration of the atmosphere model.

– Calibrate DEM: The user can request the calibration of the DEM.

– Command Position: Send to the UAV a position.

– Command Yaw: Send to the UAV a yaw angle.

– Enter Wind Information: Enter initial values for wind state to the UAV.

– In Range Check: Allows checking if a variable is between the range selected.

Error: In order for Veronte Ops to correctly execute this functionality, variables that are added to a
checklist as In Range Check must also be added to the mandatory telemetry vector Data vectors.

This is because if they are not added to this telemetry vector, these variables are initialized in Veronte
Ops with a value of 0, which in reality may not be the actual value of these variables and may cause

432 Chapter 2. Configuration

1x PDI Builder, Release 6.12.62

confusion in some range.

– None: Any action is performed, been just a check for the user to do something external.

– Trim arcade: The user can request the stick calibration for arcade commands.

• Required for phase change: If enabled, the element must be checked to switch to another phase.

• Show only once: If enabled, the check will only appear the first time its phase is executed.

• Automatic check: This option is only available when ‘In Range check’ is selected.

An example of ‘In Range Check’ can be shown below:

Fig. 503: Checklist example

2.14.2 Config Manager

Config Manager avoids the user changing certains parameters, settings or programs of Autopilot 1x. It is shown in the
picture below:

2.14. Safety 433

1x PDI Builder, Release 6.12.62

Fig. 504: Config Manager panel

The user can choose between:

• No block

• Block in normal mode

• Block in maintenance mode

• Block always

2.14.3 Safety bits

In this panel the user can configure 3 different safety bits lists.

The bits included in these lists are added to the set of default system bits that trigger the System error variable, and
therefore trigger the FTS. The user can refer to this list of default system bits in the Activation System Error bits section
of the 1x Software Manual.

434 Chapter 2. Configuration

https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#activation-system-error-bits

1x PDI Builder, Release 6.12.62

Fig. 505: Safety bits panel

By default, there is no bit defined in any Safety bits list. To add them, just press icon and select the desired bits. A
common user bit to add to these lists is the ‘Sensors Error’ bit, so that if one of the sensors fails, the FTS is triggered.

In addition, the user can switch between the different lists with an action. For more information, see Actions -
Automations section of this manual.

2.14. Safety 435

1x PDI Builder, Release 6.12.62

436 Chapter 2. Configuration

CHAPTER

THREE

INTEGRATION EXAMPLES

In this section, a series of examples will be presented so that the user knows how to perform certain customizations
in the 1x PDI Builder. In addition, some examples of integration between the Autopilot 1x and external devices are
presented.

3.1 AP communication with PC

Since Veronte Autopilot 1x can be connected to a computer via a USB or serial interface, the configuration for both
connections is already set by default in 1x PDI Builder.

However, users should check that this configuration has not been modified to ensure a correct communication via both
ways in case one of them is lost. For this:

Go to Input/Output menu → I/O Setup panel. Each USB, RS232 and RS485 Producers must be bidirectionally
connected to a Commgr port:

Important: Users should also check that the Commgr ports to which USB and serial ports are connected are not
routed. For more information on Routing, see Ports - Communications section of this manual.

437

1x PDI Builder, Release 6.12.62

Fig. 1: USB/RS232/RS485↔ Commgr port

3.2 ArcTrim Button

The ArcTrim button allows the user to trim the stick signal directly from the stick position, before the operation, by
simply clicking on it. In addition, this button is considered as an ‘action button’ that can be embedded in the Veronte
Panel.
To do this, the following steps should be followed:

1. Go to Block Programs menu.

• Create a program to make the necessary connection to the Arc Trim block.

Usually the user has a Stick program where the blocks that are related to the stick are implemented.

• Add the Arc Trim block and connect the input and output variables to it.

Usually the input variables are Stick Input u0-u3 and the output variables Stick Input d0-d3.

• Finally, enable the block to be commandeded by simply clicking on the icon.

Fig. 2: ArcTrim Button - Block

438 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

2. Configure the trim vector of the Arc Trim block.

Depending on the range of the signal, the following values are recommended:

• If the signal ranges from 0 to 1⇒ 0.5.

• If the signal ranges from -1 to 1⇒ 0.

In this example, since the signal is in the range 0-1, 0.5 is set:

Fig. 3: ArcTrim Button - Block configuration

3. Go to Automations menu→ create a New automation→ go to Events.
Select the Button option and choose the desired icon for this button.

In addition, it is recommended to activate the Confirmation checkbox, to avoid trimming the stick by mistake.

3.2. ArcTrim Button 439

1x PDI Builder, Release 6.12.62

Fig. 4: ArcTrim Button - Events

4. In the created automation, go to Actions.
• Add the Command block action.

• Select ArcTrim block to command and choose the commandable Id.

• Finally, it is recommended to activate both checkboxes:

440 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 5: ArcTrim Button - Actions

5. In Veronte Ops, this button will appear embedded in the Veronte Panel.

Note: This action button will only appear on the Veronte Panel if the action buttons have been enabled to be
shown on it. For more information on this, see Veronte Panel - Main widgets section on the Veronte Ops user
manual.

3.2. ArcTrim Button 441

https://manuals.embention.com/veronte-ops/en/6.12/panels/workspace/main/index.html#veronte-panel

1x PDI Builder, Release 6.12.62

Fig. 6: ArcTrim Button - Veronte Panel

When clicking on it, the following confirmation message will be displayed (as the confirmation checkbox has
been activated in the automation):

Fig. 7: ArcTrim Button - Confirmation message

Now, the stick is trimmed.

442 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

3.3 CAN communication

Here are described the steps to be followed in order to correctly receive and transmit CAN messages, both via CAN
and serial interfaces.

3.3.1 CAN messages transmission

This section summarizes the configuration to be carried out to send CAN streams over a CAN Bus.

Fig. 8: CAN messages transmission diagram

1. Go to Input/Output menu→ CAN Setup panel→ Custom message 0 tab.

Select the fields to send in TX or TX Ini, as it is a Producer. More information on the configuration of CAN
messages can be found in the TX/TX Ini Messages (Custom Messages) - Input/Output section of this manual.

For example, a CAN message set to ID 12:

Fig. 9: CAN messages transmission - Custom message configuration

2. Go to Input/Output menu→ CAN Setup panel→ Configuration tab.

Connect CAN custom message 0 producer (as the message has been configured in the Custom Message 0 tab)
to an Output filter as follows:

3.3. CAN communication 443

1x PDI Builder, Release 6.12.62

Fig. 10: CAN messages transmission - CAN Setup configuration

Warning: Remember that it is necessary to have at least 1 free mailbox for TX messages.

3.3.2 CAN messages reception

This section summarizes the configuration to be carried out to receive CAN streams over a CAN Bus.

Fig. 11: CAN messages reception diagram

1. Go to Input/Output menu→ CAN Setup panel→Mailboxes tab.

Configure the mailbox to receive a message with the appropiate ID (in this example ID 28 has been configured):

444 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 12: CAN messages reception - Mailboxes configuration

2. Go to Input/Output menu→ CAN Setup panel→ Configuration tab.

Connect an Input filter with the right CAN ID to a Custom message consumer:

3.3. CAN communication 445

1x PDI Builder, Release 6.12.62

Fig. 13: CAN messages reception - CAN Setup configuration

Fig. 14: CAN messages reception - Input filter configuration

3. Go to Input/Output menu → CAN Setup panel → Custom message 0 tab (as Custom Message 0 has been
selected as consumer).

Configure the message reading as desired in RX by setting the correct CAN ID.

The different options and parameters to be configured are explained in the RX Messages (Custom Messages) -
Input/Output section of this manual.

446 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 15: CAN messages reception - Custom message configuration

3.3.3 CAN messages transmission via serial

This section summarizes the configuration to be carried out to send CAN streams over a serial Bus.

Note: For sending CAN streams over a serial bus, a CAN wrapper port is needed. For further details of this port,
please consult the CAN wrapper/CAN unwrapper - I/O Setup section of the present manual.

Fig. 16: CAN messages transmission via serial diagram

1. Go to Input/Output menu→ CAN Setup panel→ Custom message 0 tab.

Important: The index of the Custom message tab must match the index of the CAN custom message producer
to configure. In this example, tab 0 is selected.

Select the fields to send in TX or TX Ini, as it is for transmission. More information on the configuration of CAN
messages can be found in the TX/TX Ini Messages (Custom Messages) - Input/Output section of this manual.

For example, a CAN message set to ID 12:

3.3. CAN communication 447

1x PDI Builder, Release 6.12.62

Fig. 17: CAN messages transmission via serial - Custom message configuration

2. Go to Input/Output menu→ CAN Setup panel→ Configuration tab.

Connect CAN custom message 0 producer (as the message has been configured in the Custom message 0 tab)
to a CAN wrapper consumer as follows:

448 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 18: CAN messages transmission via serial - CAN Setup configuration

3. Go to Input/Output menu→ I/O Setup panel→ Configuration tab.

Connect the CAN wrapper 0 producer to a RS232 or RS485 consumer as shown below.

Important: The index of the CAN wrapper producer must match the index of the CAN wrapper consumer
configured in the previous step.

3.3. CAN communication 449

1x PDI Builder, Release 6.12.62

Fig. 19: CAN messages transmission via serial - I/O Setup configuration

Warning: Remember that it is necessary to have at least 1 free mailbox for TX messages.

3.3.4 CAN messages reception via serial

This section summarizes the configuration to be carried out to receive CAN streams over a serial Bus.

Note: For receiving CAN streams over a serial bus, a CAN unwrapper port is needed. For further details of this port,
please consult the CAN wrapper/CAN unwrapper - I/O Setup section of the present manual.

Fig. 20: CAN messages reception via serial diagram

1. Go to Input/Output menu→ I/O Setup panel→ Configuration tab.

Connect a RS232/RS485 producer to a CAN unwrapper consumer.

450 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 21: CAN messages reception via serial - I/O Setup configuration

2. Go to Input/Output menu→ CAN Setup panel→Mailboxes tab.

Configure the mailbox to receive a message with the appropiate ID (in this example ID 28 has been configured):

3.3. CAN communication 451

1x PDI Builder, Release 6.12.62

Fig. 22: CAN messages reception via serial - Mailboxes configuration

3. Go to Input/Output menu→ CAN Setup panel→ Configuration tab.

Connect a CAN unwrapper producer to a Custom message consumer. In this example, Custom message 0
consumer is selected.

Important: The index of the CAN unwrapper producer must match the index of the CAN unwrapper
consumer configured in the previous step.

452 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 23: CAN messages reception via serial - CAN Setup configuration

4. Go to Input/Output menu→ CAN Setup panel→ Custom message 0 tab.

Important: The index of the Custom message tab must match the index of the Custom message consumer
to configure. In this example, tab 0 is selected.

Configure the message reading as desired in RX by setting the correct CAN ID.

The different options and parameters to be configured are explained in the RX Messages (Custom Messages) -
Input/Output section of this manual.

3.3. CAN communication 453

1x PDI Builder, Release 6.12.62

Fig. 24: CAN messages reception via serial - Custom message configuration

3.4 Data transmission between Veronte Autopilots 1x

To establish a proper communication between the ground and air units, the telemetry and sniffer menus must be
configured, respectively.

A simple example of use between a ground unit and an air unit is shown below:

In the 1x ground unit:
1. Go to Telemetry menu→ Telemetry panel→ Data link to VApp tab (for more information about this, see Data

vectors - Telemetry section of this manual).

2. Add the variables: Absolute: UAV position, Yaw, Pitch and Roll.

3. Set a Frequency, it is recommended to set it to 10 Hz.

4. On Address, point to the 1x air unit (it is needed to have both units connected through the radio in order to be
able to see them on the menu).

454 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 25: 1x ground unit - Telemetry

For the 1x air unit:
1. Go to Telemetry menu→ Sniffer panel (for more information about this, see Sniffer - Telemetry section of this

manual).

2. Add a new Sniffer.

3. Configure the same variables (keeping the same order) than in the ground unit.

4. On Address, point to the 1x ground unit.
5. In the gear next to it, configure the 4 incoming variables as System Variables: assign UAV Position to Moving

Object and the 3 variables from attitude to 3 different User Variables (keeping the same order as well).

3.4. Data transmission between Veronte Autopilots 1x 455

1x PDI Builder, Release 6.12.62

Fig. 26: 1x air unit - Sniffer

3.5 Flare and Decrab phase configuration

As flare and decrab guidance are not included in the landing algorithm, since the decrab is control dependent (yaw must
be aligned with the runway direction), the following shows how to implement this guidance in a generic fixed wing
configuration:

1. First, it can be useful to create a program that computes the altitude above the touchpoint, the lateral error over
the desired route and the heading error. If all conditions met, the flare phase is triggered:

Fig. 27: Flare and Decrab phase - Auxiliary program

456 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

2. Flare and Decrab guidance definition
In the Guidance program (where the guidances for all phases are defined), add the Flare phase to the Phase
Switch block. Then, the flare and decrab guidance must be built as follows:

• The desired vertical speed is overwritten to be a function of the height above the runway. In this case the
height is calculated in an auxiliary program (Height Above Touchpoint variable calculated in step 1), but
the AGL could be used.

• The desired yaw is overwritten directly by the runway direction.

• The desired roll is overwritten to 0º.

• The desired IAS is overwritten to a speed slightly above the stall speed, in this example 15 m/s.

Fig. 28: Flare and Decrab phase - Flare and decrab guidance definition

3. Pitching control
The desired vertical speed is used for pitch control as shown below:

Fig. 29: Flare and Decrab phase - Pitching control

3.5. Flare and Decrab phase configuration 457

1x PDI Builder, Release 6.12.62

4. Thrusting control
The throttle is used to maintain the IAS (slightly above stall) and when a height above touchpoint of 1 m is
reached, the motor is cut off. Again, a user variable is used here (Height Above Touchpoint variable calculated
in step 1), but the AGL could be used:

Fig. 30: Flare and Decrab phase - Thrusting control

5. Rolling control
For the roll, simply try to maintain the desired roll (0º):

Fig. 31: Flare and Decrab phase - Rolling control

6. Yawing control
The yaw control (rudder) is based on the desired yaw:

458 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 32: Flare and Decrab phase - Yawing control

Important: This algorithm requires a good yaw estimation if users want to have Decrab, so magnetometer or
GNSS Compass is required.

3.5.1 Flare phase configuration

However, for a Flare phase without Decrab, the yaw control should be based on heading instead of being based on
yaw. To do so, the Guidance and Yawing programs must look as shown below:

3.5. Flare and Decrab phase configuration 459

1x PDI Builder, Release 6.12.62

Fig. 33: Flare phase - Flare guidance definition

Fig. 34: Flare phase - Yawing control

460 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

For more information on block programs, please refer to Block Programs section of this manual.

3.6 RTK Configuration

The RTK configuration is performed through the GNSS sensor block with the help of the RTK Wizard.

Fig. 35: RTK Configuration - GNSS block

Users must use this wizard to perfom the corresponding settings for the 1x air and ground units:

3.6. RTK Configuration 461

1x PDI Builder, Release 6.12.62

Fig. 36: RTK Configuration - RTK Wizard

Danger: This wizard uses by default the Y0 splitter port. Consequently, if it has been configured for another use,
the configuration will be now overwritten.

Therefore, to avoid system malfunction when using RTK, it is highly recommended to leave the Y0 splitter on
the ground unit “free”.

This is especially important if the ground unit is a PCS.

• For the 1x air unit, click on “Air” in the RTK column and the corresponding RTK configuration will be
automatically applied to the user’s configuration.

• For the ground unit, click on “Ground” in the RTK column and the corresponding RTK configuration will be
automatically applied to the user’s configuration.

In the Ublox preset parameter, the Static base option will be selected. However, if user wishes to consult the
configuration made, just select the Custom option:

462 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 37: RTK Configuration - GNSS block ground configuration

Important: Please pay specific attention to the “survey configuration” options.

For a detailed explained of the GNSS sensor block, please refer to GNSS sensor - Sensors blocks of Block Programs
section.

With the previous configurations, when GNSS accuracy < 3 m⇒ GNSS sensor will start the survey in during 300
seconds while taking measurements for RTK correction.

To verify correct survey in behavior, in Veronte Ops users can query the status of the following variables.

• In the ground unit, if the survey in has started, ‘GNSS1 Survey In Off’ bit should be in “success” mode ⇒
GNSS1 Survey In (if the label has the default setting, it will be green).

Therefore, when finished, the bit will switch to “fail” mode⇒GNSS1 Survey In Off (if the label has the default
setting, it will be colored red).

• On the 1x air unit, once the survey in has finished, check that ‘DGNSS1 Input Off’ and ‘DGNSS1 Navigation
Off’ bits are in “success” mode⇒ DGNSS1 Input On and DGNSS1 Navigation On respectively (if the labels
have the default setting, they will be colored green).

At this time, the GNSS1 Accuracy value in the air unit, should be very low, probably between 0.01-0.05 m.

3.6. RTK Configuration 463

1x PDI Builder, Release 6.12.62

3.7 External devices

The step-by-step instructions for the following external devices will be explained in detail in the following sections:

• Altimeters

• External sensors

• Radios

• Servos

• Stick

• Veronte products

3.7.1 Altimeters

3.7.1.1 Lidar

The integration between Veronte Autopilot 1x and a lidar is performed using a variety of interfaces depending on the
lidar device. The most common interfaces are I2C or analog although serial or CAN bus can also be used if the lidar
is compatible.

3.7.1.1.1 ADC lidar

An ADC lidar changes the voltage depending on the measured distance and therefore the connection to the Autopilot
1x is made using the ADC pins (see Pinout - Hardware Installation section of the 1x Hardware Manual).
Once connected to Autopilot 1x, the value can be monitored in 1x PDI Builder by using the variables ADC0 to ADC4.

Note: For pin ANALOG_0 the correspondent ADC variable in 1x PDI Builder is ADC0, for ANALOG_1 is ADC1
and so on.

1. Go to Connections menu→ ADC 0 panel (This is only an example, the user must select the ADC pin where the
signal is connected).

Click on ‘Create new program’:

464 Chapter 3. Integration examples

https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#pinout

1x PDI Builder, Release 6.12.62

Fig. 38: ADC lidar - Create ADC program

2. Go to Block programs menu.

Configure the following operation (for more information about blocks, see Block Programs section of this
manual):

3.7. External devices 465

1x PDI Builder, Release 6.12.62

Fig. 39: ADC lidar - Lidar operation

After implementing the operation the variable Lidar 1 Distance will represent the distance measured by the lidar.

Note: As Autopilot 4x can read up to 36 V per each ADC, the 3.3 value of the ADC program must be changed to 36
if applicable.

3.7.1.1.2 I2C lidar

I2C lidars are configured slightly differently.

Connect the lidar following the pinout provided by the manufacturer and connect it to the Veronte Autopilot 1x I2C
bus following the Pinout - Hardware Installation section of the 1x Hardware Manual.
In this case it is not needed to transform the lidar readings, the readings will be reported directly in the selected lidar
distance variable.

Go to Sensors menu→ Lidar panel.
• Enable Lidar 0

• Select the desired Lidar from the drop-down menu

• Set the I2C address

More information on the available lidar options can be found in the Lidar - Sensors section of this manual.

466 Chapter 3. Integration examples

https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#pinout

1x PDI Builder, Release 6.12.62

Fig. 40: I2C lidar

Warning: I2C address will be different for different devices make sure to define it properly by checking the
manufacturer documentation.

3.7.1.1.2.1 Lightware LW 20 Lidar

To integrate the Lightware LW 20 Lidar, users must configure this menu as follows:

• Enable the desired lidar, in this case Lidar 0 has been used

• Select the SF11 Lidar option from the drop-down menu

• Enter the address 102 in decimal format

3.7. External devices 467

1x PDI Builder, Release 6.12.62

Fig. 41: Lightware LW 20 Lidar

3.7.1.1.3 Using lidar readings

Once the information provided by a lidar sensor is stored in a system variable as Lidar Distance via an ADC reading,
I2C, serial or CAN, the user has to set how this data will be considered. Common uses are: to consider the lidar data
as external sensor or to trigger an action based on a predefined event.

• Altimeter configuration: The following operation must be configured in the Block Programs menu to consider
the lidar measurement as an EKF input.

Fig. 42: Altimeter connection in Block Programs

The Lidar Distance variable where the lidar measurement is stored must be selected. In this example, Lidar 1
Distance has been used:

468 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 43: Altimeter sensor block configuration

Fig. 44: Altitude EKF adapter block configuration

For more information on these blocks, see Altimeter - Sensors blocks and Altitude EKF adapter - Navigation
blocks of Block Programs section.

• Automation: This automation will trigger a change of phase, Flare phase, when the aircraft is landing and at 5
m AGL.

3.7. External devices 469

1x PDI Builder, Release 6.12.62

Fig. 45: Lidar automation example

For more information on automations, see Automations section of this manual.

3.7.1.2 Radar

Radar altimeters are common devices on aircrafts.

3.7.1.2.1 Ainstein CAN Radar

The following explanation corresponds to the integration of the Ainstein CAN Radar.

These settings will allow Autopilot 1x to read out via CAN A the radar altimeter reading, in particular distance.

Note: In the datasheet of the radar, the user can access the complete protocol of the device.

1. Go to Input/Output menu→ CAN Setup panel→ Configuration tab.

Connect an Input filter producer to Custom message 0, in this example Input filter 1 has been selected:

470 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 46: Ainstein CAN Radar - CAN Setup configuration

Click on to configure this Input filter to read from CAN A, with Id 589826 and allow both types of
messages to enter the input filter (since the radar altimeter uses extended IDs).

Fig. 47: Ainstein CAN Radar - Input filter configuration

2. After specifying that Custom message 0 will receive the data from CAN A, go to Mailboxes tab.

Configure a CAN A mailbox for extended CAN ID message: 589826:

3.7. External devices 471

1x PDI Builder, Release 6.12.62

Fig. 48: Ainstein CAN Radar - Mailboxes configuration

3. Go to UI menu→ Variables panel→ Real Vars tab.

Rename a User Variable that will be used to store the measurement read from the radar:

472 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 49: Ainstein CAN Radar - User Variable renamed

4. Finally, go to Input/Output menu→ CAN Setup panel→ Custom message 0 tab.

• Add a new message in RX with extended ID 589826 and Big endian:

3.7. External devices 473

1x PDI Builder, Release 6.12.62

Fig. 50: Ainstein CAN Radar - Custom message 0

• Clicking on , configure the reading of the message by setting the following values for the different
parameters:

– Variable: Radar 1 Distance (to store the received value in the user variable that has been renamed
above)

– Compression: Compress - Bits Unsigned

– Bits: 16

– Encode - Min/Max: 0.0/1.0

– Decode - Min/Max: 0/100

474 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 51: Ainstein CAN Radar - Custom message 0 configuration

For more details on CAN configuration see CAN Setup - Input/Output section of this manual.

3.7.1.2.2 Smartmicro CAN Radar

The following explanation corresponds to the integration of the Smartmicro CAN Radar.

These settings will allow Autopilot 1x to read out via CAN A the radar altimeter readings, in particular AGL and
vertical speed.

Note: In the datasheet the user can access the complete protocol of the device.

1. Go to Input/Output menu→ CAN Setup panel→ Configuration tab.

Connect an Input filter to Custom message 0, in this example Input filter 2.

3.7. External devices 475

1x PDI Builder, Release 6.12.62

Fig. 52: Smartmicro CAN Radar - CAN Setup configuration

Configure this Input filter to read from CAN A, with Id 1872

Fig. 53: Smartmicro CAN Radar - Input filter configuration

2. After specifying that Custom message 0 will receive the data from CAN A, go to Mailboxes tab.

Configure the CAN A baudrate and some mailboxes for CAN ID message: 1872:

476 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 54: Smartmicro CAN Radar - Mailboxes configuration

3. Go to Custom message 0 tab.

• Add a new message in RX with ID 1872.

3.7. External devices 477

1x PDI Builder, Release 6.12.62

Fig. 55: Smartmicro CAN Radar - Custom message 0

• Define the content of the incoming message as desired.

Fig. 56: Smartmicro CAN Radar - Custom message 0 configuration

478 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

For more details on CAN configuration see CAN Setup - Input/Output section of this manual.

Note: CAN ID messages and messages content will change for different Radar altimeters. Check the documentation
of your device for further details.

3.7.2 External sensors

Veronte Autopilot 1x can be integrated with any external sensor that shares the communication interface.

External sensors can be configured to be considered as part of the sensors fusion.

3.7.2.1 High Speed Pitot Sensor

Once the hardware has been installed according to High Speed Pitot Sensor section of 1x Hardware Manual, the value
can be monitored in 1x PDI Builder by using the variables ADC0 to ADC4.

Note: For pin ANALOG_0 the correspondent ADC variable in 1x PDI Builder is ADC0, for ANALOG_1 is ADC1
and so on.

Read the following steps to configure it:

1. Go to Block Programs menu to create a new program where the blocks configuration for reading the sensor
measurements will be built.

To know the basics about Block Programs, read the Block Programs section of this manual.

2. The configuration of this new program should be as shown in the following image:

3.7. External devices 479

https://manuals.embention.com/1x/en/4.8/integration%20examples/external%20sensors/index.html#high-speed-pitot-sensor

1x PDI Builder, Release 6.12.62

Fig. 57: High Speed Pitot Sensor - Block program

Note:
• The EWMA filter should have a value of 0.75 for Tau.

• This block program shows the configuration equivalent to the following equation: ⇒
𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑃𝐼𝑇𝑂𝑇 (𝑃𝑎) = 1000 · 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒(𝐾𝑃𝑎) ⇒ 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒(𝐾𝑃𝑎) = 33.95 ·
𝑃𝐼𝑇𝑂𝑇 𝑉 𝑂𝐿𝑇𝐴𝐺𝐸 𝐹𝐼𝐿𝑇𝐸𝑅𝐸𝐷 − 4.97

According to the previous image, pressure measurements are written in the variable Pressure PITOT Pa in
pascals.

The ADC variable to select depends on the ANALOG pin used for receive data from High Speed Pitot Sensor.
On the previous image, the ADC variable selected (ADC 0) reads data from pin 38.

For more information on Pinout, read the Pinout - Hardware Installation section of the 1x Hardware Manual.
3. Go to Sensors menu→ Dynamic Pressure panel→ Sensor tab.

Finally, enable a “Decimal var sensor” and assign it the previously calculated variable in pascals as the dynamic
pressure measurement.

480 Chapter 3. Integration examples

https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#pinout

1x PDI Builder, Release 6.12.62

Fig. 58: High Speed Pitot Sensor - Decimal var sensor configuration

Note: The sensor is extremely sensitive at speed 0 due to its high resolution.

3.7.2.2 LM335 with Autopilot 4x

Once LM335 sensor is wired and connected to Autopilot 1x or 4x (according to Temperature sensor LM335 -
Integration examples section of the 4x Hardware Manual), the value can be monitored in 1x PDI Builder by using
the variables ADC0 to ADC4.

Note: For pin ANALOG_0 the correspondent ADC variable in 1x PDI Builder is ADC0, for ANALOG_1 is ADC1
and so on.

Read the following steps to configure a Veronte Autopilot 1x:

1. Go to Connections menu→ ADC 1 panel (This is only an example, the user must select the ADC pin where the
signal is connected).

Click on ‘Create new program’:

3.7. External devices 481

https://manuals.embention.com/4x/en/1.8/integration%20examples/external%20sensors/index.html#temperature-sensor-lm335
https://manuals.embention.com/4x/en/1.8/integration%20examples/external%20sensors/index.html#temperature-sensor-lm335

1x PDI Builder, Release 6.12.62

Fig. 59: LM335 sensor - Create ADC program

2. Go to Block Programs menu→ Launch Editor.

482 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 60: LM335 sensor - Block Programs

Configure the following operation (for more information about blocks, read Block Programs section of this
manual):

Fig. 61: LM335 sensor - Block Programs operation

Note:
• The Temperature variable is an User Variable which has been renamed.

• The equation to obtain temperature (in ºC) from voltage is: 𝑇 = 𝑉 𝑜𝑢𝑡 · 100 − 273. Nonetheless, in the
blocks program, the input signal is not multiplied by 100, since ADC expresses the voltage in hundredths.

3.7. External devices 483

1x PDI Builder, Release 6.12.62

Fig. 62: LM335 sensor - Block Programs operation detailed

3. The IIR Filter block requires the following configuration, where the column B has 20 coefficients (from 0 to
19) with value 1.

Click on Apply to save the changes.

Fig. 63: LM335 sensor - IIR Filter block configuration

4. Save the configuation in the Autopilot 1x.

After implementing the operation, the variable Temperature (User variable renamed) will represent the temperature (in
°C) measured by the LM335 sensor.

Tip: With Veronte Ops it is possible to check that the sensor is working correctly.

484 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 64: LM335 sensor - Temperature value in Veronte Ops

3.7.2.3 Magnetometer Honeywell HMR2300

3.7.2.3.1 RS-232

Magnetometer Honeywell HMR2300 can be connected via RS-232 (serial interface) in accordance with the
manufacturer’s specifications and following the Pinout - Hardware Installation section of the 1x Hardware Manual.
The following steps explain how to configure Veronte Autopilot 1x to integrate this external magnetometer:

1. Go to Input/Output menu→ Serial panel→ RS232 tab.

Configure the serial port parameters:

Fig. 65: Magnetometer Honeywell HMR2300 - RS232 port configuration

2. Go to Block Programs menu.

3.7. External devices 485

https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#pinout

1x PDI Builder, Release 6.12.62

• Create a program to make the necessary connection to the sensor blocks.

Usually the user has a Navigation program where the sensor blocks are implemented.

• Configure the Magnetometer sensor block selecting External HMR2300.

Fig. 66: Magnetometer Honeywell HMR2300 - Magnetometer sensor block configuration

For more information on this block, see Magnetometer - Sensors blocks of Block Programs section.

3. Go to Input/Output menu→ I/O Setup panel.
Bidirectionally connect the RS232 Producer to the External HMR2300 magnetometer Consumer:

486 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 67: RS232↔ External HMR2300 magnetometer

Then, the External HMR2300 magnetometer Producer should be automatically connected to the RS232
Consumer:

3.7. External devices 487

1x PDI Builder, Release 6.12.62

Fig. 68: External HMR2300 magnetometer↔ RS232

For more information on the Magnetometer Honeywell HMR2300, check out the datasheet: Smart Digital
Magnetometer HMR2300.

3.7.2.3.2 RS-485

Magnetometer Honeywell HMR2300 can be connected via RS-485 (serial interface) in accordance with the
manufacturer’s specifications and following the Pinout - Hardware Installation section of the 1x Hardware Manual.
Follow the next steps to establish a correctly communication between Honeywell HMR2300 magnetometer and Veronte
Autopilot 1x via RS-485:

1. Connect the Honeywell HMR2300 magnetometer via USB to the PC (with a USB-RS485 conversor).

2. The configuration to establish communication must be:

• In binary mode

• With continuous fowarding
• ID = 00

To configure the magnetometer in this way, the following commands must be sent to it:

• *99Q: This command reads the default values, including the device ID.

• *00WE: This enables writing.

• *ddID=00: Changes the ID to 00, where dd is the device ID obtained with the first command.

• *00WE: Enables writing.

488 Chapter 3. Integration examples

https://aerospace.honeywell.com/content/dam/aerobt/en/documents/learn/products/sensors/datasheet/SmartDigitalMagnetometerHMR2300_ds.pdf
https://aerospace.honeywell.com/content/dam/aerobt/en/documents/learn/products/sensors/datasheet/SmartDigitalMagnetometerHMR2300_ds.pdf
https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#pinout

1x PDI Builder, Release 6.12.62

• *00B: Binary mode.

• *00C: Continuous send mode.

• *00WE: Enables writing.

• *00SP: Finally, this command saves the configuration in EEPROM.

3. Autopilot can now be configured to communicate via RS485 with the magnetometer Honeywell HMR2300.

The configuration to be carried out is very similar to that described above for communication with the
magnetometer via RS-232:

• Instead of configuring the 232 serial port, the 485 serial port is configured.

• And, the bidirectional connection must be made between the RS485 port and External HMR2300
magnetometer and not with the RS232 port.

For more information on the Magnetometer Honeywell HMR2300, check out the datasheet: Smart Digital
Magnetometer HMR2300.

3.7.2.4 MEX as Magnetometer Honeywell HMR2300

MEX can be used as an external magnetometer Honeywell HMR2300 connected to Veronte Autopilot 1x via serial
or CAN interfaces.

Important: Both MEX and Autopilot 1x devices must be configured to conduct this integration, therefore, the
following explanations are consequent to the MEX configuration detailed in the MEX as external magnetometer for
Autopilot 1x - Integration examples section of MEX PDI Builder manual.

Communication via serial and CAN interfaces are explained separately.

3.7.2.4.1 Serial

For this serial connection, first check the Pinout - Hardware Installation section of the 1x Hardware Manual.
The following steps explain how to configure Veronte Autopilot 1x to integrate MEX as an external magnetometer via
serial:

1. Go to Input/Output menu→ Serial panel→ RS232/RS485 tab.

Configure the serial port parameters:

Note: This is an example of RS-232 connection, if MEX is connected via RS-485, configure the RS485 serial
tab.

3.7. External devices 489

https://aerospace.honeywell.com/content/dam/aerobt/en/documents/learn/products/sensors/datasheet/SmartDigitalMagnetometerHMR2300_ds.pdf
https://aerospace.honeywell.com/content/dam/aerobt/en/documents/learn/products/sensors/datasheet/SmartDigitalMagnetometerHMR2300_ds.pdf
https://manuals.embention.com/mex-pdi-builder/en/6.12.46/integration%20examples/index.html#mex-as-external-magnetometer-honeywell-hmr2300-for-autopilot-1x
https://manuals.embention.com/mex-pdi-builder/en/6.12.46/integration%20examples/index.html#mex-as-external-magnetometer-honeywell-hmr2300-for-autopilot-1x
https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#pinout

1x PDI Builder, Release 6.12.62

Fig. 69: MEX as Magnetometer Honeywell HMR2300 - RS232 port configuration

2. Go to Block Programs menu.

• Create a program to make the necessary connection to the sensor blocks.

Usually the user has a Navigation program where the sensor blocks are implemented.

• Configure the Magnetometer sensor block selecting External HMR2300.

Fig. 70: MEX as Magnetometer Honeywell HMR2300 - Magnetometer sensor block configuration

490 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

For more information on this block, see Magnetometer - Sensors blocks of Block Programs section.

3. Go to Input/Output menu→ I/O Setup panel.
Connect the RS232 Producer to the External HMR2300 magnetometer Consumer:

Note: If the user connects the MEX via RS-485, connect the RS485 Producer instead of RS232 Producer.

Fig. 71: RS232→ External HMR2300 magnetometer

3.7.2.4.2 CAN

The following steps explain how to configure Veronte Autopilot 1x to integrate MEX as an external magnetometer via
CAN:

1. Go to Block Programs menu.

• Create a program to make the necessary connection to the sensor blocks.

Usually the user has a Navigation program where the sensor blocks are implemented.

• Configure the Magnetometer sensor block selecting External HMR2300.

3.7. External devices 491

1x PDI Builder, Release 6.12.62

Fig. 72: MEX as Magnetometer Honeywell HMR2300 - Magnetometer sensor block configuration

For more information on this block, see Magnetometer - Sensors blocks of Block Programs section.

2. Go to Input/Output menu→ CAN Setup panel→Mailboxes tab.

Configure the required mailboxes to receive a message with the CAN ID that matches the corresponding MEX
configuration.

Note: In this example, 4 mailboxes are added for CAN A with ID 1301, according to the MEX configuration
carried out in CAN - MEX as external magnetometer for Autopilot 1x in the Integration examples section of
MEX PDI Builder manual.

492 Chapter 3. Integration examples

https://manuals.embention.com/mex-pdi-builder/en/6.12.46/integration%20examples/index.html#mex-as-external-magnetometer-honeywell-hmr2300-for-autopilot-1x

1x PDI Builder, Release 6.12.62

Fig. 73: MEX as Magnetometer Honeywell HMR2300 - CAN Mailboxes configuration

3. Go to Input/Output menu→ CAN Setup panel→ Configuration tab.

Connect an Input filter Producer to a CAN to serial Consumer.

3.7. External devices 493

1x PDI Builder, Release 6.12.62

Fig. 74: MEX as Magnetometer Honeywell HMR2300 - CAN Setup configuration

Click on of the selected Input filter and configure it with the CAN port and CAN ID that matches those
of the corresponding MEX configuration.

Note: This example is configured according to the MEX configuration carried out in CAN - MEX as external
magnetometer for Autopilot 1x in the Integration examples section of MEX PDI Builder manual.

Fig. 75: MEX as Magnetometer Honeywell HMR2300 - Input filter configuration

4. Go to Input/Output menu→ I/O Setup panel→ Configuration tab.

Connect a CAN to serial Producer to the External HMR2300 magnetometer Consumer.

494 Chapter 3. Integration examples

https://manuals.embention.com/mex-pdi-builder/en/6.12.46/integration%20examples/index.html#mex-as-external-magnetometer-honeywell-hmr2300-for-autopilot-1x
https://manuals.embention.com/mex-pdi-builder/en/6.12.46/integration%20examples/index.html#mex-as-external-magnetometer-honeywell-hmr2300-for-autopilot-1x

1x PDI Builder, Release 6.12.62

Important: The index of the CAN to serial Producer must match the index of the CAN to serial Consumer
configured in the previous step.

Fig. 76: MEX as Magnetometer Honeywell HMR2300 - I/O Setup configuration

3.7.2.5 OAT Sensor

Once OAT sensor is connected to Autopilot 1x, the value can be monitored in 1x PDI Builder by using the variables
ADC0 to ADC4.

Note: For pin ANALOG_0 the correspondent ADC variable in 1x PDI Builder is ADC0, for ANALOG_1 is ADC1
and so on.

Read the following steps to configure it:

1. Go to Connections menu→ ADC 0 panel (This is only an example, the user must select the ADC pin where the
signal is connected).

Click on ‘Create new program’:

3.7. External devices 495

1x PDI Builder, Release 6.12.62

Fig. 77: OAT Sensor - Create ADC program

2. Go to Block programs menu.

Configure the following operation (for more information about blocks, read Block Programs section of this
manual):

Fig. 78: OAT sensor - Block Programs operation

496 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 79: OAT sensor - Custom block: Converter from V to K

Fig. 80: OAT sensor - Custom block: Converter from K to °C

After implementing the operation, the variable Temperature sensor will represent the temperature (in °C) measured by
the OAT sensor.

Note: If the temperature is needed in other units, the only thing necessary would be to modify the Custom block
Converter K to C, or simply remove it.

Note: As Autopilot 4x can read up to 36 V per each ADC, the 3.3 value of the ADC program must be changed to 36
if applicable.

3.7.2.6 Vectornav VN-300

Vectornav VN-300 is an external IMU that can be connected via RS-232 (serial interface) to Veronte Autopilot 1x.

The following steps explain how to configure Veronte Autopilot 1x to integrate this external IMU:

1. Go to Input/Output menu→ Serial panel→ RS232 tab.

Configure the serial port parameters:

3.7. External devices 497

1x PDI Builder, Release 6.12.62

Fig. 81: Vectornav VN-300 - RS232 port configuration

2. Go to Input/Output menu→ I/O Setup panel.
Connect the RS232 Producer to the Vectornav VN-300 Consumer:

498 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 82: RS232→ Vectornav VN-300

3. Go to Block Programs menu.

• Create a program to configure the Vectornav VN-300 as the type of navigation.

Usually the user has a Navigation program where the blocks that are related to the navegation are
implemented.

• Configure the Navigation block selecting Vectornav VN-300.

3.7. External devices 499

1x PDI Builder, Release 6.12.62

Fig. 83: Vectornav VN-300 - Navigation sensor block configuration

For more information on this block, see Navigation blocks of Block Programs section.

3.7.2.6.1 Vectornav VN-300 configuration

It is also required a configuration on the Vectoran VN-300 IMU.

Follow the steps below to establish proper communication between Vectornav VN-300 and Veronte Autopilot 1x via
RS-232:

1. Connect the Vectornav VN-300 IMU via USB to the PC (if necessary, use a USB-RS232 converter).

2. Connect one or both GPS antennas to it.

3. For its configuration, enable periodic binary messages at 100 Hz. Only the following outputs from the Group
1 (Common group) must be sent:

Outputs Bit Offset
TimeGps 1
YawPitchRoll 3
AngularRate 5
Position 6
Velocity 7
Accel 8
InsStatus 12

500 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Warning: Veronte Autopilot 1x is only capable to decode messages with exactly that structure, any missing or
added field will cause Autopilot 1x to reject the messages.
In addition, the baudrate configured on the VN-300 must match that configured for Veronte Autopilot 1x.
Therefore, it is recommended to configure the baudrate of the serial port to the standard 115200.

3.7.3 Radios

Warning: The internal radio of Veronte Autopilots 1x depends on the hardware version, so the user should check
the internal radio according to the hardware version of his Autopilot 1x:

• Veronte Autopilot 1x v4.5: To consult its internal radio, click here.

• Veronte Autopilot 1x v4.8: To consult its internal radio, click here.

3.7.3.1 Digi internal radio

3.7.3.1.1 Configuration

This section describes the necessary configuration for 1x PDI Builder and the Digi radio software (XCTU) to allow
a correct communication between Veronte Autopilot 1x and its internal Digi radio.

To configure the communication between Autopilots 1x and their internal Digi radios, apply the following steps to each
one (air and BCS/PCS unit):

1. Connect the Autopilot 1x to a computer with Veronte Link, read its user manual to use it.

Configuration in 1x PDI Builder
2. Go to Input/Output menu→ I/O Setup panel.

The configuration of this panel is going to be temporarily modified in order to allow the setting up of a tunnel
between the autopilot and the radio, i.e. the current configuration will have to be further re-established. For this
reason, it is necessary that the user first annotates the configuration of USB, Veronte LOS and the ports to
which they are connected. The following image shows an example.

Note: It is recommended to take a screenshot for this step.

Warning: Although the connection with Autopilot 1x will be lost via USB, users can still “see” the autopilot
via serial (RS232 or RS485). For this purpose, the bidirectional RS232 or RS485 connection must not be
modified.

3.7. External devices 501

https://manuals.embention.com/1x/en/4.5/integration%20examples/radios/index.html#microhard-internal-radio
https://manuals.embention.com/1x/en/4.8/integration%20examples/radios/index.html#digi-radio-as-internal-radio
https://manuals.embention.com/veronte-link/en/latest/index.html

1x PDI Builder, Release 6.12.62

Fig. 84: Digi internal radio - Example of configuration of USB and Veronte LOS ports

3. Change the port which USB producer is connected to and select Veronte LOS as consumer.

USB and Veronte LOS must have bidirectional communication←→.

502 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 85: USB←→ Veronte LOS

4. Go to Input/Output menu→ Serial panel→ Veronte LOS tab.

It is important to know which baudrate is configured for the Veronte LOS serial port in order to match it with
the one configured in the Digi radio.

By default, the baudrate configured in 1x PDI Builder is set to 115200.

3.7. External devices 503

1x PDI Builder, Release 6.12.62

Fig. 86: Digi internal radio - Veronte LOS baudrate

5. Click on to apply changes to the Autopilot.

Warning: The communication between computer and Autopilot 1x will be disconnected, since the autopilot is
working as a tunnel between computer and radio. The computer will be communicating only with the Digi radio.

6. Wait for the device to disconnect and close Veronte Link. If the user does not close it, XCTU software will
not be able to detect the radio as the COM is being managed by Veronte Link, and the following error message
will appear:

Fig. 87: Digi internal radio - XCTU error message

Important: Remember that to completely close the application the user must close it from the windows system
tray.

504 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 88: Close Veronte Link

Configuration in Digi radio software
7. Download and install XCTU (Digi radio software).

8. Build a configuration for ‘air’ or ‘bcs’ in XCTU:

The integrated radio is the model DIGI-XBEE3 XB3-24Z8UM. For more information about how to configure
it, read the XCTU User Guide.

The following table shows which parameters can be configured. The rest of parameters should remain as default.

DIGI Parameter Description
PL Transmit power (100 mW)
ID Network addres PAN ID
DD Device type identifier
BD UART baud rate (115200)
RR Retries (minimum 5)
CH 2.4 GHz channel to send
MM Mac mode, 802.15.4 with Digi header for discovery and packages duplicate
CA Clear channel threshold as dBm
EA Ack failures
EC Failure to sent due to excess of energy in channel

Note: Radios to pair must have matching PAN IDs.

Warning: Check that the baudrate of the radio matches the baudrate configured in 1x PDI Builder. If it
is not the same, change one of them to match. Remember that Veronte LOS baudrate must not exceed
115200, as this may compromise proper communication.

9. Only for Autopilots 1x implemented in a 4x
Digi radios are able to create a network and talk to each other, even if they are configured as endpoint.

This is a problem, as it leads to radio channel overload. To prevent this problem, the destination addresses must
be configured so that the ground station transmits in broadcast and each air unit transmits only to the ground.

The following table shows how to configure air and ground units in XCTU:

3.7. External devices 505

https://hub.digi.com/support/products/xctu/?path=/support/asset/xctu-v-659-windows-x86x64/
https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm

1x PDI Builder, Release 6.12.62

Radio Parameter Configuration
Ground MY 16-bit Source Address FFFF

DH Destination Address High 0
DL Destination Address Low FFFF

Air MY 16-bit Source Address FFFF
DH Destination Address High SH of the ground radio
DL Destination Address Low SL of the ground radio

Fig. 89: Digi internal radio - Air radio configuration example

Fig. 90: Digi internal radio - Ground radio configuration example

Error: If the configured device is not an Autopilot 1x implemented in a 4x, the above parameters must be
set to null values.

10. After configuring the radio, the communication between computer and Autopilot 1x should be restored. To do
it, force the maintenance mode.

Configuration in 1x PDI Builder
11. Go to Input/Output menu→ I/O Setup panel.

Finally, after configuring the Digi radio in its software, restore the annotated USB and Veronte LOS
configuration (step 2).

If communication between the Digi radio and the Veronte Autopilot 1x is lost after the entire radio setup
process described above, or later during operation, please refer to the Communication lost with internal Digi radio
- Troubleshooting section of this manual.

506 Chapter 3. Integration examples

https://manuals.embention.com/1x/en/4.8/troubleshooting/index.html#forcing-maintenance-mode

1x PDI Builder, Release 6.12.62

3.7.3.1.2 Operational range

The following table is a reference of the functional range for each telemetry load (it may be affected by enviromental
conditions):

Frequency
Load 5 Hz 10 Hz 20 Hz
Low (Half telemetry vector) > 700 m 500 m 300 m
Medium (one telemetry vector) > 700 m 100 m 80 m
High (two or more telemetry vectors) 300 m 80 m X

Note: Telemetry vectors are structured messages with up to 255 bytes of data. To know more about them, read Message
structure section of VCP user manual.

3.7.3.2 Microhard internal radio

This section describes the necessary configuration that must be performed in 1x PDI Builder and 1x PDI Calibration
to allow a correct communication between Veronte Autopilot 1x and its internal Microhard radio.

To configure the communication between Autopilots 1x and their internal Microhard radios, apply the following steps
to each one (air and bcs unit):

1. Connect the Autopilot 1x to a computer with Veronte Link, read its user manual to use it.

Configuration in 1x PDI Builder
2. Go to Input/Output menu→ I/O Setup panel.

Since the configuration of this panel is going to be modified temporarily, i.e. the current configuration will have
to be re-established, just to be able to set up a tunnel between the autopilot and the radio.

It is necessary that the user first annotates the configuration of Veronte LOS, Tunnel and the ports to which
they are connected. The following image shows an example.

Note: It is recommended to take a screenshot for this step.

3.7. External devices 507

https://manuals.embention.com/vcp/en/latest/index.html#message-structure
https://manuals.embention.com/vcp/en/latest/index.html#message-structure
https://manuals.embention.com/1x-pdi-calibration/en/6.12.60/index.html
https://manuals.embention.com/veronte-link/en/latest/index.html

1x PDI Builder, Release 6.12.62

Fig. 91: Microhard internal radio - Example of configuration of Veronte LOS port

3. Change the port which Veronte LOS producer is connected to and select a Tunnel as consumer, in this example
Tunnel 0 has been selected.

Veronte LOS and Tunnel 0 must have bidirectional communication←→.

Fig. 92: Veronte LOS←→ Tunnel 0

508 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

4. Click on to apply the changes to the Autopilot 1x.

Configuration in 1x PDI Calibration
5. In 1x PDI Calibration, go to Terminal panel.

To set up the Microhard radio, the 1x PDI Calibration software provides a Microhard wizard to assist the user
in setting up the radio.

Please refer to the Terminal and Microhard setup helper sections of the 1x PDI Calibration user manual.

Configuration in 1x PDI Builder
6. Go to Input/Output menu→ I/O Setup panel.

Finally, after configuring the Microhard radio in 1x PDI Calibration, restore the annotated Veronte LOS and
Tunnel 0 configuration (step 2).

7. Click on to apply the changes to the Autopilot 1x.

3.7.3.3 External radios

This section describes the required configuration to be performed in 1x PDI Builder to allow a correct connection
between Veronte Autopilot 1x and any external radio.

External radios compatible with the Autopilot 1x, such as Microhard, DTC, Digi, Silvus and Veronte Data Link
(Embention external radio, contact sales@embention.com for more information).

After configuring the external radio in the corresponding software, follow the steps below:

1. Go to Input/Output menu→ Serial panel→ RS232 tab.

Check that these parameters are the same as the parameter values previously set in the external radio.

3.7. External devices 509

https://manuals.embention.com/1x-pdi-calibration/en/6.12.60/operation/terminal/index.html
https://manuals.embention.com/1x-pdi-calibration/en/6.12.60/operation/terminal/index.html#microhard-setup-helper
mailto:sales@embention.com

1x PDI Builder, Release 6.12.62

Fig. 93: External radios - RS232 port configuration

2. Go to Input/Output menu→ I/O Setup panel.
RS-232 has to be configured as a bidirectional commgr port.

510 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 94: External radios - I/O Setup configuration

Note: These settings have to be made in both Autopilot 1x units (GND and AIR).

3.7.4 Servos

The user can configure any actuator compatible with the communication interfaces.

3.7.4.1 PWM

The following steps explain how to configure a PWM servo in Veronte Autopilot 1x.

1. Connect the servo according to the manufacturer’s documentation and follow the Pinout - Hardware Installation
section of the 1x Hardware Manual to connect it to the Autopilot 1x.

2. Go to Connections menu→ PWM panel.
• Select and configure the PWM pins where the servos are connected. Set the frequency according to the

manufacturer’s specifications.

3.7. External devices 511

https://manuals.embention.com/1x/en/4.8/hardware%20installation/index.html#pinout

1x PDI Builder, Release 6.12.62

Fig. 95: PWM - Connections configuration

Caution: If there is no PWM tab or the PWM pin where the servo is connected is not shown on the interface,
it must be because it is configured as GPIO. For more information on this, refer to PWM - Connections section
of this manual.

3. Go to Block Programs menu.

• Create a program to make the necessary connection to the servo blocks.

Usually the user has a Control to servo program where the servo blocks are implemented.

• Configure the Actuator block connecting PWM block as Pulse and Actuator Outputs as Servo:

512 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 96: PWM - Block Programs connection

• Assign a given PWM to a given actuator output.

The assignment is done automatically in the order in which they are configured in the blocks. That is, the
first PWM (the one with Id 0) will relate to the first actuator output, which does not necessarily mean that
PWM 0 is assigned to Actuator Output s0.

In this example, the PWMs are assigned to the actuator outputs as shown in the following figure:

3.7. External devices 513

1x PDI Builder, Release 6.12.62

Fig. 97: PWM - Block Programs configuration

Note: For instance, PWM 5 (with id 2) is assigned to Actuator Output s2.

For more information on Actuator and PWM blocks, see Actuator - Servos blocks and PWM - Servos blocks of
Block Programs section.

3.7.4.2 Serial

Serial servos are configured differently than PWM servos as the protocol of a serial device must be defined with serial
custom messages.

In this case a PWM variable must be sent through a serial interface.

3.7.4.2.1 Volz DA26 - RS485

Firstly, the following wiring connection is recommended for a RS485 connection between Volz DA26 servos and
Veronte Autopilot 1x:

514 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 98: Volz DA26 - Veronte Autopilot 1x wiring connection

The above diagram is made for the case where 2 Volz DA26 servos are connected, however, the connection is the same
in case the user wants to connect only one or as many servos as the bus allows.

Follow the steps below to configure a Volz DA26 servo via RS-485.

1. Go to Input/Output menu→ I/O Setup panel.
Bidirectionally connect the RS485 port to a RS custom message, in this example RS custom message 0 is used:

3.7. External devices 515

1x PDI Builder, Release 6.12.62

Fig. 99: RS485↔ RS custom message 0

2. Click on to configure the RS custom message 0 producer. Users must setup it by defining the protocol
specified by the manufacturer:

Note: As the RS-485 is a Half Full duplex serial port, Veronte Autopilot 1x needs to leave this serial bus free
for a certain time in order to receive the servo response. This is done by setting the Delay parameter.

516 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 100: Volz DA26 - RS custom message 0 configuration

• Endianness: Big endian

• Period: 0.035

• Delay: 0.0015

– Matcher x77: Silent mode command (0x77).

∗ Value: 119

∗ Bits: 8

∗ Mask: 255

– Matcher x1: Servo interface Id = 1. The Id will be different for each servo and/or interface.

∗ Value: 1

∗ Bits: 8

∗ Mask: 255

– PWM 1: PWM is the variable that carries the information that has to be applied to the servo. Therefore,
it must be included in the message.

∗ Variable: PWM 1

∗ Compression: Compress - Bits Unsigned

3.7. External devices 517

1x PDI Builder, Release 6.12.62

∗ Encode: 0 / 1

∗ Decode: 3050 / 5070

– CRC (Custom): A Checksum is needed to complete the communication protocol.

∗ Type: Polynomial

∗ Bits: 16

∗ Endianness: Big endian

∗ CRC - Preset: Custom

∗ BackFrom: 4

∗ BackTo: 0

∗ Polynomial: 32773

∗ Start Value: 65535

∗ Final XOR: 0

Note: For more information on checksum, see Checksum (CRC) explanation - Input/Output section
of this manual.

3.7.5 Stick

3.7.5.1 Joystick 16CH

Joystick 16CH is a joystick with 16 channels which sends command signals through radio frequency and CAN bus.
Joystick 16CH can be connected to a control station PCS via CAN bus. This electrical connection is explained in the
Hardware Installation section of Joystick 16CH Hardware Manual.
If a Joystick 16CH is connected to a PCS, it will be required to configure the Veronte Autopilot 1x inside the PCS.
This configuration is already built and accessible to users as a template in this app.

• To download it, click on the Import PDI from repo button, then select the PCS CAN Joystick template and
finally click on Import.

Fig. 101: Joystick 16CH - Download template

518 Chapter 3. Integration examples

https://manuals.embention.com/joystick-16ch/en/1.0/index.html
https://manuals.embention.com/pcs/en/2.1/index.html
https://manuals.embention.com/joystick-16ch/en/1.0/hardware%20installation/index.html

1x PDI Builder, Release 6.12.62

Important: Joystick 16CH has an internal MEX which manages the CAN bus. Therefore, to communicate
Joystick 16CH with the 1x of PCS, its address has to be specified in the 1x configuration.

Since this is a template, for standard operation, users only need to change the MEX address.

3.7.5.1.1 CAN Joystick configuration

• Autopilot 1x has to be configured with a Virtual Stick as it receives signals via CAN bus (not PPM as usual).

– This must be enabled in the Stick menu→ Virtual Stick panel→ Input Variable tab with the following
configuration:

∗ Input variables selected from Stick Input r0 to Stick Input r15.

∗ Update period set to 0.02 seconds.

∗ Stick Not Detected bit as the Stick ok bit.

Fig. 102: Joystick 16CH - Input Variable configuration

– In addition, the Output tab is configured as follows:

∗ Enable: checked.

∗ Initial: 1.

∗ Port: 0.

∗ Remote: checked.

· UAV: Broadcast.

· Min period: 0.025 s.

3.7. External devices 519

1x PDI Builder, Release 6.12.62

· Max period: 0.2 s.

· Delta: 10.

Fig. 103: Joystick 16CH - Output configuration

3.7.5.1.2 I/O Connections

• In Input/Output menu→ CAN Setup panel→ Configuration tab.

An Input filter producer is connected to a CAN to serial consumer. In this example, Input filter 0 is connected
to CAN to serial 0.

In addition, this Input filter is configured to take data from Port CAN B, with Id 1301, Mask 2047 and Standard
as Filter type.

520 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 104: Joystick 16CH - CAN Setup configuration

Fig. 105: Joystick 16CH - Input filter configuration

• In the I/O Setup panel, a CAN to serial producer is connected to a Commgr Port consumer, and a Commgr
port producer is linked to a Serial to CAN consumer.

In this example, CAN to serial 0 producer is connected to Commgr port 4 consumer, and Commgr port 4 producer
is linked to Serial to CAN 0 consumer.

3.7. External devices 521

1x PDI Builder, Release 6.12.62

Fig. 106: Joystick 16CH - I/O Setup configuration: CAN to serial

Fig. 107: Joystick 16CH - I/O Setup configuration: Serial to CAN

• To properly receive CAN messages from Joystick 16CH, it is necessary to configure some mailboxes on the
CAN B port.

In the Input/Output menu→ CAN Setup panel→Mailboxes tab, add at least 4 mailboxes on CAN B with ID

522 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

1301.

Fig. 108: Joystick 16CH - Mailboxes configuration

3.7.5.1.3 MEX address configuration

MEX address is configured in the Stick block; this block is usually in a program named Stick by users. To access, go
to Block Programs menu and click on Launch Editor.

1. Go to the program where the Stick block is located.

Note: Normally the user has a Stick Program where the blocks that are related to the stick are implemented,
however, the name of the user’s program may be different.

2. Double-click on the Stick block to access its configuration.

3.7. External devices 523

1x PDI Builder, Release 6.12.62

Fig. 109: Joystick 16CH - Stick block

3. Go to the Sources tab in the new window.

4. Click on the Edit Sources button and:

• Change the address by the one of the MEX installed on the Joystick 16CH, to receive the stick information
from that source.

• Select the port previously chosen (0 by default).

• A Time Out of 0.4 s is recommended, which is already set by default.

Fig. 110: Joystick 16CH - Stick block settings

Then, if all is correct, users can check that ‘Stick not detected’ variable will be true.

524 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 111: Stick not detected variable - True

And that means that the communication is correctly configured.

3.7.5.2 PPM Stick

3.7.5.2.1 General case

This is the case where the 1x ground unit (or BCS/PCS) sends commands directly to the 1x air unit.

Follow the steps below to perform a correct stick configuration on both units.

3.7.5.2.1.1 Ground unit

1. Go to Input/Output menu→ Digital Input panel.
Make sure that the following parameters have been configured:

• Producer: CAP 0
– Enabled

– Select the pin to which the transmitter is connected (normally EQEP_A)

– Edge detection: First rising edge

• Consumer: PPM 0

3.7. External devices 525

1x PDI Builder, Release 6.12.62

Fig. 112: General case (Ground unit) - Digital Input configuration

2. Go to Connections menu→ GPIO panel.
Verify that the pin to which the transmitter is connected, in this case GPIO 16 (i.e., EQEP A), is set as input.

526 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 113: General case (Ground unit) - GPIO configuration

3. Go to Stick menu→ Transmitter 0 panel→ PPM tab.

Select the brand of transmitter that applies.

3.7. External devices 527

1x PDI Builder, Release 6.12.62

Fig. 114: General case (Ground unit) - PPM configuration

4. Go to Stick menu→ Transmitter 0 panel→ Output tab.

Click on Enable and on Remote to send the stick information to the air unit. Please check the recommended
values for the configurable parameters described in the Ouput - Stick section of this manual.

528 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 115: General case (Ground unit) - Output configuration

If all these settings are correct, users can check that ‘Stick PPM 0 not detected’ variable of the GND unit will be true.

Fig. 116: Stick PPM 0 not detected variable - True

3.7.5.2.1.2 Air unit

1. Go to Stick menu→ Transmitter 0 panel→ PPM tab.

Select the brand of transmitter that applies (make the same configuration as the ground unit).

2. Go to Stick menu→ Transmitter 0 panel→ Output tab.

Just click on Enable.

3.7. External devices 529

1x PDI Builder, Release 6.12.62

Fig. 117: General case (Air unit) - Output configuration

3. Go to Block Programs menu→ Stick program→ Double click on the Stick block→ Edit sources.

Note: Normally the user has a Stick Program where the blocks that are related to the stick are implemented,
however, the name of the user’s program may be different.

Input the ground unit address to receive the stick information from that source and put it as the highest priority
in the priority table. We recommend a Time Out of 0.4 s.

530 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 118: General case (Air unit) - Stick block configuration

Then, if all is correct, users can check that ‘Stick not detected’ variable of the AIR unit will be true.

Fig. 119: Stick not detected variable - True

And that means that the communication between the GND and the AIR unit is correctly configured.

3.7.5.2.2 Simulation case (HIL)

In this case, the user is only using one Autopilot 1x.

So users will have to follow steps 1, 2 and 3 explained above for the ground unit, but also steps 2 and 3 of the air unit
configuration. However, instead of entering the ground unit address, select the Local option.

3.7. External devices 531

1x PDI Builder, Release 6.12.62

3.7.5.2.3 On-board PPM receiver case

In this case, follow the steps below to configure the 1x air unit:
1. Go to Input/Output menu→ Digital Input panel.

Make sure that the following parameters have been configured:

• Producer: CAP 0
– Enabled

– Select the pin to which the transmitter is connected (normally EQEP_A)

– Edge detection: First rising edge

• Consumer: PPM 0

Fig. 120: On-board PPM receiver case - Digital Input configuration

2. Go to Connections menu→ GPIO panel.
Verify that the pin to which the transmitter is connected, in this case GPIO 16 (i.e., EQEP A), is set as input.

532 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 121: On-board PPM receiver case - GPIO configuration

3. Go to Stick menu→ Transmitter 0 panel→ PPM tab.

Select the brand of transmitter that applies.

3.7. External devices 533

1x PDI Builder, Release 6.12.62

Fig. 122: On-board PPM receiver case - PPM configuration

4. Go to Stick menu→ Transmitter 0 panel→ Output tab.

Just click on Enable.

534 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 123: On-board PPM receiver case - Output configuration

If all these settings are correct, users can check that ‘Stick PPM 0 not detected’ variable of the AIR unit will be true.

Fig. 124: Stick PPM 0 not detected variable - True

5. Go to Block Programs menu→ Stick program→ Double click on the Stick block→ Edit sources.

Note: Normally the user has a Stick Program where the blocks that are related to the stick are implemented,
however, the name of the user’s program may be different.

Input the address as Local to receive the stick information from that source and put it as the highest priority in
the priority table. We recommend a Time Out of 0.4 s.

3.7. External devices 535

1x PDI Builder, Release 6.12.62

Fig. 125: On-board PPM receiver case - Stick block configuration

Then, if all is correct, users can check that ‘Stick not detected’ variable of the AIR unit will be true.

Fig. 126: Stick not detected variable - True

And that means that the communication with the AIR unit is correctly configured.

536 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

3.7.5.3 Stick widget

Fig. 127: Veronte Ops - Stick Widget

To configure the Stick widget of Veronte Ops as a control input of 1x, follow the next steps:

1. Go to Block Programs menu→ Stick program→ Double click on the Stick block→ Edit sources.

Note: Normally the user has a Stick Program where the blocks that are related to the stick are implemented,
however, the name of the user’s program may be different.

Add a source with Address 2 (App 2) to receive the stick information from the stick widget (of Veronte Ops)
and put it as the highest priority in the priority table. A Time Out of 0.4 s is recommended.

3.7. External devices 537

1x PDI Builder, Release 6.12.62

Fig. 128: Stick block - Stick settings

2. Configure the Stick Widget in Veronte Ops. Please find an example of how to configure it in the Stick widget -
Integration examples section of the Veronte Ops user manual.

3.7.5.4 USB joystick

Veronte software is able to detect USB devices such as joystick. The signals of these devices can be read and configured
to send stick information to Veronte Autopilot 1x through the Stick widget of Veronte Ops.
To configure them:

1. Connect the USB joystick to the computer.

2. Go to Block Programs menu→ Stick program→ Double click on the Stick block→ Edit sources.

Note: Normally the user has a Stick Program where the blocks that are related to the stick are implemented,
however, the name of the user’s program may be different.

Add a source with Address 2 (App 2) to receive the stick information from the stick widget (of Veronte Ops)
and put it as the highest priority in the priority table. A Time Out of 0.4 s is recommended.

538 Chapter 3. Integration examples

https://manuals.embention.com/veronte-ops/en/6.12/integration%20examples/index.html#stick-widget
https://manuals.embention.com/veronte-ops/en/6.12/integration%20examples/index.html#stick-widget

1x PDI Builder, Release 6.12.62

Fig. 129: Stick block - Stick settings

3. In Veronte Ops, configure the Stick Widget to be used with a USB joystick. Please find an example of how to
configure it in the USB joystick - Integration examples section of the Veronte Ops user manual.

Note: It is also possible to convert USB joystick commands into PPM signals using the Veronte Stick Expander.

For more information about this product, please visit the Stick Hardware Manual or contact sales@embention.com.

3.7.5.5 Virtual Stick

It is necessary to configure a Virtual Stick to process the stick information received from sources other than PPM
or USB (by CAN, Serial, ADC, etc.). This stick data must be stored in user variables, and once the virtual stick is
configured, these will be processed as stick control signals.

To configure a virtual stick, follow the next steps:

1. Go to Stick menu→ Virtual Stick panel→ Input Variable tab.

• Enable the virtual stick

• Enter an update period (0.02 s is recommended).

• Add the variables containing the stick information in Input Variable field.

• Select as Stick ok bit a user bit variable to indicate if the Virtual Stick configuration has been properly set.

3.7. External devices 539

https://manuals.embention.com/veronte-ops/en/6.12/integration%20examples/index.html#usb-joystick
https://www.embention.com/en/product/stick/
https://manuals.embention.com/stick/en/1.0/index.html
mailto:sales@embention.com

1x PDI Builder, Release 6.12.62

Fig. 130: Virtual Stick - Input Variable configuration

2. Go to Stick menu→ Virtual Stick panel→ Output tab.

Just click on Enable.

540 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 131: Virtual Stick - Output configuration

Note: If all these settings are correct, users can check the variable previously set as Stick ok bit is true.

3. Go to Block Programs menu→ Stick program→ Double click on the Stick block→ Edit sources.

Note: Normally the user has a Stick Program where the blocks that are related to the stick are implemented,
however, the name of the user’s program may be different.

Add a source with address Local to receive the stick information from the configured variables and put it as the
highest priority in the priority table. A Time Out of 0.4 s is recommended.

3.7. External devices 541

1x PDI Builder, Release 6.12.62

Fig. 132: Virtual Stick - Stick block configuration

Then, if all is correct, users can check that Stick not detected variable is true, which means that the communication
is correctly configured.

3.7.6 Veronte products

3.7.6.1 Autopilot 4x

Veronte Autopilot 4x is a redundant system that includes 3 complete Veronte Autopilots 1x modules fully integrated
with dissimilar arbiters.

Normally, the configuration development is done for one Autopilot 1x unit, however, to integrate it into a Veronte
Autopilot 4x, several modifications must be made to the 3 units for a correct operation of the 4x system.

542 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 133: Autopilot 4x basic diagram

This section presents:

• Autopilots 1x configuration⇒ Configuration required on an Autopilot 1x as far as being part of an Autopilot
4x is concerned:

– Definition of the 4x group

– Control and communication between autopilots within the 4x group

– Communication between Autopilots 1x and Arbiter

Caution: Arbitration configuration is conducted in Arbiters using the 4x PDI Builder software. For more
information on this, please refer to the Arbitration configuration - Integration examples section of the 4x PDI
Builder user manual.

• Configuration for external radio communication through RS232 ⇒ Configuration to establish communication
between Autopilot 4x and an external radio connected to its multiplexed RS232, as well as CAN communication
between the Autopilots 1x.

• Arbiters communication ⇒ Configuration necessary to establish the connection between the PC and Arbiters
using one of the Autopilots 1x as a “tunnel”.

Important: These examples are valid for Veronte Autopilot 4x hwv 1.8 and higher.

This is because the 4X Selected bit variable used throughout this explanation has been introduced from Autopilot 4x
hwv 1.8.

However, if users have a 4x with a lower hwv, they can follow all the steps by simply replacing this bit with the
corresponding bit coming from the arbiter status message. For more information on the status message, see Status
Message - CAN Bus protocol section of the 4x Software Manual

3.7. External devices 543

https://manuals.embention.com/4x-pdi-builder/en/6.12.27/integration%20examples/index.html#arbitration-configuration
https://manuals.embention.com/4x-software-manual/en/6.12/canbus/index.html#status-message
https://manuals.embention.com/4x-software-manual/en/6.12/canbus/index.html#status-message

1x PDI Builder, Release 6.12.62

3.7.6.1.1 Autopilots 1x configuration

This example describes the steps necessary to adapt a complete and functional configuration of an Autopilot 1x to that
of an Autopilot 1x within an Autopilot 4x.

The following schema broadly summarizes the configuration that will be explained:

Fig. 134: Autopilot 4x - Autopilots 1x configuration diagram

Important: All the Ids represented in the schema are the default ones and those that will be used throughout this
example, but users can change them as they wish.

Nonetheless, the Ids designated for arbitration in this configuration must match those entered in the arbitration
configuration of the 4x PDI Builder software.

AP 0 AP 1 AP 2
Ids for arbitration 8 9 10
CAN Ids for control 48 49 50

In this example, AP 0 is configured, so the Ids associated with it are 8 for arbitration and 48 for control.

544 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

3.7.6.1.1.1 Definition of the 4x group

Firstly it is necessary to indicate that this Veronte Autopilot 1x is part of a Veronte Autopilot 4x.

For this purpose, go to Control menu→Modes panel→ 4x Veronte tab:

1. Enter the Arbiter address:
⇒ Arbiter A address = 50000 + Serial number of 4x
⇒ Arbiter B address = 54000 + Serial number of 4x

Note: Arbiter A is configured in this example.

2. Activate the Enable output overwrite so that the autopilots that are not in command (the ones not selected)
give the same control output as the selected autopilot. This way, when the selected autopilot changes (due to
arbitration), the transition in control commands is smooth.

3. Add the 3 Autopilots 1x that are part of the Autopilot 4x by clicking on Add UAV and specifying their addresses
(address = Serial number).

4. For each autopilot set the CAN Id to be used for the control messages.

Note: Control Ids described above have been entered here.

Fig. 135: Autopilots 1x configuration - 4x group

3.7. External devices 545

1x PDI Builder, Release 6.12.62

3.7.6.1.1.2 Control and communication between autopilots within the 4x group

Then, in order for the Autopilots 1x to send control commands to each other, it is necessary to configure the CAN
communication. To do this:

Note: Remember that this is an example of the configuration for AP 0.

5. Go to Input/Output menu→ CAN Setup panel→ Configuration tab.

• For sending commands from this autopilot, connect the CAN 4x producer to an Output filter consumer
configured to CAN A, in this case Output filter 5 has been selected.

• For receiving commands from the other autopilots, connect an Input filter producer to the CAN 4x
consumer, in this case Input filter 0 has been selected.

Therefore, in order to read control command messages from all autopilots, it is necessary to correctly
configure the Id and mask in this Input filter. That is, by setting the Id to 48 and the mask to 2044 (decimal
format), command messages from 48 to 50 will be read.

Note: The following table shows the Ids and mask in binary and decimal format used in this example.

Decimal format Binary format
AP 0 control Id 48 000 0011 0000
AP 1 control Id 49 000 0011 0001
AP 2 control Id 50 000 0011 0010
Mask 2044 111 1111 1100

546 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 136: Autopilots 1x configuration - CAN Setup configuration

Fig. 137: Autopilots 1x configuration - Output filter configuration

Fig. 138: Autopilots 1x configuration - Input filter configuration

6. Go to Input/Output menu→ CAN Setup panel→Mailboxes tab.

Configure at least 4 mailboxes in CAN A bus with the same configuration as the Input filter to correctly receive
the control command messages:

3.7. External devices 547

1x PDI Builder, Release 6.12.62

⇒ ID: 48 DEC
⇒Mask: 111 1111 1100 BIN

Fig. 139: Autopilots 1x configuration - Mailboxes configuration

7. Go to Block Programs menu.

• In all programs using “Control Output uX” variables, it is necessary to add the AP Selection block
between these variables and the corresponding control block, usually the PID Static block. For example:

548 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 140: Example of AP Selection block connection

This connection is performed to always use the control output of the selected AP as input to the
corresponding control block, usually the PID Static block. Therefore, the input of the AP Selection block
is the control output of the AP in the configuration and the output is the control output of the selected AP.

In the configuration of this block, users only have to select the channel through which the information
related to this control output is being shared. For example, if Control Output u1 is connected to this
block, channel 1 must be selected. For more information on this block, see the AP Selection - Mode/AP
Selection blocks in the Block Programs section of this manual.

Warning: This block only allows to select the same channel once in all programs, i.e. this block can
only be used once for each control output.

Consequently, if a control output is used more than once in the programs, users must create an auxiliary
program in which they connect each Control Output uX to the AP Selection block and save this
“transformation” in user variables. Then, they will be able to use these user variables throughout the
programs as many times as they need.

Below is an example in which all the control outputs used in the configuration have been associated to
renamed user variables:

3.7. External devices 549

1x PDI Builder, Release 6.12.62

Fig. 141: Example of AP Selection block connection to several Control Outputs

These users variables have been previously renamed in the UI menu→ Variables panel→ Real Vars
tab:

Fig. 142: User variables renamed

• Furthermore, build the following library block, “AP Selected”, to be used as the respect input of the
corresponding control block, usually the PID Static block.

1. Go to the Library tab.

2. Add a new block by clicking on and rename it as desired, in this example AP Selected.

3. Insert in this custom block the “NOT” and “Read Bit” blocks.

4. Right click on the custom block and add an output to it.

5. Connect the “Read Bit” block as input of the “NOT” logic block and as iy¡ts output, the output that

550 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

has been added to the custom block.

6. Finally, select the 4X Selected variable for the “Read Bit”.

For more information on library blocks, see Library blocks - Block Programs section of this manual.

Fig. 143: Autopilots 1x configuration - Library block

The overall result of these blocks related to 4x should look like this:

Fig. 144: Autopilots 1x configuration - Blocks

3.7. External devices 551

1x PDI Builder, Release 6.12.62

With all this block configuration, the expected behavior is to avoid jumps in the control commands when the
selected autopilots change (due to arbitration). This is achieved by always having as usat input of the PID Static
block the control output of the selected AP, since the integral term of the 3 Autopilots 1x of group 4x always
remains the same.

And the logic that follows is this:

552 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 145: Autopilots 1x configuration - Blocks logic

3.7. External devices 553

1x PDI Builder, Release 6.12.62

3.7.6.1.1.3 Communication between Autopilots 1x and Arbiter

Finally, the CAN communication must be correctly configured to be able to send the Ready and Arbitration messages
from the autopilots to the arbiter and to read the Status and Score messages from the arbiter:

Note: The structure/configuration of these messages must be done following the protocol defined in the CAN Bus
protocol section of the 4x Software Manual.
Remember that this is an example of the configuration for AP 0.

8. Go to Input/Output menu→ CAN Setup panel→ Configuration tab.

• For sending messages to the arbiter, connect a CAN custom message producer to an Output filter
consumer, in this case CAN custom message 0 and Output filter 1 have been selected.

• For receiving messages from the arbiter, connect an Input filter producer to a Custom message
consumer, in this case Input filter 2 and Custom message 0 have been selected.

Fig. 146: Autopilots 1x configuration - CAN Setup configuration

• The Output filter is configured to both CAN ports:

Fig. 147: Autopilots 1x configuration - Output filter configuration

554 Chapter 3. Integration examples

https://manuals.embention.com/4x-software-manual/en/6.12/canbus/index.html
https://manuals.embention.com/4x-software-manual/en/6.12/canbus/index.html

1x PDI Builder, Release 6.12.62

• The Id set in this Input filter must match the status Id set in the arbiter configuration. In this example Id
255 has been chosen:

Fig. 148: Autopilots 1x configuration - Input filter configuration

9. Go to Input/Output menu→ CAN Setup panel→ Custom Message 0 tab (since CAN custom Message 0 has
been connected to the output filter)→ TX to configure the messages to be sent to the arbiter.

• In this example, 5 messages with CAN ID 8 (arbitration Id of the AP 0), Little endian and Period 0.05
s have been added. More information on CAN messages configuration can be found in the TX/TX Ini
Messages (Custom Messages) - Input/Output section of this manual.

Fig. 149: Autopilots 1x configuration - CAN custom message 0 (TX) configuration

• Then, to create each message, click on its corresponding button:

3.7. External devices 555

1x PDI Builder, Release 6.12.62

– ID 00⇒ Ready message. It must be built following the Ready Message - CAN Bus protocol section
of the 4x Software Manual.

Fig. 150: Autopilots 1x configuration - Ready message

– ID 01-04⇒ Arbitration variables messages. They must be built following the Arbitration Message
- CAN Bus protocol section of the 4x Software Manual.
In this example, Roll, Pitch, Position not fixed and a Custom Arbitration Variable have been
configured as arbitration messages:

556 Chapter 3. Integration examples

https://manuals.embention.com/4x-software-manual/en/6.12/canbus/index.html#ready-message
https://manuals.embention.com/4x-software-manual/en/6.12/canbus/index.html#arbitration-message
https://manuals.embention.com/4x-software-manual/en/6.12/canbus/index.html#arbitration-message

1x PDI Builder, Release 6.12.62

Fig. 151: Autopilots 1x configuration - Roll message

Fig. 152: Autopilots 1x configuration - Pitch message

Note: The “Position not fixed” variable, which is of type bit, has had to be “converted” as follows

3.7. External devices 557

1x PDI Builder, Release 6.12.62

to a real variable (single-precision float), since that is the type of variable expected by the arbiter.

Fig. 153: Autopilots 1x configuration - Position not fixed message

Fig. 154: Autopilots 1x configuration - Custom Arbitration Variable message

558 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

For more information on configuring CAN custom messages, refer to the Custom Messages types -
Input/Output section of this manual.

10. Go to Input/Output menu→ CAN Setup panel→ Custom Message 0 tab (since Custom Message 0 has been
connected to the input filter)→ TX to configure the messages to be read from the arbiter.

• Add 4 messages and configure them as follows:

ID Can id Endianness Time out Bit ID
00 255 Little endian 1.0 s 0
01 255 Little endian 4.0 s 1
02 255 Little endian 4.0 s 2
03 255 Little endian 4.0 s 3

More information on CAN messages configuration can be found in the RX Messages (Custom Messages) -
Input/Output section of this manual.

Fig. 155: Autopilots 1x configuration - Custom messages 0 (RX) configuration

• Then, to create each message, click on its corresponding button:

– ID 00⇒ Status message. It must be built following the Status Message - CAN Bus protocol section
of the 4x Software Manual.

3.7. External devices 559

https://manuals.embention.com/4x-software-manual/en/6.12/canbus/index.html#status-message

1x PDI Builder, Release 6.12.62

Fig. 156: Autopilots 1x configuration - Status message

– ID 01-03⇒ Scores messages. They must be built following the Score Message - CAN Bus protocol
section of the 4x Software Manual.

560 Chapter 3. Integration examples

https://manuals.embention.com/4x-software-manual/en/6.12/canbus/index.html#score-message

1x PDI Builder, Release 6.12.62

Fig. 157: Autopilots 1x configuration - AP 0 Score message

Fig. 158: Autopilots 1x configuration - AP 1 Score message

3.7. External devices 561

1x PDI Builder, Release 6.12.62

Fig. 159: Autopilots 1x configuration - AP 2 Score message

For more information on configuring CAN custom messages, refer to the Custom Messages types -
Input/Output section of this manual.

11. Go to Input/Output menu→ CAN Setup panel→Mailboxes tab.

Configure at least 4 mailboxes in CAN A bus with the same configuration as the Input filter to correctly receive
the messages from the arbiter:

⇒ ID: 255 DEC
⇒Mask: 111 1111 1111 BIN

Warning: Remember that it is necessary to have at least 1 free mailbox for TX messages.

562 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 160: Autopilots 1x configuration - Mailboxes configuration

Important: After making this configuration for AP 0, users will have to upload the same configuration on AP 1 and
AP 2 and change the IDs of the CAN messages configured for sending messages (TX) to the arbiter.

For AP 1 it will be necessary to change the Id 8 to 9, and for AP 2, to change it to 10.

It is also advisable to slightly modify the name of the configuration to be able to distinguish them quickly. This is done
from the Unit name panel.

Warning: The Arbiter address parameter must be set again when uploading the configuration to another AP. This
is because this address is unique for each Autopilot 4x and it is not exported when downloading the configuration
nor applied when uploading a PDI.

3.7. External devices 563

1x PDI Builder, Release 6.12.62

3.7.6.1.2 Configuration for external radio communication through RS232

The following is the configuration necessary to establish communication with an external radio connected to one of the
multiplexed ports of Veronte Autopilot 4x, in this case RS232.

The purpose of this implementation is that the Autopilot 1x selected by the arbiter receives the communications from
the other two autopilots via CAN and redirects them to the RS232 port to send them to the radio. As far as reception
is concerned, this is not necessary since all 3 Autopilots 1x can receive communications over the RS232 port.

In addition, to avoid overloading the CAN bus with telemetry, the telemetry address has been changed to a dynamic
address of Veronte applications and depending on whether the current autopilot is the selected AP or not, the routing
of communications acts in one way or another:

• If it is the autopilot selected⇒ the telemetry is sent by the RS232.

• If it is not the autopilot selected⇒ the telemetry is redirected to a port that is not in use to avoid being sent by
CAN.

The following schematic broadly summarizes the configuration that will be explained:

Fig. 161: Autopilot 4x - External radio communication through RS232 diagram

Important: The following are the IDs for CAN communications normally assigned to each AP, however users may
use any IDs they wish:

AP 0 AP 1 AP 2
100 101 102

In this example, AP 0 is configured, so Id 100 is associated with it.

The explanation of everything shown in the diagram above has been divided according to the different parts to configure:

• Telemetry configuration

• I/O ports configuration

• CAN communication configuration

564 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

• Routing configuration

3.7.6.1.2.1 Telemetry configuration

First, configure the custom telemetry to be sent via radio by adding a Data vector with the desired variables to a
dynamic address of Veronte applications. To do this:

1. Go to Telemetry menu→ Telemetry panel.

• Click on to add a new data vector, which will be added by default with address 2 (App 2⇒ Data to
VApp).

• Then configure it as follows:

– Frequency: 15 Hz are recommended.

– Address: Enter a dynamic address of Veronte applications, which are in the range 255-599. In this
example 255 is used. For more information on the available addresses, see List of Addresses section
of the 1x Software Manual.

Note: Users only need to enter the address, then the software will automatically recognize that it is
a dynamic address of Veronte applications and replace it with “App dynamic address entered”, in this
case “App dynamic 255”.

• Add as much custom telemetry as needed.

For more information on configuring data vectors, see the Data vectors - Telemetry section of the present manual.

Fig. 162: External radio communication through RS232 - Telemetry configuration

3.7. External devices 565

https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#list-of-addresses

1x PDI Builder, Release 6.12.62

3.7.6.1.2.2 I/O ports configuration

Then, it is necessary to perform the ports connections for the sending and reception of CAN communications between
Autopilots 1x.

In addition, it is recommended to use a user bit, which is the negation of the “4X Selected” bit (usually renamed to “4x
not selected”), to disable the sending of these communications in the case where the current AP is the one selected by
the arbiter. This is done to reduce the CAN bus traffic load.

For this purpose:

2. Go to UI menu→ Variables panel→ Bits tab.

Rename a user bit that is not being used for another purpose in the configuration to be the “4x not selected” bit.

Fig. 163: External radio communication through RS232 - User bit renamed

3. Go to Block Programs menu.

Create a program to store the negation value of the “4X Selected” bit in the previously renamed user bit. To do
this:

3.1. Add a new program by clicking on and rename it as desired, in this example AP Communication.

3.2. Configure it as a continuously running program (it should appear as).

3.3. Add the blocks “NOT”, “Read Bit” and “Write Bit” to the created program.

3.4. Connect to the logic block “NOT” the “Read Bit” block as input and the “Write Bit” as output.
3.5. Select the variable 4X Selected for the “Read Bit”.

3.6. Select for the “Write Bit” the user bit renamed as 4x not selected.

566 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

For more information on blocks, read Block Programs section of the present manual.

Fig. 164: External radio communication through RS232 - User bit configuration

4. Go to Input/Output menu→ I/O Setup panel.
Several connections have to be made here for the different communications:

• For the communicaction with the radio, a connection through RS232 port should be carry out:

Bidirectionally connect the RS232 producer to a Commgr port consumer, in this case Commgr port 3
is selected. Then, the equivalent Commgr port producer (in this case Commgr port 3 producer) should
automatically connect to the RS232 consumer.

3.7. External devices 567

1x PDI Builder, Release 6.12.62

Fig. 165: External radio communication through RS232 - I/O Setup configuration: Radio

• For the transmission of CAN communications from the current Autopilot 1x to the other Autopilots 1x,
the following operation must be performed:

Connect a Commgr port producer to a Serial to CAN consumer, in this case Commgr port 4 and Serial
to CAN 0 have been selected. In addition, to disable the transmission in case this is the selected AP, the
user bit previously configured in Block programs should be assigned to the connection (in this case, User
BIT 29).

568 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 166: External radio communication through RS232 - I/O Setup configuration: Transmission

• For reception of CAN communications from the other Autopilots 1x on the current AP:

Connect two CAN to serial producers to two Commgr port consumers. In this case, CAN to serial 0 and
CAN to serial 1 have been connected to Commgr port 4 and Commgr port 5 respectively.

3.7. External devices 569

1x PDI Builder, Release 6.12.62

Fig. 167: External radio communication through RS232 - I/O Setup configuration: Reception

3.7.6.1.2.3 CAN communication configuration

Next, configure the sending of the CAN communication from the current AP to the other two Autopilots 1x as well as
the reception of their communication.

In addition, it is also recommended to use the user bit “4x not selected” to disable sending CAN communications when
the current AP is also the selected AP.

To do this:

5. Go to Input/Output menu→ CAN Setup panel→ Configuration tab.

The following settings must be made here for the different communications:

• For the transmission of CAN communications from the current Autopilot 1x to the other Autopilots 1x:

Connect a Serial to CAN producer to an Output filter consumer, in this case Serial to CAN 0 and Output
filter 0 have been selected.

Note: The Serial to CAN producer index must match the one previously selected as Serial to CAN
consumer in the I/O Setup panel.

In addition, to disable the transmission in case this is the selected AP, the user bit previously configured in
Block programs should be assigned to the connection (in this case, User BIT 29).

570 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 168: External radio communication through RS232 - CAN Setup configuration: Transmission

– Serial to CAN producer should be set to Id 100 as this is the Id that has been assigned to the current
AP.

Fig. 169: External radio communication through RS232 - Serial to CAN configuration

– Output filter is configured to CAN A port.

Fig. 170: External radio communication through RS232 - Output filter configuration

3.7. External devices 571

1x PDI Builder, Release 6.12.62

• For reception of CAN communications from the other Autopilots 1x on the current AP:

Connect two Input filter producers to two CAN to serial consumers. In this case, Input filter 0 and Input
filter 1 have been connected to CAN to serial 0 and CAN to serial 1 respectively.

Note: The CAN to serial consumers indices must match those previously selected as CAN to serial
producers in the I/O Setup panel.

Fig. 171: External radio communication through RS232 - CAN Setup configuration: Reception

Input filter producers should be configure with the following parameters in order to correctly receive
communications from the other two Autopilots 1x:

– Port: CAN A
– Id: 101 / 102⇒ CAN Ids assigned to AP 1 and AP 2 respectively

– Mask: 2047

572 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 172: External radio communication through RS232 - Input filter 0/1 configuration

6. Go to Input/Output menu→ CAN Setup panel→Mailboxes tab.

Configure at least 4 mailboxes on CAN A bus for receiving messages from each of the other two autopilots. They
must have the same configuration as the Input filters to receive them correctly:

⇒ ID: 101 / 102 DEC
⇒Mask: 111 1111 1111 BIN

Warning: Remember that it is necessary to have at least 1 free mailbox for TX messages.

Fig. 173: External radio communication through RS232 - Mailboxes configuration

3.7. External devices 573

1x PDI Builder, Release 6.12.62

3.7.6.1.2.4 Routing configuration

Finally, the following steps represent the necessary configuration to be performed by users for routing communications.

7. Go to Communications menu→ Ports panel.
2 routing configurations must be done:

• Routing 0: This will be used when the current AP is also the selected AP. It is configured to output through
PORT 3 (which is connected to RS232 on the I/O Setup panel) the following:

– All messages with address 2⇒ Status messages from both the selected AP and the other 2 Autopilots
1x.

– All messages with address 255⇒Custom telemetry that has been configured to this dynamic address
of Veronte applications.

• Routing 1: This will be used when the current AP is not the selected AP. It is configured to force telemetry
with address 255 (custom telemetry) to be redirected to a port that is not in use, in this case PORT 5.

For more information on the configuration of this panel, see the Ports - Communications section of the present
manual.

Fig. 174: External radio communication through RS232 - Routing configuration

8. Go to Automations menu.

To switch between both routing configurations it is necessary to create 2 automations that will be triggered
depending on whether the current autopilot is the selected AP or not (with the value of the 4X Selected variable).

574 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

First, create an automation to select the routing configuration when the current AP is also the selected AP⇒
Routing 0 configuration. To do this:

A. Click on the New automation button and rename it as desired, in this example 4x routing table 0.

B. Go to Events side and configure an Alarm event as follows:

• Enter a custom name for this event, AP Selected has been entered.

• Select All ok in the Type option, as it is desired that the action is triggered when the bit is in the “true”
state.

• Click on to add the variable that has to activate the alarm⇒ 4X Selected bit.

Fig. 175: External radio communication through RS232 - Routing 0 event

C. Go to Actions side, add a new Ports action and configure it as follows:

• Enter a custom name for this action, Routing 0 has been chosen.

• Select the Routing 0 option as this is the automation to select the previously defined Routing 0
configuration.

3.7. External devices 575

1x PDI Builder, Release 6.12.62

Fig. 176: External radio communication through RS232 - Routing 0 action

For more information on the configuration of these automations, see Automation section of this manual.

Repeat the same steps (with slightly differences) to create the automation in case this is not the selected AP and
the Routing 1 configuration must be used:

D. Click on the New automation button and rename it as desired, in this example 4x routing table 1.

E. Go to Events side, select the previously created event “AP Selected” and add to it the NOT boolean
operation. Therefore, the action will be triggered when the 4X Selected bit is in “false” state.

576 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 177: External radio communication through RS232 - Routing 1 event

F. Go to Actions side, add a new Ports action and configure it as follows:

• Enter a custom name for this action, Routing 1 has been chosen.

• Select the Routing 1 option as this is the automation to select the previously defined Routing 1
configuration.

3.7. External devices 577

1x PDI Builder, Release 6.12.62

Fig. 178: External radio communication through RS232 - Routing 1 action

Important: After making this configuration for AP 0, users will have to upload the same configuration on AP 1 and
AP 2 and change the CAN communications IDs configured in CAN Setup panel:

IDs Serial to CAN 0
producer

Input filter 0
producer

Input filter 1
producer

Mailboxes for AP 0
messages

Mailboxes for AP 2/1
messages

AP
1

101 100 102 100 102

AP
2

102 100 101 100 101

It is also advisable to slightly modify the name of the configuration to be able to distinguish them quickly. This is done
from the Unit name panel.

578 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

3.7.6.1.3 Arbiters communication

As it is sometimes not possible to connect the Arbiters, which are inside the Veronte Autopilot 4x, directly to the PC
to configure them (access 4x PDI Builder), Veronte Autopilot 1x is connected to the PC and a connection is made
between Arbiters and Autopilot 1x via CAN.

Important: Arbiter B can only be configured in this way.

To be able to communicate with Arbiters via CAN, the following connection is required:

Fig. 179: Communication diagram PC↔ Arbiters

Follow the steps below to make this configuration:

1. Go to Input/Output menu→ I/O Setup panel.
Check the connection between the computer and the Autopilot 1x (usually via USB, but RS232 and RS485 are
also possible).

3.7. External devices 579

1x PDI Builder, Release 6.12.62

Fig. 180: Arbiters communication - I/O Setup configuration: PC connection

2. Go to Communications menu→ Ports panel.
Remove Port 4 and 5 from the Forward group and add Port 4 and 5 to the Route group, with target Arbiters’
Address:

• Address of Arbiter A: 50 000 + Serial number of 4x
• Address of Arbiter B: 54 000 + Serial number of 4x

580 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 181: Arbiters communication - Routing configuration

Note: This is just an example, users can choose Ports other than 4 and 5.

3. Go to Input/Output menu→ I/O Setup panel.
Connect Commgr port 4 to Serial to CAN 1 consumer and Commgr port 5 to Serial to CAN 2 consumer:

3.7. External devices 581

1x PDI Builder, Release 6.12.62

Fig. 182: Arbiters communication - I/O Setup configuration: Serial to CAN

Then, connect CAN to serial 1 to Commgr port 4 and CAN to serial 2 to Commgr port 5:

582 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 183: Arbiters communication - I/O Setup configuration: CAN to serial

Note: This is just an example, users can choose Serial to CAN and CAN to serial other than 1 and 2.

4. Go to Input/Output menu→ CAN Setup panel→ Configuration tab.

• Connect Serial to CAN 1 to Output filter 1 and Serial to CAN 2 to Output filter 2.

In addition, connect Input filter 1 to CAN to serial 1 and Input filter 2 to CAN to serial 2:

3.7. External devices 583

1x PDI Builder, Release 6.12.62

Fig. 184: Arbiters communication - CAN Setup configuration

• Set for both Serial to CAN 1/2 the same CAN ID: 1302.

Fig. 185: Arbiters communication - Serial to CAN 1/2 configuration

• Select for Output filter 1 the CAN A, as this is the CAN of Autopilot 1x that is connected to Arbiter A:

Fig. 186: Arbiters communication - Output filter 1 configuration

• Select for Output filter 2 the CAN B, as this is the CAN of Autopilot 1x that is connected to Arbiter B:

584 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 187: Arbiters communication - Output filter 2 configuration

• Configure both Input filter 1/2 with CAN ID: 1301.

Select for Input filter 1 the CAN A, as this is the CAN of Autopilot 1x that is connected to Arbiter A:

Fig. 188: Arbiters communication - Input filter 1 configuration

Select for Input filter 2 the CAN B, as this is the CAN of Autopilot 1x that is connected to Arbiter B:

Fig. 189: Arbiters communication - Input filter 2 configuration

Note: This is just an example, users can choose Input filter and Output filter other than 1 and 2.

5. Go to Input/Output menu→ CAN Setup panel→Mailboxes tab.

• Set the Baudrate for both CANs, CAN A: 1 000 000 and CAN B: 500 000.

• Configure at least 10 reception mailboxes with ID 1301 for both CAN A and B:

3.7. External devices 585

1x PDI Builder, Release 6.12.62

Fig. 190: Arbiters communication - Mailboxes configuration: CAN A

Fig. 191: Arbiters communication - Mailboxes configuration: CAN B

586 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

3.7.6.2 CEX/MEX

As it is sometimes not possible to connect a CEX/MEX directly to the PC in order to configure it (access CEX/MEX
PDI Builder), the Veronte Autopilot 1x is connected to the computer and a connection is made between CEX/MEX
and Veronte Autopilot 1x via CAN.

To be able to communicate with CEX/MEX via CAN, the following connection is necessary:

Fig. 192: Communication diagram PC↔ CEX/MEX

Note:
• 1x usually has this configuration by default, but check it out.

• As the steps to be performed in CEX PDI Builder and MEX PDI Builder are exactly the same, only the steps
for one of them will be detailed. The interface may differ slightly, but the configuration is the same.

Follow the steps below to make this configuration:

3.7.6.2.1 1x PDI Builder side

1. Go to Input/Output menu→ I/O Setup panel.
Check the connection between the computer and the 1x (usually via USB, but RS232 and RS485 are also
possible).

3.7. External devices 587

1x PDI Builder, Release 6.12.62

Fig. 193: 1x PDI Builder - I/O Setup configuration

2. Go to Communications menu→ Ports panel.
Remove Port 5 from the Forward group and add Port 5 to the Route group, with target CEX’s Address:

⇒ Address = 44000 + Serial number.

The CEX address must be in the range 45000 - 49999.

Note:
• For MEX, the address should look like this:

– Address = 42000 + Serial number.

– The MEX address must be in the range 43000 - 43999.

• If the theorical address does not work, 999 (unknown) can be used as sometimes the address has not been
set in CEX/MEX.

588 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 194: 1x PDI Builder - Routing configuration

3. Go to Input/Output menu→ I/O Setup panel.
Connect Commgr port 5 to Serial to CAN 1 consumer:

3.7. External devices 589

1x PDI Builder, Release 6.12.62

Fig. 195: 1x PDI Builder - I/O Setup configuration: Serial to CAN

Then, connect CAN to serial 1 to Commgr port 5:

590 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 196: 1x PDI Builder - I/O Setup configuration: CAN to serial

4. Go to Input/Output menu→ CAN Setup panel→ Configuration tab.

Connect a Serial to CAN with the right Id (CAN ID 1302) to an Output filter.

In addition, connect an Input filter with the right Id (CAN ID 1301) to a CAN to serial:

3.7. External devices 591

1x PDI Builder, Release 6.12.62

Fig. 197: 1x PDI Builder - CAN Setup configuration

Fig. 198: 1x PDI Builder - Serial to CAN configuration

Fig. 199: 1x PDI Builder - Input filter configuration

5. Go to Input/Output menu→ CAN Setup panel→Mailboxes tab.

592 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Finally, configure the reception mailbox with ID 1301, assign at least 4 mailboxes:

Fig. 200: 1x PDI Builder - Mailboxes configuration

3.7.6.2.2 CEX PDI Builder side

Note: This part is already built for CEX default configuration, but the user can check it.

6. Go to Input/Output menu→ CAN I/O panel→ Configuration tab.

Connect a CAN Input Filter with the right CAN Address (CAN ID 1302) to CAN to Serial 0.

In addition, connect Serial to CAN 0 with the right CAN Address (CAN ID 1301) to a CAN Output Filter
port:

3.7. External devices 593

1x PDI Builder, Release 6.12.62

Fig. 201: CEX PDI Builder - CAN I/O configuration

Fig. 202: CEX PDI Builder - CAN Input Filter configuration

594 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 203: CEX PDI Builder - Serial to CAN configuration

7. Go to Input/Output menu→ I/O Setup panel.
Connect CAN to Serial 0 to any Commgr port, in this case Commgr port 0 is used.

In addition, connect Commgr port 0 to Serial to CAN 0 consumer:

Fig. 204: CEX PDI Builder - I/O Setup configuration

8. Go to Input/Output menu→ CAN Setup panel.
Finally, configure the reception mailbox with ID 1302, assign at least 4 mailboxes:

3.7. External devices 595

1x PDI Builder, Release 6.12.62

Fig. 205: CEX PDI Builder - CAN Setup (Mailboxes) configuration

3.7.6.3 MC01

In order to communicate a Veronte Autopilot 1x with a MC01 via CAN, the following connection is required:

Fig. 206: Communication diagram 1x↔MC01

The following steps explain how to configure the communication between an Autopilot 1x and a MC01.

596 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

3.7.6.3.1 MC01 PDI Builder side

1. By default, MC01 is configurated with a connection Serial to CAN, with the following Standard CAN IDs:

• Tx CAN Id: 1301

• Rx CAN Id: 1302

3.7.6.3.2 1x PDI Builder side

2. Go to Communications menu→ Ports panel.
Remove Port 5 from the Forward group and add Port 5 to the Route group, with target MC01’s Address. This
address must be chosen in the destination path of the MC01 (40117 for the example).

Fig. 207: 1x PDI Builder - Routing configuration

3. Go to Input/Output menu→ I/O Setup panel.
Connect the Commgr port 5 to the Serial to CAN 1.

3.7. External devices 597

1x PDI Builder, Release 6.12.62

Fig. 208: 1x PDI Builder - I/O Setup configuration: Serial to CAN

Then, connect CAN to serial 1 to Commgr port 5:

598 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 209: 1x PDI Builder - I/O Setup configuration: CAN to serial

4. Go to Input/Output menu→ CAN Setup panel→ Configuration tab.

Connect a Serial to CAN with the right Id (CAN ID 1302) to an Output filter.

In addition, connect an Input filter with the right Id (CAN ID 1301) to a CAN to serial:

3.7. External devices 599

1x PDI Builder, Release 6.12.62

Fig. 210: 1x PDI Builder - CAN Setup configuration

Fig. 211: 1x PDI Builder - Serial to CAN configuration

Fig. 212: 1x PDI Builder - Input filter configuration

5. Go to Input/Output menu→ CAN Setup panel→Mailboxes tab.

Finally, configure the reception mailbox with ID 1301, assign at least 1 mailbox:

600 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 213: 1x PDI Builder - Mailboxes configuration

3.7.6.4 MC110/MC24

In order to send commands from a Veronte Autopilot 1x to a MC110/MC24 via CAN and vice versa, the following
connection is required:

Fig. 214: Communication diagram 1x↔MC110/MC24

Warning: If users have the Autopilot 1x connected to a PC while commanding via CAN to a MC110/MC24 unit
(e.g. when performing test operations), this connection to the PC must be via RS232/485 (recommended RS485),

3.7. External devices 601

1x PDI Builder, Release 6.12.62

not via a USB connection.

This is because the USB connection between the PC and the 1x may be lost when commanding to the MC110/MC24
unit.

For more information on a connnection via RS232/485 with a Veronte Autopilot 1x, refer to the RS232/485
connection - Integration examples section of the 1x Hardware Manual.

Note: As the steps to be performed in MC110 PDI Builder and MC24 PDI Builder are exactly the same, only the
steps for one of them will be detailed. The interface may differ slightly, but the configuration is the same.

3.7.6.4.1 CAN commands from Autopilot 1x to MC110

Follow the steps below to make this configuration:

3.7.6.4.1.1 1x PDI Builder side

1. Go to Input/Output menu→ CAN Setup panel→ Configuration tab.

Connect a CAN custom message producer (in this case CAN custom message 1 is used) to an Output filter
consumer, in this example Output filter 3.

In addition, configure the Output filter with the correct CAN Bus, in this example CAN A has been selected:

Fig. 215: 1x PDI Builder - CAN Setup configuration

2. Go to Input/Output menu → CAN Setup panel → Custom message 1 tab (since the producer CAN custom
message 1 has been connected to the output filter).

602 Chapter 3. Integration examples

https://manuals.embention.com/1x/en/4.8/integration%20examples/index.html#rs232-485-connection
https://manuals.embention.com/1x/en/4.8/integration%20examples/index.html#rs232-485-connection

1x PDI Builder, Release 6.12.62

• Add a new message in TX (as it is for tranmission) with CAN ID 1434. More information on the
configuration of CAN messages can be found in the TX/TX Ini Messages (Custom Messages) - Input/Output
section of this manual.

• Next, configure the message to be sent with whatever variable users wish to use to command. The variable
should be set to compressed signed 32-bit.
Users should send the values from 0 to max_rpm (or from -max_rpm to max_rpm if negative commands
are desired to be allowed).

To do this, it is recommended to control the variable internally as a throttle, for this set the Encode from 0
to 1 (or from -1 to 1 for negative speeds). And for decode it to rpm values, the Decode parameter must be
configured from 0 to max_rpm (or from -max_rpm to max_rpm if negative commands are allowed):

Fig. 216: 1x PDI Builder - CAN custom message 1 configuration

For more information on configuring CAN custom messages, refer to the Custom Messages types -
Input/Output section of this manual.

Warning: Remember that it is necessary to have at least 1 free mailbox for TX messages.

3.7. External devices 603

1x PDI Builder, Release 6.12.62

3.7.6.4.1.2 MC110 PDI Builder side

3. Go to Input/Output menu→ CAN I/O panel→ Configuration tab.

Connect an Input filter producer, in this example Input filter 1, to the CAN Cmd consumer.

In addition, configure the input filter with the following parameters:

• Port: CAN A
• CAN Id 1434
• Mask: 2047 dec

• Filter type: Standard

Fig. 217: MC110 PDI Builder - CAN I/O configuration

604 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 218: MC110 PDI Builder - Input filter configuration

4. Go to Input/Output menu→ CAN I/O panel→Mailboxes tab.

Configure at least 4 reception mailboxes with ID 1434 in the CAN A bus:

Fig. 219: MC110 PDI Builder - Mailboxes configuration

5. Go to MC menu→ FOC Control panel→ Control Input.
Make sure that m_CAN or m_CAN_PPM mode is selected.

For more information on these parameters, refer to the Control Input (FOC Control) - MC section of MC110
PDI Builder user manual.

3.7. External devices 605

https://manuals.embention.com/mc110-pdi-builder/en/6.12.35/configuration/mc/index.html#pi-controller

1x PDI Builder, Release 6.12.62

3.7.6.4.2 CAN commands from MC110 to Autopilot 1x

Follow the steps below to make this configuration:

3.7.6.4.2.1 MC110 PDI Builder side

1. Go to Input/Output menu→ CAN I/O panel→ Configuration tab.

Connect CAN custom message 0 producer to an Output filter consumer, in this example Output filter 1.

In addition, configure the Output filter with the correct CAN Bus, in this example CAN A has been selected:

Fig. 220: MC110 PDI Builder - CAN I/O configuration

2. Go to Input/Output menu→ CAN I/O panel→ CAN custom message 1 tab.

Add a new message in TX with the variables the user wishes to send back to Autopilot 1x.

In this example, the message with CAN ID 100 is sending the input command value as well as the board
temperature as uncompressed variables.

606 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 221: MC110 PDI Builder - CAN custom message 1 configuration

For more information on configuring CAN custom messages, refer to the Custom Messages types - Input/Output
section of this manual.

Note: If the variables are compressed/encoded on the MC110 side when sent, they must be
decompressed/decoded on the Autopilot 1x unit on reception.

3.7.6.4.2.2 1x PDI Builder side

3. Go to Input/Output menu→ CAN Setup panel→ Configuration tab.

Connect an Input filter producer (in this case Input filter 3) to a Custom message consumer (Custom message
1 has been selected).

3.7. External devices 607

1x PDI Builder, Release 6.12.62

Fig. 222: 1x PDI Builder - CAN Setup configuration

In addition, according to the send message set in the MC110 PDI Builder software, configure the input filter
with the following parameters:

• Port: CAN A
• CAN Id 100
• Mask: 1110000 bin

• Filter type: Standard

Fig. 223: 1x PDI Builder - Input filter configuration

4. Go to Input/Output menu → CAN Setup panel → Custom message 1 tab (since the input filter has been
connected to the Custom message 1 consumer).

Users can configure the reception of MC110 variables and store them internally for other uses in the configuration.

608 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

To do this, add in RX fields the same messages that have been configured in the MC110 PDI Builder as TX
Messages:

Fig. 224: 1x PDI Builder - Custom message 1 configuration

For more information on configuring CAN custom messages, refer to the Custom Messages types - Input/Output
section of this manual.

5. Go to Input/Output menu→ CAN Setup panel→Mailboxes tab.

Finally, configure the reception mailboxes.

In this case, CAN messages with ID 100 and with ID 103 to 109 (8 messages in total) are being sent, which in
binary is: 0110 0100 and from 0110 0111 to 0110 1101.

Therefore, 8 mailboxes are configured with ID 01100100 and mask 1110000 in the CAN A bus:

3.7. External devices 609

1x PDI Builder, Release 6.12.62

Fig. 225: 1x PDI Builder - Mailboxes configuration

For more information on mailboxes, see the Mailboxes (CAN Setup) - Input/Output section of this manual.

3.7.6.5 Veronte Gimbal

This section explains the configuration required to control and operate Veronte Gimbal 10z or Veronte Gimbal 30z.

On the one hand, the following diagram illustrates the communication required between a Veronte Autopilot 1x and
the Veronte Gimbal to control its movements:

Fig. 226: Communication diagram 1x→ Veronte Gimbal

On the other hand, to allow communication between Veronte Autopilot 1x and the video board integrated in the
Veronte Gimbal camera the following connection is required:

610 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 227: Communication diagram 1x↔ Veronte Gimbal

In the 1x PDI Builder software there is already a template with the required configuration shown in the diagrams
above. Users can access it in the following way:

1. Open 1x PDI Builder app.

2. Click ‘1xVeronte’ option.

Fig. 228: Veronte Gimbal - 1xVeronte option

3. In the initial menu of the app, import a configuration from the repo clicking on .

3.7. External devices 611

1x PDI Builder, Release 6.12.62

Fig. 229: Veronte Gimbal - Import from repo

The following window will appear while the templates are being downloaded:

612 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 230: Veronte Gimbal - Downloading templates

4. In the templates menu, select the Veronte Gimbal configuration template and press Import to import it to the
app.

3.7. External devices 613

1x PDI Builder, Release 6.12.62

Fig. 231: Veronte Gimbal - Veronte Gimbal configuration template

Now, users have to add the Veronte Gimbal control aspects of this configuration template to their own Autopilot 1x
configuration.

3.7.6.5.1 Controlling Veronte Gimbal movement

Concerning the movement control of the Veronte Gimbal, these are the relevant parts of the configuration:

• In the Input/Output menu→ CAN Setup panel→ Configuration tab.

A CAN custom message producer must be connected to an Output filter consumer. In this example, CAN
custom message 0 is connected to Output filter 2 and CAN A bus has been chosen.

614 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 232: Veronte Gimbal - CAN Setup configuration panel

• In the Input/Output menu → CAN Setup panel → Custom message 0 tab (since the producer CAN custom
message 0 has been connected to the output filter).

The following parameters must be set for 2 CAN messages on TX (as they are for tranmission) with CAN ID 0
and 1. More information on the configuration of CAN messages can be found in the TX/TX Ini Messages (Custom
Messages) - Input/Output section of this manual.

Warning: These specific CAN IDs are entered because they have to match the ones configured in the
Gimbal, which are configured by default with these ids.

– Can id: 0 / 1

– Endianness: Little endian

– Period: 0.01 s

3.7. External devices 615

1x PDI Builder, Release 6.12.62

Fig. 233: Veronte Gimbal - Custom message panel

Click on to access their configuration. This is almost the same for both messages but changing the variable:

Fig. 234: Veronte Gimbal - CAN custom message ID 0 configuration

616 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

1. Matcher
– Value: 3

– Bits: 8

2. Variable
– Variable: Joint 0 of Gimbal 0

– Compression: Compress - Bits Signed

– Bits: 24

– Encode - Min/Max: 0.0/3.1416

– Decode - Min/Max: 0/8388608

Fig. 235: Veronte Gimbal - CAN custom message ID 1 configuration

1. Matcher
– Value: 3

– Bits: 8

2. Variable
– Variable: Joint 1 of Gimbal 0

– Compression: Compress - Bits Signed

– Bits: 24

– Encode - Min/Max: 0.0/3.1416

– Decode - Min/Max: 0/8388608

3.7. External devices 617

1x PDI Builder, Release 6.12.62

3.7.6.5.2 Communication with Veronte Gimbal camera video board

The following are the configuration aspects of the communication with the gimbal camera video board.

3.7.6.5.2.1 CAN commands sent by Autopilot 1x

• In the Input/Output menu→ I/O Setup panel.
A RS custom message producer is connected to a Serial to CAN consumer. In this example, RS custom
message 0 is connected to Serial to CAN 1.

Fig. 236: Veronte Gimbal - I/O Setup configuration panel

Click on to access the RS custom message configuration. It consists of 4 messages for request variables,
i.e. they request information from the video board of the gimbal camera.

618 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 237: Veronte Gimbal - RS producer custom message configuration

Message Endianness Period
00 Little endian 0.2 s
01 Little endian 0.5 s
02 Little endian 0.5 s
03 Little endian 0.5 s

• In the Input/Output menu→ CAN Setup panel→ Configuration tab.

A Serial to CAN producer with Id 1304 must be connected to an Output filter consumer. In this example,
Serial to CAN 1 is connected to Output filter 1 and CAN A bus has been chosen.

3.7. External devices 619

1x PDI Builder, Release 6.12.62

Fig. 238: Veronte Gimbal - CAN Setup configuration panel

Fig. 239: Veronte Gimbal - Serial to CAN configuration

3.7.6.5.2.2 CAN commands received on Autopilot 1x

• In the Input/Output menu→ CAN Setup panel→ Configuration tab.

An Input filter producer with Id 1303 must be connected to a CAN to serial consumer. In this example, Input
filter 1 configured to CAN A bus, is connected to CAN to serial 1.

620 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 240: Veronte Gimbal - CAN Setup configuration panel

Fig. 241: Veronte Gimbal - Input filter configuration

• In the Input/Output menu→ CAN Setup panel→Mailboxes tab.

20 reception mailboxes with ID 1303 are configured in CAN A bus (as the input filter has been configured to
CAN A):

3.7. External devices 621

1x PDI Builder, Release 6.12.62

Fig. 242: Veronte Gimbal - Mailboxes configuration

• In the Input/Output menu→ I/O Setup panel.
A CAN to serial producer is connected to a Y splitter consumer. Then, a Y splitter A producer is connected
to a RS custom message consumer and a Y splitter B producer is connected to a Tunnel consumer, configured
to Address 2 (App 2).

This connection is made in order to read and process the information received from the video board (RS custom
message consumer) while sending this information to Veronte Ops. So Autopilot 1x is acting as a tunnel between
the video board and Veronte Ops.

In this example, CAN to serial 1 is connected to Y1 splitter, Y1 splitter A to RS custom message 2 and Y1 splitter
B to Tunnel 0.

622 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

Fig. 243: Veronte Gimbal - CAN Setup configuration panel

Click on to access the RS custom message configuration. It consists of 4 messages to read the video board
information from the gimbal camera that has been previously requested.

Important: They must be configured as Little endian.

3.7. External devices 623

1x PDI Builder, Release 6.12.62

Fig. 244: Veronte Gimbal - RS consumer custom message configuration

Finally, click on to access the Tunnel configuration:

Fig. 245: Veronte Gimbal - Tunnel configuration

– Veronte ID: App 2

– Parser: No protocol

– Destination tunnel: Tunnel producer 0

624 Chapter 3. Integration examples

1x PDI Builder, Release 6.12.62

– Time between messages: 0.01 s

– Bytes to send: 22 byte

3.7.6.5.2.3 Gimbal block program

Finally, in the Block Programs menu, a Gimbal program has also been created to allow a correct communication
between Veronte Autopilot 1x and the video board integrated in the Veronte Gimbal camera.

Warning: Users must add it to their own configuration in exactly the same way.

Fig. 246: Veronte Gimbal - Block program

3.7.6.6 VSE (Veronte Stick Expander)

To configure the VSE in 1x PDI Builder it is only needed to follow the steps explained in the Ground unit
configuration of the General case - PPM Stick integration example.

Important: In the step 1 of that explanation, there is already a transmitter configured with the required VSE
configuration, users will find it as Brand: Embention and Model: Stick Expander.

The number of channels configured here must match those set in the VSE application. For more information on this,
refer to the Channels - Software Installation section of the Stick Hardware Manual.
Furthermore, as the number of channels is modified, the Brand name will change to Customize.

3.7. External devices 625

https://manuals.embention.com/stick/en/1.0/software%20installation/index.html#channels

1x PDI Builder, Release 6.12.62

626 Chapter 3. Integration examples

CHAPTER

FOUR

TROUBLESHOOTING

4.1 Debug serial messages transmission

To check that the transmission of serial messages is being carried out correctly, the user can view what is being sent in
the 1x PDI Calibration software hyperterminal. To do this:

4.1.1 1x PDI Builder side

1. Go to Input/Output menu→ I/O Setup panel.
Connect the RS custom message producer (where the message is configured) to a Tunnel with Address 2 (App
2). In this case, the message is configured in the RS custom message 0 producer and sent through Tunnel 0.

Fig. 1: RS custom message→ Tunnel

627

https://manuals.embention.com/1x-pdi-calibration/en/6.12.60/index.html

1x PDI Builder, Release 6.12.62

4.1.2 1x PDI Calibration side

2. Go to Terminal tab.

Click on Agree:

Fig. 2: Terminal tab

3. Next, select the Tunnel 1 (this corresponds to the Tunnel 0 that has been configured in the 1x PDI Builder, as
the numbering here starts at 1 and not 0) and click on Launch:

628 Chapter 4. Troubleshooting

1x PDI Builder, Release 6.12.62

Fig. 3: Terminal tab - Tunnel selected

The tunnel console should open and the user will be able to view the message being sent:

4.1. Debug serial messages transmission 629

1x PDI Builder, Release 6.12.62

Fig. 4: Tunnel console

For more information on the Terminal configuration, please refer to the Terminal section of the 1x PDI
Calibration user manual.

4.2 Internal Digi radio

If users are having problems communicating with the Digi radio, consider the following checks:

1. Review Autopilot 1x configuration: Ensure that all parameters are correctly configured according to the
specifications detailed in the Digi internal radio - Integration examples section of this manual.

2. Adjust XCTU settings: Check that the parameters set in the XCTU software match the specifications detailed
in Configuration in Digi radio software of the Digi internal radio integration example. Pay special attention to
step 9.

These steps can help identify and fix any configuration errors that prevent communication.

630 Chapter 4. Troubleshooting

https://manuals.embention.com/1x-pdi-calibration/en/6.12.60/operation/terminal/index.html

1x PDI Builder, Release 6.12.62

4.2.1 Communication lost with internal Digi radio

Most of the time, the communication between Autopilot 1x and Digi radio is lost due to a change in its baudrate.

In 1x PDI Builder it is set to 115200 by default, however, in Digi radios the factory default baudrate at reset is 9600.

To recover communication, try changing the baudrate on one of them to match.

1. Go to Input/Output menu→ Serial panel→ Veronte LOS tab.

Set the Baudrate on Veronte LOS to 9600.

Fig. 5: Veronte LOS baudrate

2. Check the steps described in the Digi internal radio - Integration examples section to see if the module is now
detected in XCTU software.

Then, if desired, the user can change the radio baudrate to 115200 and after that also change it for Veronte
Autopilot 1x.

4.3 Maintenance mode

The user can simply enter maintenance mode via 1x PDI Builder by clicking on the “Normal mode” button in the
initial menu. In addition, exiting maitenance mode is the same process.

Below is an example of how to do this:

4.3. Maintenance mode 631

1x PDI Builder, Release 6.12.62

Fig. 6: Enter/Exit maintenance mode

4.4 Maintenance mode (loaded with errors)

The following error message may appear when trying to save a change or import a configuration.

Fig. 7: Error message

Therefore, Veronte Autopilot 1x will be in ‘Maintenance mode (loaded with errors)’:

632 Chapter 4. Troubleshooting

1x PDI Builder, Release 6.12.62

Fig. 8: Maintenance mode (loaded with errors)

To check what the source of the problem is, the user can simply click on the PDI Error button , which will show
what the PDI Error is:

Fig. 9: Maintenance mode (loaded with errors) - PDI Errors panel

• PDI ID: ID of the PDI Error.

• PDI Error Description: Description of this PDI Error. A list of all PDI Errors can also be accessed in the List

4.4. Maintenance mode (loaded with errors) 633

https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#list-of-pdi-errors
https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#list-of-pdi-errors

1x PDI Builder, Release 6.12.62

of PDI Errors section of the 1x Software Manual.
• Config ID: ID of the configurable (.xml file) containing the data in which the PDI Error has been caused.

• Config Description: Description of the configurable (.xml file) containing the data in which the PDI Error has
been caused.

Clicking the Export button will export a .csv file with the same information shown in this PDI Errors panel.

This is useful while the configuration is in progress, however, if the user encounters this situation during the operation,
it is also possible to look up the cause of the PDI Error directly on the Platform panel of Veronte Ops. For more
information about this panel, see Platform panel section of the Veronte Ops user manual.

Fig. 10: PDI Error - Veronte Ops

Then, it is possible to access the Autopilot 1x configuration to fix this error.

Tip: If the PDI error is related to a migration, it is usually caused by the selection of accelerometer, gyroscope and
magnetometer sensors.

In addition, a list of all PDI Errors can be accessed in the List of PDI Errors section of the 1x Software Manual.

4.5 Migrate configuration

Warning: When performing automatic migration from a previous version to the current version of the software,
errors may occur.

It is then the responsibility of the user to check the subsequent result.

4.6 Radios paired but 1x air unit not showing

If the radios of both Autopilots 1x, air and ground units, are paired but the 1x air unit does not appear connected in
Veronte Link, it may be because the routing on the 1x ground unit is not correctly configured. Therefore, users
should check the Ports configuration on the 1x ground unit. To do this:

Go to Communications menu→ Ports panel, and the routing of address 2 (address by which Autopilots 1x ground and
air units communicates with all Veronte applications, such as Veronte Link) must be set to the port that is connected
to the USB (PC connection), in this case it is PORT 0.

634 Chapter 4. Troubleshooting

https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#list-of-pdi-errors
https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#list-of-pdi-errors
https://manuals.embention.com/veronte-ops/en/6.12/panels/platform/index.html
https://manuals.embention.com/1x-software-manual/en/6.12/variables/index.html#list-of-pdi-errors

1x PDI Builder, Release 6.12.62

Fig. 11: 1x ground unit - Ports configuration

4.7 Reducing GNC Task frequency

400 Hz is the maximum possible frequency, but can only be used in simple configurations, in other cases it is
advisable to reduce it to 250-300 Hz.

To find out if the frequency needs to be reduced in the user configuration, check the GNC Task Average CPU Ratio
variable.

For correct operation, this variable should be at approximately 60-70%. If it reports a higher value, the frequency
must be lowered.

4.8 Trajectory Overshoot

If the user observes significant meandeling or overshoot in the mission path, this can be reduced by modifying the
gains of the guidance PIDs:

• Reducing the proportional gain.

• Ensure that the integral gain is 0.

Guidance error accumulates and leads to increasing overshoot, as can be seen in the following example:

4.7. Reducing GNC Task frequency 635

1x PDI Builder, Release 6.12.62

Fig. 12: Trajectory overshoot

636 Chapter 4. Troubleshooting

CHAPTER

FIVE

FAQ

5.1 How to calculate a mask

This section attaches a python program that allows users to easily calculate their mask in standard or extended frame
format by simply entering the CAN Ids as a vector. In addition, this program also converts each Id entered into binary.

maskCalculator.py

An example of the execution of this program is shown below:

Fig. 1: Example of maskCalculator program

637

1x PDI Builder, Release 6.12.62

5.2 What does decimation mean?

EKF implementation in Veronte Autopilot 1x algorithm means that only one sensor can enter per run step.

Therefore, if more than one sensor is read in the same GNC step, then the sensor with highest priority is the one
introduced to the EKF. The rest of the sensor measurements will be introduced to the EKF in subsequent GNC steps
according to their priority order.

The priority order of the sensors from highest to lowest priority is as follows:

• GNSS position

• GNSS velocity

• Relative position sensor

• GNSS compass

• Magnetometer

• Static pressure

• Altimeter

• Velocity down

• Terrain mesh

Consequently, if there is a sensor with a high priority and it has a high refresh rate it may cause other sensors to never
enter.

To avoid this, the parameter decimation has been introduced to discard a certain number of new measurements. That
is, with decimation 10, only 1 out of 10 new measurements is entered.

It is recommended not to change the default values if users are not sure what they are doing.

5.3 Automations evaluation and execution

• What is the approximate rate of evaluation of all automations?
The evaluation rate of these automations depends on the type of event in terms of priority: high and low events.

High events are those that check whether a system variable is within the defined limits or those which check if
the selected bits are correct. Low events are the rest of events of the system.

Considering that automations run at Core 2 (C2) frequency, these are the evaluation rates of each type of event:

– High events: Evaluated in all steps of C2.

– Low events: The evaluation rate is given by the following equation:

Evaluation rate =
nº low events

floor(nº of low events+35
36)

+ 3

Example

638 Chapter 5. FAQ

1x PDI Builder, Release 6.12.62

56 low events→ low events are evaluated each 31 C2 steps

• Are the automations evaluated in sequential order from top to bottom (similar to block programs that are
evaluated in sequential order)?
No, they are evaluated in the order of the automation ID, which may not necessarily coincide with the order in
which they appear in the list of automations.

For instance, considering the following automations configuration, the automation with ID 9 (Auto Mode), will
be executed before the automation with ID 27 (RDZ Button), regardless of whether the automation RDZ Button
is first in the “sequential order”.

Fig. 2: Automations evaluation order example

• Is it possible for one automation action to be executed before the complete list of automations is evaluated?
No, this is not possible because the Veronte Autopilot 1x system first checks all automation events and then
executes the corresponding actions triggered by the evaluated events.

5.3. Automations evaluation and execution 639

1x PDI Builder, Release 6.12.62

• Could a block program use a variable set by an action of an automation before the complete list of
automations is evaluated?
No, because block programs are executed before automations.

• Could a CAN message with a variable value set by an automation be sent before the complete set of
automations is evaluated?
No, because CAN is evaluated in Core 1, while automations are executed in Core 2. For more information on
the tasks and functioning of each Core, please refer to the Core architecture section of the 1x Software Manual.

640 Chapter 5. FAQ

https://manuals.embention.com/1x-software-manual/en/6.12/arquitecture/index.html

CHAPTER

SIX

SOFTWARE CHANGELOG

This section presents the changes between the previous software version (v.6.12.54) and the current (v.6.12.62).

Added
• Migration of .ver files in offline mode

• Confirmation dialog when reassigning an existing phase ID

• Filter to variable list in custom message dialog

• Spheres can be selected in Area event (Automation)

• Detailed description in Transponder wizzard information button

Improved
• Addition of rows in Arc Trim block

Changed
• ADS-B variables are no longer writable

641

	Quick Start
	System Requirements
	Download
	Installation

	Configuration
	Veronte
	Unit name
	Attitude
	Frequencies
	Operator position
	GPIO
	Status

	Connections
	ADC
	Arbiter
	FTS
	GPIO
	I2C
	Others
	PWM
	Serial
	USB

	Sensors
	Accelerometer
	Common accelerometers configuration
	Common configuration of the internal accelerometers
	Sensor

	Gyroscope
	Common gyroscopes configuration
	Common configuration of the internal gyroscopes
	Sensor

	Magnetometer
	Sensor

	Dynamic Pressure
	Navigation
	Sensor

	Static Pressure
	Atmospheric calibration export
	Sensor

	RPM
	Lidar
	Internest

	Input/Output
	I/O Setup
	Serial Custom Messages
	Tunnel
	Unescape port
	NMEA Parser
	CAN wrapper/CAN unwrapper

	CAN Setup
	Configuration
	Custom Messages
	Mailboxes

	Custom Messages types
	Variable
	Checksum (CRC)
	Polynomial type
	sum8 type
	sumMod type
	Mavlink type
	8-bit sagetech checksum

	Matcher
	Skip
	Parse ASCII
	Position

	Digital Input
	Serial
	Veronte LOS
	RS485/RS232

	Control
	Phases
	Modes
	Modes
	4x Veronte

	Arcade axis

	Automations
	New automation
	Other options
	Events
	Alarm
	Area
	Button
	Mode
	Phase
	Route
	Timer
	Variable

	Actions
	Atmosphere calibration
	Change active sensor
	Command block
	Custom CAN TX
	Custom Serial TX
	DEM calibration
	Enable/Disable Wind Estimation
	FTS-Activation
	Feature
	Format SD
	Go to
	Mode
	Navigation
	Obstacle avoidance
	Output
	Periodical
	Phase
	Ports
	Run block program
	Safety Bits
	Select Arcade axis
	Stick priority
	Terrain obstacle
	Track
	User Log
	Variable
	Yaw

	Communications
	Ports
	4G
	Comstats
	Iridium

	Stick
	Transmitter (0-3)
	PPM
	Exponential
	Trim
	Output

	Virtual Stick

	Block Programs
	Control blocks
	PID
	T-Sched PID
	ECU Control
	Fuzzy Logic Controller
	Driver Control Filter
	System Identification
	Predictive Control Block
	Quaternion Control
	Total Energy Control

	Data Source/Sink blocks
	Devices blocks
	Clock
	Gimbal
	Stick

	Execution Flow blocks
	On focus block
	Switch blocks

	Guidance blocks
	Guidance blocks common configuration
	Climb
	Cruise
	Envelope
	Guidance Computation
	Landing
	Rendezvous
	Taxi
	VTOL
	Yawing current
	Yawing heading
	Yawing north
	Navigation guidance blocks

	Library blocks
	Logic blocks
	AND
	NOT
	OR

	Math blocks
	f(x)
	f(x,y)
	Polynomial
	Vectors

	Mode/AP Selection blocks
	AP Selection
	Arcade
	Arcade Bounce
	Arcade Extend
	Manual
	Mix

	Navigation blocks
	EKF Adapters
	Altitude
	GNSS compass
	Misalignment
	Position
	Static Pressure
	Terrain height
	Velocity
	Velocity down

	EKF Split
	Navigation

	Positions blocks
	Constant Position
	Move
	Relative Vector
	Read Feature
	Write Feature

	Sensors blocks
	Altimeter
	GNSS sensor
	Magnetic Field
	Magnetometer
	Relative position
	SRTM height
	Static Pressure

	Servos blocks
	Actuator
	Arc Trim
	PWM

	Signals blocks
	3D Table Interpolation
	Acceleration limiter
	Bound
	Derivative
	EWMA Tau filter
	FFT
	Hysteresis
	IIR Filter
	Integrator
	Interpolation Vector
	Ramp
	Rate limiter
	Signal generator

	Type Casting blocks

	Devices
	Transponder/ADS-B
	Camera
	Board

	Telemetry
	Telemetry
	Data vectors
	Onboard Log
	User Log
	Fast Log

	Sniffer

	UI
	Operation elements
	Variables

	HIL
	Simulation variables

	Safety
	Checklist
	Config Manager
	Safety bits

	Integration examples
	AP communication with PC
	ArcTrim Button
	CAN communication
	CAN messages transmission
	CAN messages reception
	CAN messages transmission via serial
	CAN messages reception via serial

	Data transmission between Veronte Autopilots 1x
	Flare and Decrab phase configuration
	Flare phase configuration

	RTK Configuration
	External devices
	Altimeters
	Lidar
	ADC lidar
	I2C lidar
	Lightware LW 20 Lidar

	Using lidar readings

	Radar
	Ainstein CAN Radar
	Smartmicro CAN Radar

	External sensors
	High Speed Pitot Sensor
	LM335 with Autopilot 4x
	Magnetometer Honeywell HMR2300
	RS-232
	RS-485

	MEX as Magnetometer Honeywell HMR2300
	Serial
	CAN

	OAT Sensor
	Vectornav VN-300
	Vectornav VN-300 configuration

	Radios
	Digi internal radio
	Configuration
	Operational range

	Microhard internal radio
	External radios

	Servos
	PWM
	Serial
	Volz DA26 - RS485

	Stick
	Joystick 16CH
	CAN Joystick configuration
	I/O Connections
	MEX address configuration

	PPM Stick
	General case
	Ground unit
	Air unit

	Simulation case (HIL)
	On-board PPM receiver case

	Stick widget
	USB joystick
	Virtual Stick

	Veronte products
	Autopilot 4x
	Autopilots 1x configuration
	Definition of the 4x group
	Control and communication between autopilots within the 4x group
	Communication between Autopilots 1x and Arbiter

	Configuration for external radio communication through RS232
	Telemetry configuration
	I/O ports configuration
	CAN communication configuration
	Routing configuration

	Arbiters communication

	CEX/MEX
	1x PDI Builder side
	CEX PDI Builder side

	MC01
	MC01 PDI Builder side
	1x PDI Builder side

	MC110/MC24
	CAN commands from Autopilot 1x to MC110
	1x PDI Builder side
	MC110 PDI Builder side

	CAN commands from MC110 to Autopilot 1x
	MC110 PDI Builder side
	1x PDI Builder side

	Veronte Gimbal
	Controlling Veronte Gimbal movement
	Communication with Veronte Gimbal camera video board
	CAN commands sent by Autopilot 1x
	CAN commands received on Autopilot 1x
	Gimbal block program

	VSE (Veronte Stick Expander)

	Troubleshooting
	Debug serial messages transmission
	1x PDI Builder side
	1x PDI Calibration side

	Internal Digi radio
	Communication lost with internal Digi radio

	Maintenance mode
	Maintenance mode (loaded with errors)
	Migrate configuration
	Radios paired but 1x air unit not showing
	Reducing GNC Task frequency
	Trajectory Overshoot

	FAQ
	How to calculate a mask
	What does decimation mean?
	Automations evaluation and execution

	Software Changelog

